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I. SUMMARY

An experimental investigation has been carried out to determine the
effect of heating on boundarv layer transition in a liquid., For this nurpose
water was clrculated through a steam-heated smooth brass tube over a range of
diameter Reynolds numbers from 30,000 to 140,000. With the disturbance level
present in the system it was possible to produce adiabatic length Rewnolds
numbers of transition up to 850,000, The location of transition was
determined from measurements of local apparent friction factor along the
tube, and also by the use of a boundarv layver probe which detected the
change in velocity profile at the onset of transition, Heating was found to
have no significant effect on the position of transition, and resulted in a
slight decrease of free-stream length Reynolds number of transition; while
the mean boundary layer Reynolds number of transition was slishtly increased.
Small roughnesses on the boundary walls were found to have a very pronounced
effect on the location of transition.

The results indicate that for an ordinary water flow svstem, the use of
heating could not be expected to appreclably cause stabilization of the
laminar boundarv layer,

An expression for local apparent friction factor in the laminar entry
of a tube has been developed by the use of an approximate boundary layer
computation method, The relation derived apprlies within a range where
Reyx/Rep? is less than 1073,

A second solution for apparent friction factor, ﬁhich applies throughout
the whole laminar entry region of a tube, has been derived by substituting an
approximate velocity profile shape into the continuity and momentum equations
The velocity profile chosen approached fl?t plate behavior near theitube
entrance, and gradually changed toward a parabolic shape as the flow

developed, Graphical integration was used to obtain the final results in

tabular form.



II, INTRODUCTION

Brief Introduction to Mathematical Stabilitvy Theory

The current concept of the process governing the transition of a
houndary laver from laminar to turbulent motion is based on stability
considerations, At a certain critical value of the Reynolds number, the
flow becomes unstable for small disturbances, which then amplify until the
motion becomes turbulent. The voint at which the ecritical Revnolds number
is attained is termed the instabilitv point, while the point at which the
boundary laver begins to deviate from laminar motion is called the transition
point., Between the two lies the zone in which small disturbances undergo
amplification. Since the mathematical investigations deal with the criteria
for the growth of a small disturbance in the stream, it should be noted
that they predict the location of the instabllity point, and not that of
the transition voint.

The general approach to the problem has been to suverimpose a small
disturbance motion upon the differential equations governing the basic flow,
Only first order terms of the small perturbation velocity are retained, and
the amplitude of the disturbance motion 1s investigated as a function of
time, These calculations, carried out by Tollmien(zz’zs)*, Schlichting(l7),
and others, have shown that the critical Reynolds number is a function of
the frequency of the disturbance, and also of the shape of the velocity
profile, If the behavior for profiles with and without inflection points
is compared, it is found, in general, that those having inflections are
unstable over a wider range of frequencies than those without inflections,
Moreover, the value of the critical Reynolds number, below which the flow
is completely stible for all disgurbances, 1s lower in the former case,
Since the shape of the velocitv profile can be altered by pressuré gradients

in the direction of motion, or by temperature distribution across the

# Superscripts 1n parenthesis refer to reference numbers in the
bibliography.



boundary layer, these factors have an effect on the predicted stability of
the flow,

Usine the extension of the theory for the case of a compressible
fluid(g’ll), numerical calculations have been carried out for gases flowing
past a flat plate. The calculations predict, in the case of air, an
increase in stability when the plate is cooled and a decrease when the
plate is heated, This comes about because an inflection point tends to be
develoved in the velocitv profile for the case of a gas flowing over a hot
plate. Since the rate of change of viscosity with temperature 1n a liquid
is negative, whereas in a gas it is positive, it mischt be expected by
analogy that the heating of a plate with liquid flowing over it would tend
to increase laminar stability, although this case has not been adequately
treated at present,

Summary of Experimental Work

Adiabatic experiments carried out by Schubauer and Skramstad(lg) have
fully substantiated the theoretical dependence of stabllity on both the
frequency of the disturbance, and the external pressure gradient. EIxperl-
ments by Liepmann and Fila(lo) have shown that the boundary layer velocity
profile for ailr passing over a heated flat plate develops an inflection,
and that the transition point is caused to move upstream as heat is applied,
Experiments by Scherrer(ls) for cooling an air stream flowing externally
over a cone at Mach number greater than unity, have shown a small increase
in the transition Reynolds number, but the increases were much less than
that oredicted by theory., In the case of internal flows, recent
investigations by Kline and Shapiro(e) for cooling air flowing within a
smooth tube have shown no appreciable effect on the transition point even
when th% wall temperature was reduced over 200°F below‘the stream air
temperature. These results clearly demonstrate that more experimental

work on the effect of temperature gradients on stabllity 1s needed before

a full understanding can be obtained,



Nature of the Present Investigation

In the present work, water was circulated through a tube with heated
walls to determine whether transition could be delayed by this means, If
successful, this technique would have application in reducing the surface
drag on under-sea projectiles, on submarines, and in the inlets of
hydraulic machines, Since the mathematical theory predicts onlv the
instability point for motion with vanishinely small disturbances, it was
necessarv to resort to experiment to determine whether the theoretical
trends for stability arply also to the behavior of the transition point

in a fluid stream with a small but finite disturbance level,



III. DESCRIPTION OF THE TEST APPARATUS

Flow System

A schematic representation of the water recirculating system used for
this investigation is shown in Figure 1, Water drawn from the city main
was contained within a five hundred gallon storage tank and circulated
through the test equipment by means of a five horsepower centrifugal pump,
A bv-pass back into the tank was prcvided at the pump discharge for the
purpose of flow regulation., The piping was arranged so that the entire
flow could be diverted at low velocity through a filter to be carefully
cleaned before introduction into the test section, A standard orifice meter
(25)

was located in the main line and mounted asccording to ASME specifications

Stilling Chamber

From the main line the flow passed through a conieal diffuser fabricated
of galvanlzed sheet metal, The diffuser helped to prevent the formation of
large scale turbulence during the transition from the three inch pipe line
to the ten inch diameter stilling chamber, Following the diffuser the water
entered a ten inch plpe tightly packed with aprroximately two thousand thin
walled, extruded aluminum tubes having a length diameter ratio of forty
(Figure 2)., This honeycomb was sized to insure laminar flow in and between
the tubesrfor all flow rates that were anticipated during the tests, and
was employed to remove any swirling motion from the fluid,

A stilling chamber containing a series of fifteen turbulence damping
screens was located after the honeycomb. The chamber design was such that
it should theoretically provide about a two hundred fold reduction of the
entering turbulence intensity., The screens chosen, according to the data
of references 2, 3, 4, and 20, were 34 mesh and had a wire diameter of
0.0065 inches, Each was tightly stretched and soldered to an interlocking
annular ring as shown in Figures 2 and 3, The screens were spaced two
inches apart so that any low scale turbulence generated by a screen would

be damped before the next screen was reached. The combination of chamber



size, wire diameter, and mesh number, was chosen such that a critical
Reynolds number would not be exceeded, that is, vortices would not be shed
from the screen wires for the range of flow rates used, Before entrance

into the test section, a further reduction in turbulence was obtained due

to the large reduction in cross-sectional area when the stream was contracted
from the ten inch diameter chamber to the two inch diameter test section,

Contraction Nozzles

Following the stilling chamber the flow passed through a double
contraction nozzle, going first from 10 to 4 1/2 inches and then from
4 1/2 to 2 inches in diameter. Each contraction was carefully machined to

a double cuble contour according to the data of Rouse and Hassan(l4),

so as
to avoid any unfavorable pressure gradients which might induce boundary
layer separation. The finish machining was completed with the two contrac-
tions clamped together so that a smocth joint would be assured, and the
whole interior was buffed to a high luster,

The wall of the second contraction was hollow (Figure 3), and cooling
water could be circulated through it during the heated runs in order that it
micht be maintained at the same temperature as the water entering the test
section., This was necessary because the contraction could not be effectively
thermall& 1solated from the steam jacket used to heat the test pipe, With-
out cooling of the contraction walls, there would have resulted an undesir-
able thermal boundary layer formatlion in the stream before reaching the
test section.

Design of the Test Section

The test sectlon was constructed from a 2 inch internal diameter drawn,
seamless brass tube 96 inches long and with a 0,125 inch wall thickness,
At the entrance of the section a boundary laver suction slot was provided,
through which up to 10 percent of the flow cou}d be removed, The slot was
designed according to specifications obtained from reference 12, and the

configuration used is shown in Figure 4., The water removed passed from the
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annular collection ring surrounding the slot, through eight copper tubes of
equal length, and thence through the end-plate of the steam jacket into a
collection header, The boundary laver flow was metered by a standard
flange-tap orifice plate, and was returned to the main storage tank through
an appropriate piping svstem and control valve,

The test pipe was provided with 18 wall static pressure taps, each
having a diameter of 0,020 inches (Figure 4), These were spaced at
distances in proportion to their distance from the boundary suction 1lip,
except for the first few taps which were uniformly spaced 2 inches apart
(see Table I), To prevent the build up of a disturbance from one tap to
the next, the taps were successively spaced from one another at a helix
angle of 110 degrees, so that no two taps were in line with the axial
direction. The taps were carefully machined by alternate drilling and
lapping operations to make them as uniform and square as possible, and to
eliminate burrs at the inside edges, After the final drillins operation the
whole tube was lapped and glven a high polish on the inside.

Six thermocouples were mounted at intervals in tangential slots 1/16
inch deep, spaced on alternate sides of the test pipe (see Table II). The
thermocouples were placed in the slots, and the slots filled with solder
which was filed down flush with the outer tube wall,

The whole test section was enclosed within a steam Jacket made of
standard eight inch vipe. The jacket was provided with steam at 3 psi gage.
All of the pressure tap and thermocouple connections were brought out
through the steam jacket end-plate, The exit end of the test section was
fixed to the steam jacket through a movable O-ring seal, This was done to
prevent thermal stresses arising from the unequal expansion of the jacket
and test pipe,

All of the return outlets in the storage tank were extended below the
water surface to prevent splashing and subsequent entrainment of air bubbles

by the water, 1In addition, each outlet was covered with two burlap bags,



the nurpose beins to disperse the water jets and to prevent the latter
from inducine wave motions in the tank which would be transmitted back into
the svstem as pressure fluctuations,

Instrumentation

Manometer System

In order to facilitate taking eighteen static vressure readings along
the test section, two eighteen tube manometers were constructed so that all
readings could be obtained at one time, One manometer was in a vertical
position, and was used when the pressure differences between successlve taps
were comparatively large, For low flow rates, when the pressure differences
were small, an inclined manometer was used, This was positioned to give the
readings an amplification of five, Both manometers were provided with vents
at their bases so that all air could be removed from the connecting lines.

Thermocounles

Thermocouples were used to measure the entrance and exlit water
temperatures of the test section, the temperature of the tube wall at six
positions alongs its length, and the wall temperature of the small contraction
nozzle, All of the thermocouples were made from the same spool of copper-
constantan duplex wire and had welded junctions. The leads were brought
into an 1sothermal zone box and were then connected through a selector switch
to a standard laboratory potentiometer, A thermometer was suspended in the
storage tank as a check on the average water temperature.

Orifice Meters

Standard ASME flange-tap orifice plates were used to measure the flow
at pump discharge, and the quantity of water removed through the boundary
laver suction slot. The flow in the test section was obtained as the
difference between these two values, Both orifice unions were connected to

vertical U-tube mercury manometers, and by the use of vents the connecting

lines were kept filled with water,



Boundary Layer Probe

A boundary laver probe, constructed as shown in Figure 5, served as a
second means of locatine the transition point, The probe measured the
static pressure on the axis of the tube, and the total pressure in the
boundary layver at a fixed distance from the tube wall and in the same
longitudinal plane as the static pressure, The probe was inserted through
an O-ring seal at the exit end of the test pipe, and was calibrated in

inches so that it could be positioned at any desired place along the tube.
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IV, TEST PROCEDURE

At the beginning of the day in which the apparatus was being used, the
storage tank was freshly filled from the city water mains, and then, by
closing appropriate valves, the entire flow was diverted through the filter
at low velocity and circulated back into the tank. This was continued for
almost an hour to assure that essentially all of the water had passed
through the filter and was as clean as »ossible., The main valves were then
opened and a large flow allowed to circulate through the apparatus thus
helping to expel any alr which might be entrapped. In adiition vents were
opened to remove alr trapped ln the upper region of the honevcomb and
stilling chamber, Steam was admitted to the jacket to heat the water to
room temperature so that the temperature would remain substantially constant
during the adlabatic runs, After the water had reached the proper condition
the steam was shut off and the apraratus allowed to cool while the manometer
lines were carefully purged of entrapped air, The main flow and boundary
layer suction rates were then adjusted to the desired values for the
experiment,

Runs Using Wall Static Pressure Taps

The first group of runs was taken using the pressure readings of the
wall static pressure taps as the means of determining the transition point,
At low flow rates the readings were taken from the inclined manometer, while
at higher flow rates when the pressure differences between successive taps
were larger, the vertical manometer was used, Immediately after taking an
adiabatic run, the steam was turned on without making any changes in the
valve settings. Cooling water was admitted to the storage tank (which was
maintained at s constant level by an overflow pipe) to prevent the system
temperature from rising as the result of heat added through the walls of the
test section., It was found that some control over the size of the tempera-

ture difference across the wall could be obtained by the amount of venting
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of the steam jacket, The more thoroughly the alr was vented from the Jjacket
the higher the temperature difference could be made, up to about 100°F,
which was the upper 1limit for the low pressure steam emploved, If high
temperature differences were used it was found that non-ccndensible gases
would come out of golution with the water, and air bubbles would collect in
the manometer lines, thereby resulting in erroneous readings. When the

wall pressure taps were used as a measuring means, the temperature
differences were therefore kept small.

During the heated runs, cooling water was circulated through the Jjacket
of the small contractlon and regulated so that the contraction wall tempera-
ture was within a few degrees of the entering water temperature, In general
a‘warming up period of at least an hour was necessary durling the heated runs
to achieve thermal equilibrium, During this period thermocouple readings
were taken to ald in the regulation of the cooling water flow,

Runs Usine the Boundary Laver Probe

For the runs using the boundary laver probe it was not necessary to
vent the manometer lines, thus making it possible to reduce the starting
time of the equipment, The connections of the probe to the inclined
manometer were opened, the connections to the static wall taps were closed,
and the lines running from the probe were thoroughly purged of air, The
first reading was usually taken one inch downstream fro— the boundary layer
suction slot, and successive readings were obtained at various intervals
along the pipe by sliding the probe down the tube,

For a partlcular main stream flow, runs were made with various rates
of boundary laver suction to determine whether or not the location of the
transition point was senslitive to the suction rate., The runs with heat
aprlied were'then taken &ithin a'range where transition wﬁs insensftive to
the suction rate, so that any change observed could not be attributed to

slight differences in suction rate between the adiabatic runs and the
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heated runs, Since, in the case of the boundary layer probe, all of the

connecting lines ran down the interior of the test pipe and were therefore
kept cool by the water flow, the difficulty of non-condensible gases
collecting in the lines was not present and hipgher temperature differentials
could be apnrlied,

At the end of the running period the apnaratus was completely drained

to help minimize corrosion or electrolytic action between dissimilar metals

within the svstem,
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V. EXPERIMENTAL RESULTS

Methods Used to Determine the Location of Transgition

Static Pressure Taps

When a fluid flows through a pipe entry, a laminar boundary layer grows
which eventually enters a transition zone and becomes turbulent, The growth
of the boundary layer is accompanied by momentum changes caused by altera-
tions in the velocity profile as the flow pattern develops, Thus the
difference in stat;c pressure between two points along the pipe 1is a
measure not only of the wall friction drop, but also includes the change
due to momentum effects., The entire static pressure change between two
roints 1s expressed conveniently in dimensionless form as a local apparent
friction factor, defined as follows:

afypp = dp/d(x/D)
B

In the laminar zone the local apparent friction factor varies inversely
as the one-half power of the length Reynolds number, and thus decreases
along the length of the pipe. During transition the friction factor rises
quite rapidly (it may drop at first under some circumstances) as the
boundary layer thickens, and then begins to decrease slowly after the
turbulent layer has formed. By considering a plot of 4fppp vs. Rey on,
logarithmic coordinates, the transition point can be determined where the
curve begins to deviate from its original slope of negative one-hsalf,

Boundary Lavyer Probe

The boundary laver probe was constructed to measure the static nressure
along the axis of the tube in the core of the flow, as well as the total
pressure in the boundary layer at a fixed distance from the wall, The
difference between the two readings obtained is a direct indication of the
local velocity at a fixed distance from the wall, Owing to the severe
change in shape of the velocity profile at transition, this technlque
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provided a convenient means for locating the transition point,

As the boundaryv layer thickness increases along the tube in the
laminar zone, the probe, located at increasing axlal lengths but at a
constant distance from the wall, becomes positioned proportionately deeper
within the layer, Thus it 1s placed iIn a region of lower velocity, and a
lower dynamic pressure is recorded as the difference between total and static
pressure readings., In the laminar region, the curves of velocityv pressure
versus length Revnolds number have a negative slovre similar to the local
friction factor curves previouslv discussed., To further demonstrate this
an anproximate veloclity profile for laminar flow over a flat plate was
selected from reference 18, and calculations verformed as indicated 1in
Apvendix B, This resulted in the illustrative curve shown in Figure 86,
The calculated curve for the lamlnar zone shows the general trend of
negative slope and agrees fairly well with the shape obtained
experimentally in thls region,

When the boundary layer becomes turbulent the resulting chanse in the
shape of the velocity profile 1s reflected as an increase in the velocity
pressure determined by the probe, The transitlion point is thus located as
a well defined minimum on the curve of veloclity pressure versus length
Revnolds number,

Since the boundarv laver probe was moved along the tube to obtain
readings at various points, all of the readings were taken bv the same
instrument. Thus any small errors inherent in the instrument, (e.g., owing
to irregularities in the pressure tap openings), remained substantially
constant for all readings and did not cause any scatter of the data around
the curves, Since the velocities used were fairly sizeable, the velocity
pressure readings obtained were much larger than those due to friction
drop, This allowed a wider margin of experimental reading error without

causing noticeable scatter of the data. For these reasons the results

obtained with the boundary laver probe produced, in general, better
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experimental curves than the wall pressure tap method,

One question which immediately arises i1s whether the disturbance of
the boundary laver probe in the test section mav be transmitted upstream
and possidbly cause transition to occur earlier than if the probe were not
present, To studv this effect a run was made in which transition was
determined by both methods, the wall static pressure readings being taken
after the probe had been withdrawn bevond the end of the test section.,

The two curves, shown 1in Figures 7 and 8, both indicate transition at the
sgme length Reynolds number of about 4,7 x 105. This demonstrates that the
introduction of the probe did not significantly affect the position of the
transition point,

Graphlcal Presentation of the Data

Either the local apparent friction factor or the veloclty pressure in
the boundary layer has been plotted against the length Reynolds number on
logarithmic coordinates, The value of the average friction factor measured
between two taps has to be plotted at a length Reynolds number corresponding
to some mean value of x hetween the two points, In the laminar zone, as
shown in reference 6, the aprropriate mean value 1s the average of the
arithmetic and geometrlic means of the axlal distances of the two taps from
the boundary layer suctlon slot at the entrance of the test section,

Two different length Reynolds numbers have besn used for plotting the
curves, The free stream Reynolds number, Rey, was based on the average
main stream water temperature in the core of the flow, The mean boundary
layer Reynolds number, Rey,, was based on the mean boundary layer tempera-
ture; the latter was taken as the average between the wall and main stream
temperatures,

With the exception of Figure 9, the data placed on each figure were
all obtained during the same day. This was to assure that the runs shown

on each graph could be directly compared,
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Discussion of the Data

Friction Factor Data

Effect of Dirt Particles on Transition: Figures 9 to 12 illustrate

the performance of the system for a variety of diameter Reynolds numbers
ranging from 115,000 to 167,000, wilth transition determined from measure-
ments of local apparent friction factor, A predominant characteristic which
the curves display 1s that, as successive runs were taken, the value of the
transition Reynolds number decreased from a maximum of 300,000 in Figure 9
to 400,000 in Figure 11, This 1s esveclally evident from a comparison of
Figures 10 and 11 which have essentially the same diameter Revnolds numbers
and vercent boundarv laver suction, but different transition Rewvnolds
numbers, This characteristic of decreasing transition Revnolds number on
successive days existed throughout the entire period of experimentation,

and was attributed to the collection of fine particles of foreign matter on
the surfaces of the inlet nozzles and test section., This increased the
disturbance level of the system, thereby causing transition to occur earlier,
This conclusion was verified by the fact that the transition point could be
restored tc its earlier position by giving the inlet sections and test pipe
a thorough cleaning,

Effect of Heating on Transition: Figures 10, 11, and 12, each contain
two curves, one for adiabatic conditions, and the other with steam supplied
to produce a small temperature difference across the boundarv laver., The
curves show that heating caused no apvreclable change in the free stream
transition Revnolds number, but that the mean boundary layer transition
Revnolds number was increased slightly.

Data From Boundary Layer Probe

Figure 13 shows the first data taken with the boundary layer probe

immediately after the system had been given a thorough cleaning. It is

noticed that the decrease in disturbance level due to cleaning has doubled

the transition Reynolds number as compared to the previous run,



17

Effect of Boundary Laver Suction on Transition: Figures 14, 17, 18,

19, and 20 show experimental results for a range of diameter Revnolds
numbers from 30,000 to 120,000, For each adiabatic set of curves with
constant Rep there are shown various rates of boundary laver suction flow,
These curves illustrate that beyond a certain percentage the suction rate
did not have an apnreciable effect on the location of transition,

When the boundary laver suction rate was zero, on the other hand, the
transition point was displaced considerably upstream, This is partly
explained by the fact that the boundarv layer formed in the inlet section
was not being removed, thereby producing the effect of extending the length
of the pipe upstream, and partly by the fact that the boundary laver
suction slot itself was causing a disturbance under these circumstances,

Effect of Heating and Accumulation of Foreign Particles on

Transition: Compared with the adiabatic curves in Figures 14, 17, 18, 19,
an% 20, the heating curves exhibit a slightly smaller free stream Reynolds
number of transition, but a slightly greater mean boundary laver Revnolds
number of transition, The heating curves are also positioned above the
adlabatic curves, thus giving evidence that the velocity profile near the
wall has been modified by heat transfer,

Throughout this series of runs it may again be noted that there was a
continuous decrease in the transition Rewvnolds number due to the accimula-
tion of dirt and foreign matter in the inlet sections, During thg
experimental work the location of the transition point remained constant
during any particular day. An example of this 1s shown in Figure 25 where
runs 68 and 72 show transition at the same location although one run was
taken in the morning and the other late in the afternoon., The transition
Reyx apveared to decrease from day to day and especially over week-ends
when the drained system was allowed to stand for a few days. This suggests
that the foreign matter was probably salts deposited by evaporation of

water left within the system., The powdery white deposits found on the
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interlor surfaces of the svstem when it was cleaned seemed to be of this
nature,

Since 1t was desirable to eliminate as much as possible the effect of
stream disturbances, the svstem was given another cleaning before obtaining
run 60 in Figure 21. This caused the transition Reynolds number to increase
to twice the value indicated in Figure 20, Figures 21 and 22 again
demonstrate that heating was ineffective in increasing the free stream
length Reynolds number of transition, but that the mean boundary layer
Revnolds number of transition was slightlv increased,

Because the cleaning had only increased the adiabatic transition
Revnolds number to about 500,000, it was decided to give the system still
another cleaning, as higher values had been reached previously. Before
run 64 in Figure 23 was obtained the system had been given a very thorough
cleaning and the nozzles, stilling chamber, and test section were brightly
polished, The joint between the two contractions was further honed to
assure 1its being especlally smooth,

Figures 23 and 24 show the first group of runs taken after cleaning,
and it 1s seen that the adiabatic transition Rewvnolds number was restored
to 850,000, It 1s also evident that heating produced a rather pronounced
decrease in the free stream transition Reynolds number, but a slight
increase in the mean boundary layer transition Reynolds number. Figures
25, 26, 27, and 28 show the effects of heating with different temperature
gradients across the boundary layer. In all cases heating appeared to
cause a small decrease in the free stream transition Reynolds number but an
increase in the mean boundary layer transition Reynolds number, The
increase in the latter was generally more pronounced as the temperature
difference was increased,

The Addition of Detergent to the System: During a previous experimental

work in which lucite contraction nozzles were employed in a water flow

system, 1t was observed that tiny air bubbles would adhere to the interior
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surfaces of the nozzles and cause large reductions in the transition
Reynolds number due to thelr effective roughness. In the present apparatus
it was thought that a small accumulation of grease on the nozzle surfaces
would facilitate the adherence of such bubbles and might possibly account
for the observed day to dav decrease of transition Revnolds number.
Detergent was therefore added to the water during run 63 to eliminate
any grease film and bubble collection, and in addition to help prevent
the accumulation of dirt varticles. Ficure 29 shown that the ad"ition of
the detergent was ineffective In displacing the position of transition.
This result does not eliminate the vpossibility of air bubbles coming
out of solution and remaining in suspension, with the net effect of causing

disturbances which might lead to premature transition,
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VI. SIGNIFICANCE OF RmSULTS

The results of these exueriments have clearly demonstrated that in the
case of internal water flows, the lenmth Reynolds number of transition is
very strongly dependent upon the stream disturbance lsvel, ZEven very small
denosits of foreign matter 2long the walls were sufficlent to recduce the
value of Rey at transition by fifty vercent. Zven with special precautions
it was difficult to attain values of Rex at transition as high as 850,000,
and in the usual water svstem of a practical n=ture it would be difficult
to achieve such a low disturbance level,

For values of disturbance level present in this work, corresronding
to values of Rex at transition ranging from 850,000 to 250,000, no increase
in the free stream length Revnolds number of transition was observed when
he~t was applied, and iIn fact a slisht decrease occurred in some instances.,
'owever, heating consistently caused an increase in the mean boundary laver
length Revnolds number of transition, Since in design work it is the free
stream Revnolds number which is phvsically significant in predicting the
location of transition, it can be sald that with normal disturbance levels
present 1n practical situations, heating would be of no significance in
extending the laminar regime of flow,

These experiments have not conlusively proven that heating is
ineffective in delaving transition, for if the stream disturbance levsl
could be sufficliently reduced, then perhaps a heatine effect would be
realized, FHowever, as shown by the experimental results, it is extremely
difficult to obtain streams of sufficiently low turbulence level, and so
it is doubtful that heating could be utilized as a zractical means for
delaving transition except nerhaps under unusual circumstawres. ‘

At present the mathematical theory of stabllity has in' fact not been
developed for the case of liquid flows with heating or cooling, so we can
only sneculate as to what the results may be by drawing an analogy with the

results for air flows, Since for a liquid the behavior of viscosity as a
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function of temnerature 1s ovposite to that of a gas, it would be exnected
that the influence of temoerature on the shape of the velocity profile in

a liguid flow would also be opposite to that of a gas flow, Thus, while
heatine tends to destabilize a gas flow, we micht expect it to cause a
liquid flow to hecome more stable, Fowever, this analogy could only apply
for predicting the behavior of the instability point in a stream containing
vanishingly small disturbances,

Agsuming that the analogy 1s valid for liquid flows, the present work
vrovides two results: 1) In a practical case where the disturbances are
not vanishingly small, their effect may be very significant and perhaps
actually govern the process, 2) The results provide addiitional evidence
that in manv circumstances it is not possible to extend predictions for the
location of the lnstablility point to that of the transition point.

It must be noted that there are really two effects entering when heat
is avplied to the wall of the test section., One 1is the change in shape of
the velocity profile resulting from the viscosity gradient produced by
heating the boundary layer. This may cause an lncrease or decrease in
stability which may in turn change the position of transition, The other
i1s merely the change in the mean viscosity of the boundary layer. When a
liquid boundary laver is heated, the mean viscosity decreases, and hence
the effective Revnolds number in the laver 1s increased for the same flow
velocity., This per se will tend to cause transition to occur earlier.
Evidently, from the experimental results, 1if stability 1is increased by
heating, the viscosity effect is sufficiently large to compensate and cause
the net result to be essentially zero or slightly negative. Actually, in
this respect, the mean boundary layer Reynolds number is a better indica-
tion og what occurs within the boundary laver itself, The delay in transi-
tion in relation to that parameter indicates that an 1ncrease in stability
was present, although not sufficiently large to be of practical importance,

After the mathematical theory has been investigated for liquids to an
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extent comparable to the present knowledge for alr, two additional things
remain to be determined before comparisons with experiments can be made
with a better degree of certainty. First the effect of large disturbances
should be dealt with, that 1s, the non-linear effects of the governing
equations must be considered., Secondly, the zone of unstable wave amplifi-
cation which occupies the interval between the instability point and the
transition point should be investigated, including the effect of tempera-
ture gradients on amplification, At least a qualitative answer to the
latter question is necessary before instability criteria can be correlated

with the behavior of transition,
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VII, RIECOMMENDATIONS FOR FUTURE 'WORK

If further work is performed with this tvpe of system an improvement
would result if the svstem were comnletely closed and contained distilled
water, This would help prevent dirt and insoluble salts from collecting on
the walls of the system, and in addition would eliminate the possible
apprearance of air bubbles, Since cooling water would not be admitted
during the heated runs under these circumstances, refrieceration would be
necessary to keep the system temperature from rising,

Since the boundary laver probe proved successful as a means for
determining transition, the use of wall pressure taps could be eliminated,
This would vrevent any possible disturbance that the taps themselves may
induce and would also simplify the avparatus construction,

It would be worthwhile to investigate the behavior of the boundary
laver under the effect of larger temperature gradients., This could be
accomplished by either pressurizing the steam jacket to accommodate high
temperature steam, or by maintaining a lower water temverature by the
ugse of refrigeration,

It would be of interest to trv cooling the liquid boundary laver, In
this instance the increase of viscosity in the boundary layer produces the
effect of decreasing the Revynolds number in that region, and this would
tend to move transition downstream., On the other hand, the boundary layer
velocity profile would tend to develop an inflection, thus becoming more

unstable,
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VIII. FRICTION FACTOR IN TFE LAMINAR
ENTRY OF A SHOOTH PIPE

Brief Summarv of Previous Work

Various theories predicting the behavior of the boundary laver for
adiabatic, incompressible flow in the laminar entry of a tube have been
formulated by Boussinesq(l), Schiller(16), and Langhaar(7). Atkinson and
Goldstein(s) have solved the differential equations bv use of series
exnansions and found expressions valid near the entrance of the vive. This
solution was then joined to a second exnression, valid at larger distances
from the entrance, derived from an extension of the method used by
Boussinesq., A simple theory, using momentum integral methods, has been
derived by Kline and Shapiro(s) for the rerion where the boundary layer 1s
very thin, They also present a set of curves comparine the calculated
results for all these methods with their experimental data,

Solutlon for Region Where 8/R is Very Small

The develooment of the boundary laver in a tube is complicated by the
fact that its formation affects the velocity in the frictionless core of the
flow, The resulting acceleration of the core rroduces a pressure gradient
along the pipe which in turn affects the boundarv laver formation. The
basic phvsical nature of the process sugeests that a method of successlve
approximations might be used to obtain a solution. In this scheme the
continuitv equation is avplied to obtain an anproximation to the core
velocitv along the tube, The latter 1s then substituted in the approximate
boundary laver calculation method of Thwaites(zl), and of Rott and
Crabtree(15), to obtain the displacement thickness as a function of distance
along the tube, This displacement thickness is then substituted back into
the continuity relation to obtain a better approximation to the core veloclty,
and the whole operation 1s repeated,

The calculations, as carried out in Appendix C, result in the

expression,
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4fﬁpp% - 1376y 1= 238 \Re, 4 W &—l
Fe, Re, Feg'

which is valid in the range where Rex/ReD2 is less than 10'5, within which
good convergence is obtained, For Rex/ReD2 equal to 10'3, ®/R is
approximately 0,3,

3 the boundary layver has become so thick that

For values larger than 10~
three dimensional effects enter and the method breaks down. Also since the
solution has not been constrained to converge eventually to a fully-
developed laminar profile 1t would be expected to be valid only in the entry
regzion of the pine where the boundary layer 1s still relatively thin
compared to the pipe diameter, A comparison of the computed values with

experimental data 1s shown in Figure 30,

Solution for Entire Laminar Entrv Region

A second solution for the apparent friction factor in a laminar tube
entry was obtained by substituting an approximate expression for the velocity
profile Into the equations of continuity and momentum, The profile chosen
was in the form u/U = Function [(y/&), (S/Rq , and was constrained to
approach a parabolic shape as the boundarv layer thickness became equal
to the tube radius, This method yielded a solution which aprlies throughout
the whole entry region, and is in close agreement with both the experimental
data of Kllne and Shapiro(s) and with the expression stated in the preceding
paragraph, The computations are fully explained in Appendix D, and the

results are shown in Figures 31 to 34,
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IX, CONCLUSIONS

1, For disturbance levels producing length Reynolds numbers of transition
up to 850,000, the extent of the laminar regime for water flowing in a pipe
entrvy was found to be either unaffected or slightly decreased when the pipe
walls were heated,

2. The length Reynolds number of transition for water flows was found to
be very sensitive to small disturbances such as might be caused by small
roughnesses on the walls,

3. Heating caused small increases in the mean bcundary layer length
Revnolds number of transition, which indicates an increased stability.
However, the increases produced were not sufficiently large to be of
practical importance,

4, There is need for further mathematical study of the unstable wave
amplification which follows the instabillty point and induces turbulence,
before a clear understanding of the relation between the instability and

transition points can be obtained,
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LIST OF SYMBOLS

cross sectional area of the test tube
diameter of the test tube
local apnarent friction factor as defined by the equation:
4f,pp = dp/d(x/D)
3pv°

mean apparent friction factor up to a section x = L, defined
by the equation:

" buo - b
L s X = Xeo .
el & the 4(5) ‘-gvi"
the ratio of %% to © t

a parameter in Thwaites' method defined by:

m:-U.@i U,:ig
z dx

static pressure in the test sectlon at distance x from
the boundary layer suction slot

total pressure at x ln the boundary layer at a fixed small
distance from the tube wall

volume rate of flow through the test section

pipe radius

radial coordinate In the test section measured from the
tube axls

diamster Reynolds number based on the diameter of the test
section and on the free stream fluid properties, (J,VD//“.

length Revnolds number based on the length from the boundary
layer suction slot and on the free stream properties, @Nk4*.

length Reynolds number based on the length from the boundary
laver suction slot and on fluid properties taken at the
average of the free stream and wall temperatures, chx¢*‘

[]
free stream water temperature in the test section
wall temperature of the test section

velocity in the frictionless core of the pipe flow
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main stream velocity for flow over a flat plate
axial velocity at any location x and y
mean flow velocity through the test section, Q/A

axial distance in the test section measured from the boundary
layer suction slot

radlal coordinate in the test section measured from the wall
a constant

a constant

boundary layer thickness

displacement thickness of the boundary layer

momentum thickness of the boundary layer

Pohlhausen form parameter deflined by the equation:

)N §.§: éﬂl
v dx

coefficient of viscosity

kinematic viscosity,ry%

mass denslty

dimensionless length parameter, Rex/ReDQ

shear stress at the wall
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TABLE I

LOCATION OF STATIC PRESSURE TAPS
— ALOWG TEST SECTION

Tap Number Distance From
Suction Slot
inches
1 11/4
2 3
3 5
4 7
5 9
6 11
7 13
8 15
9 18
10 21
11 25
12 29
13 34
14 40
15 48
16 57
17 68
18 80



TABLZ II

THERMCCOUPLE LOCATIONS

Thermocouple Number
1
2

10

Location
Interior of honevecomb,

Boundary layer suction
collection header.

Wall of the small
contraction nozzle,

Wall of test section,
2" from suction slot,

Wall of test section,
8" from suction slot,

Wall of test section,
14" from suction slot,

Wall of test section,
24" from suction slot,

Wall of test section,
41" from suction slot,

Wall of test section,
70" from suction slot,

Test section exit,

32
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APPENDIX A

Analysis of Data

The flow in the main pipe line leading to the test section and
boundary layer suction slot, and the flow in the boundary layer suction
were both calculated from the pressure drop across standard sharp edge
orifice plates, The orifice coefficlents used were obtained from the
tables of values supplied by the ASME in reference 25,

The flow in the test sectlion was taken to be equal to the main line
flow minus the flow removed by boundary layer suction.

The free stream lenscth Reynolds number was calculated from the relation,
Reyx = Ln_c_e, where (O and/Awere taken st the free stream temperature, In
the case of a heated run this was obtalined as the average of the inlet and
exit temveratures of the test section, 'When calculating the mean boundary
laver Reynolds number the vropertles were selected at a temperature equal
to the average betwsen the wall temperature and the free stream temperature,
the wall temperature being taken as the average of the wall thermocouple
readings. For the friction factor data the mean value of x between two
pressure taps in the laminar zone was taken, as suggested in reference 6,
as the average of the arithmetic and geometric means of the axial distances
of the two taps from the boundarv layer suction slot at the entrance of the
test section,

The local apparent frictlion factor between two pressure taps was
obtained from the formula,

4f,pp = Ap/a(x/D)
%fvz

where Ap is the static pressure change, and A(x/D) is the number of
dlameters between the two taps,

The values of PTOTAL - P were obtained directly from the

STATIC
manometers as the difference of two readings,



APPENDIX B
Approximate Calculation of Experimental Curve Obtained
by the Boundary Layer Probe iIn the Laminar Zone

To obtain an approximate idea of the shape of curve obtained by the

boundarv layer probe in the laminar zone, a velocity profile for flat vlate

flow was selected from Schlichting(la) (page 191)., Since near the entry of

the test section the boundary layer is thin, a flat plate approximation,
neglecting the effects of cross-section curvature and pressure gradients
along the flow, was sufficiently accurate for this computation,

The velocity profile selected was

&)
S - Ji—&g with @ =2 2)
o, w

and «, = 31
3E

In the case of flow iIn a plpe entry, Ug = U, and the value of U

where

changes as the flow develops along the pipe length., In the present example,

since the boundary layer is thin, U can be considered as a first approxima-

tion equal to V, the mean velocity in the tube. Then (2) reduces to

%QQ‘- S.54x where Rey = Y.L (3)

Since the dynamic pressure at a fixed distance from the wall 1is

proportional to u?, we obtain from (1),

u‘:43‘43)%41‘+4(1‘°-41)’+(1Y (a)
tV) 3 3 b & L) b
Substituting (3) into (4) results in

(\n: 49t 8y R L 4y* 4y’ yr

- (5)
v 584x]" [S84x]' [5.84x]° [5.84x)° [S.84x ' Kigg t
if,] [1&—] (Re. (VE) (Rex | | (Res




55

Simplification and rearrangement then produces the final form

(e D@ (b

)
V\ %.53 1.45 oo
.11213 {11? T [_5_(1hr (6)
N (x)(n) = (x)(b\ ‘D] . (3)t5) %o
1920 - $7,900 : 1,350, 0vo

Numerical Example

Since the experimental probe used had a finite width, the dynamic
pressure indicated was actually an averape value over a certain thickness
of the boundary layer. To simplify the calculations a fixed value of
Y = 0.020 inches was used, which is in the neighborhood of the actual probe

size, Other typical values assumed were:

Rep, = 100,000 D= 2" T, = 75°F
and ReDz’
V=" = 21,400 ft/hr
or V2 = 35,3 £t2/sec?

Then from (6), uz was calculated at each value of x, for which the values
Ppomar, — PsraTIc = u?/2g were found at each point where Rey = Rep(x/D).
The final results are shown in Figure 6, where the values of

Ppopar, = Psrarrc have been plotted against Reg,
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APPENDIX C

Determination of an Approximate Expression for 4Fapp in the
Laminar Entry of a Tube When the Boundary Layer Thickness
Is Small Compared With the Tube Radius

In this section an expression for 4F,pp in the laminar entrance of a
tube is derived which applies for values of G = Rex/ReD2 less than 10'5. A
form of the continuity equation is first obtained by considering the
physical situation which exists in the laminar entry., The equation is then
integrated by using Pohlhausen's approximate velocity profile, and put into
a form where V/U is a function of 3%/D and dU/dx. Successive approximations
of U as a function of x are obtained from this relation and are used with
Thwaites'(zl) aprroximate method of laminar boundary layver calculation to

obtain higher order approximations, The calculations proceed as follows:

Continuity Relation

! 2 Tube Wall
5 :)\\\\\\~_Boundary
\ Layer
—V —- D -—D-26- U—— - -
-u <1
OSSO N N N NN NONUSINUAINSN A NS NSNSNUONUOUNNNEINANS ENAANNNN

Assuming steady flow and applying the continuity equation for a control

volume between sections 1 and 2, we obtain the expression,

%
Toy . T@-23)'y +1r((o-z,\udj )
4 4
Simplifying, we get
% )
' \-43+4,s_‘,,i_(u _3 | oyud
v (D) (D\ LD ), juo‘g‘ ]

This 1s equivalent to

s ) b S
V.o t-4] Ldy+ 3| ydy s 4 d -Lg d
U L D j D‘( J j U‘D(.u j \)D“)u. ’j
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Regrouping of the integrals results in the expression

V 4 ' W '
ROE (GEERN|GEE

Introducing the definition of displacement thickness,
Y
S‘sg(\-}_\)bj
. U
we obtaln

V. 1-4%, 2 '
-_ = = 2 + 2 l-.“i’. d (
0] D D‘(( U)j ! ?)

1]
To evaluate the last term in (2) a velocity distribution u/U as a
function of y must be assumed. A good assumotion is a polynomial of the

fourth order due to Pohlhausen(ls),

R R R

)\ = _i:. %’-_(.J_ and i‘z .§. - _A_ (Sb,c)
X ®

Substituting (3a) into (2), and integrating the latter, we obtain

_V_:\"4.S_‘+_%_§:-_):E
V] D I5D* 4s D»°

"
Then, from (3c), solving for 5 in terms of % and A, we get

(4)

TS S -T-Y AL -1 b W S ) L (5)
‘1-%‘ +I:‘—4 9 Y 3Ll

If the expressions (5) and (3b) for & and A are now inserted into the

integrated continuity equation (4), the latter can be reduced to the form

Vo.1-48 ., &9(&')1+ 2_099.(%_*)‘ 040 L (6)
U D 21\0) w1\p/) 2z x

1st Iteration

To begin the iteration process, an expression for the core velocity
U as a function of x is needed, As a first approximation the potential
flow solution for flow in a pipe is assumed, that is U = V, or V/U = 1,
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It is noted that this is merely the first order term in the continuity
relation (6), If we substitute this into Thwaites' expression for the

square of the momentum thickness

X
-bL 5
8- 45U "2\ U’dx (7)
o
we have
e‘l s ,45 7 X (8)
Continuing with Thwaites' methodq,
' as U' = 0 for this (9)
W = “\4)7/—6- = 0O lst approximation
Also, from Thwalites! method
. (10)
t = OHm)

By plotting H vs. m as given in table I in reference 21, the relationship
H = H(m) can be approximated in the region of decreasing pressure by the
straight line,

H(m) = 2,48m + 2.56 (11)
Then putting (8), (9), and (11) into (10) we have,

ot 3{,45&_]‘/2 (2.50) = 112 X (12)

v \Rex

which is the final result of the 1lst iteration, It 1s noted that this
expression is the same as that obtained in the Blasius solution for flow
over a flat plate, This might have been anticipated as very close to the
entry of the pipe the boundary layer 1s sc thin compared with the tube
radius that it approximates flat plate behavior,
2nd Iteration

We now take as a closer approximation the first two terms from the

continuity relationship (6),

Voou-48% oo U oo1east,
V D v D
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Substituting S from (12) into (8) we have

U 1+b3 ¥ | et (e (13)
V JE;: Reb

This expression is then inserted into equation (7), thus yilelding

— -l X s
8- .4S[l+k.%%\_?gi] _zgg (uu.u@]

Eeb V z‘b

Expanding the terms in square brackets by means of the binomial theorem,

and integratling, we get

0 - .45[\-4\.2%!E Jz % v 2293 % (Rex ...
?eb \ ?en
or
S AS X1y - s Vré;: v (14)
N Re,

From (9), (13), and (14) we have
(oo
.. . UG, { a0 L || e (11355 1Fex)

y 4 y 4

or

m = _\,55@[\ - |%,35@ +] (15)
er Reo

From (10) and (11),
.0 (2.48m+ 250 (16)

Substituting (14) and (15) into (16) and retaining only terms uo to order
{Rey/Rep, there is obtained

o* . [_452_)&]!11{\ - 1.I%!E}{2 4%[ IS'S@ (\- 3. 55\]]27)]4. 2.56
v Re, Rep

or . | \

o* . \.]Zx{| - lO.b%@

(Rex Re,

This 1s the final result of the 2nd iteration,

¥ '

(17)
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3rd Jteration

Ne now take as a cloger apnroximation the first three terms from the
continuitvy relation (6), and proceed in the same manner as before:
% L IR A
Vo, - 43, ._MG_) (18)
U D 21\D
Substituting (17) for & into (18), and simplifying, we obtain

Voo ot- .38 Rex 4 91 Kex + ...

U Ben Ee:

or
U . oivo38fPe _ 437 Pew ... (19)
v Bes eyt

which is the same as (13), except that we have retained the next higher
order term,

Equation 19 is now inserted into (7) with the result, after integration,
simplification, and dropping of all terms of order higher than Rex/ReDz, that

e . .48 [\ - 18.35 \Rex 4 439 Rex (20)
W {Rex Pe Fep'
From Eqs. (9), (19),. and (20), we have
m = - .45 (344 V__R_Q_x_ - lD(o.1 B_CL (21)
Rey Rey'
Solving for $* from Eqs, (10), (11), (20), and (21), we have, after
simplifieation,
§% < 122x] 1~ 10.b8 Rex ¢ 23% P (22)

QEQ‘ e, 2N
Now we insert (22) and dU/dx from (19) into the first four terms of the
continuity equation (6), and thus we obtain
! oot welB] e (105040

\ D 1 \D %) \D/ ¥ 4x
with the result that

Voot 638 fex + 90.9 Rex - 1936 Re, .

U EQD &: g@ps
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or
U, l+ b33 (Rex _ 435 Re, \ou,oge_._s" _- .. (23)
V geb 2'01 2(05

It 1s noticed that the successive coefficients in the series grow
guite rapidly and thus good convergence is obtained only in the region where
Rex/ReDz 1s small and lesc than 10>, A similar expression was obtained
by Atkinson and Goldstein (see reference 5, pages 305-306), their result
being

‘ 3
L)_= \ + b-%%s\EQx - 5(0.315 Rtx 4+ “55.%‘0 EQx h -
V Re, zq: Eq?
We may now write the Bernoulll equation for the frictionless core of
the flow between sections 1 and 2 in the figure on page 36, Thus,
(!
_——b' - kt = (—(J—} - \
h
oV V
where Py and Py are the static pressures across the whole cross-section
at 1 and 2 respectively., Therefore, from the definition of 4T,pp,
= 2
4f0 X o [U)
PP — (= (24)
) D V

Putting (23) into (24), we have the final result,

= IS.]LE (- 2.%%@ Fo Rex L (25)

af . x
aPP D ?{D ren er‘l

A comparison of points calculated from this relation with the

experimental curve obtalned by Kline and Shapiro(s) is shown in Figure 30,
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APPENDIX D

Friction Factor in the Laminar Inlet
of a Smooth Tube Up to the Point of Formation
? Poiseuille Flow

Form of the Boundarv Laver Velocity Profile

As discussed previously in section VIII, the determination of the growth
of a lgminar boundary layer in the entry of a tube is complicated by the fact
that the boundary layer growth affects the velocity in the frictionless core
of the flow, The growth of the layer produces an acceleration of the core
velocity, thus causing a pressure gradient to exist in the flow direction.
This in turn affects the boundary layer growth., Since, for a given flow,
the core velocity (and hence the pressure) at a particular position along
the tube 1s dependent on the thickness of the boundary layer in relation
to the pipe radius, we might expect that the boundary layer velocitv profile

would also depend upon this ratio, Thus in the case of pipe flow we might

f = mwnessen | (33

We may then assume that u/U is of the form,

go s B sl s
) ol @

where 845 87y bl, b2, €11 C1os otc., are constants, For the sake of

say that,

(1)

simplicity we shall retain only terms up through the fourth order, and

therefore we choose a polynomial for the velocity profile in the form

R RO LTI R A
e 3 <o BT ) Y

where the constants have to be fixed to satisfy the boundary conditions

of the problem,
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Boundary Conditions

The first boundary condition to be considered is that, at the wall,
the fluid velocity must equal zero, Thus, at y = 0:¢ u = 0, Inserting
this condition into (2) we have

0 x auv b5) o b2+ x,,(%‘ ; k*(%)‘ (3)

Thus (2) reduces to

R R R KR R R
gl S W B

A second boundary condition which we shall impose 1s that the velocity

(4)

u at the edge of the boundary layer shall be equal to the core velocity U,
Thus, at y =% : u = U, Inserting this into (4) we have
T 3 £ "L
= 0, +Qy +t 0y +Qg + Qu(_S_B ¥ Cn(;__) +C|3(§ + Cu (_\{.Cu(_\ + Q;g(i\) (5)
R 3 2 ] R R
and we obtain the following equations by equating terms containing equal

powers of (8/R):

@, + Oy + Oy + Oy =| (6)
Cy + Cq +CQyy =0 (7)
Cia +Cn =0 (8)
Cis 0 (9)

The third boundarv condition imposed is that, at y =d: 3du/dy = 0,

Dropping the ¢z term according to (9), and differentiating (4), we have

R R R R

(10)
8) , ¢ (8_‘ 3¢ 1‘(&)
e+ Ty sl
Applying the boundary condition leads to
O=a + 2&1 + 5&5 + 40-4 + Qn@.\{. Ca (g.y
F * (11)

+ U @ . lC\\(SE)I + 3¢ (%)
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which provides the additicnal equations

a,+ W0y + 344+ 904 =0 (12)
Cy + 2y, + 3¢y = Q (13)
Qn_ +2Cu 0 (14)

From (8) and (14) we find that c1o and cgpp must each equal zero.

Following the entry region, within which the boundary layer thickness
increases and eventually fills the tube, the velocity profile acquires the
parabolic shape characteristic of fully-developed laminar flow, Thus we
shall impose a fourth boundary condition, which states that when b = R,

the velocity profile assumes the parabolic shape given by

1
» . 2(?\ -(?% (15)
V 5/ \b
This condition is then applied to equation (4) (from which the terms

involving ¢33z, €319, and cpog, have already been omitted as they have been

found equal to zero) and we obtain

R <

. (18)

+ Cq (:5_)1 + Cy (:3_)

s b

Thus we have the equations

Q| + c" = ?. (17)
Qq + Gy = -| (18)
Qy +Cy =0 (19)
04 =0 (20)

Since a4 1s equal to zero we are finally left with a profile of the form,

s g

which has six unknown constants, It would seem that these could be solved
for from the seven equations (8), (7), (12), (13), (17), (18), and (19).
These become, after dropping the constants which are equal to zero,

G, +0z + &y =| (22)
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G+ 8y +Cyy =0 (23)
Oy + 20, +304:0 (24)
Cy + ey +3y=0 (25)
&, +C, =2 (26)
Qr +Cuy == (27)
Oy + Q3 =0 (28)

However, 1f (26), (27), and (23), are inserted into (22), equation (23) is
obtained, Also if (26), (27), and (28), are inserted into (24), then (25)
is obtained, so that only the five equations (22), (24), (26), (27), and
(28) are independent. Thus one more equation is needed before the constants
can be determined, This will be found from a fifth boundary condition
derived from the steady-state equation of motion in cylindrical coordinates,
w +'U'l£=-\_lh+V(& +.l_:°."_'_+§‘l) (29)
N 18 ? L) LY L o 1 [} &
The boundary condition states that, at the wall, where y = 0: u = 0 and
v = 0. We neglect the term }{—;‘;in the equation as 1s usual in boundary
layer theory, and apply the Bernoulll equation in the frictionless core of
the flow to evaluate dp/dx, Thus we have,

0= -123b. v(i&. \_b_u.)
I L) & * r (30)
with -~ .\.%& : U% and R= 'P*-‘J where R is the pipe radius,

Substituting into (30) and keeping in mind that % = -%‘_;. s, we have that at

¥y = 0 we must fulfill the condition,

(31)

TR

We now proceed to evaluate the terms in this equation, Differentiating

_}:_‘f_i-‘ ‘“’:—l)_&
y dx

the velocity profile (21) we have,

. % = %[0.. + 2&1&% + 5&5(_‘31 + C\.(%) + ?.CML%\(% . 3(;\(%)\(%)] (32)

2 Vla+t i\
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and
S gt ey ey
{m] i Q{'law’lcu(ﬁ)} (35)
Wlpe 8 .

It is next necessary to evaluate the term dU/dx, and this can be obtained
from the continuity relationship (Eq, (1), Appendix C). This can be

written in the form,

RN RORE R

After evaluation of the integrals the equation is solved for U, the result

being

[\ "‘(‘z*’au*%ai + ‘ia-S)(-sﬁ) +(\+C“+%Qt| “Q_:L

-1la,-0 _l“'s)ll (-.2_ -\le¢ -LC)(S.S
A La\* Fa-i - T (3

This can then be differentiated, and dU/dx 1is found in the form,

J._U_ = [ F\mmoN (&“ i§_ (38)
dx R/} dx

This then presents the problem that d%/dx must be svaluated, but once this

(37)

is found the entire problem is solved after the constants a3s C171s ete.,
have been evaluated, To find d8/dx we must turn to the momentum equation,
which may be derived for a tube in momentum-integral form by considering
a control volume as shown in the figure below,

Control Volume—-\ ‘ dx /-Boundary Layer

SOONNNN \X\\\\\\{f \%15555§§§bllﬁﬁﬁblﬁﬁ\

\ ! 2
—— o 1_7.2.2 —_— ) -—-L-—— d n - -
u 75——0 Ps — DlZS ! (p+ N1P ]

SO S SNNNSSNINONNONNONNN N T, TTD.dX

Tube Wall

If the net force on the control volume 1s equated to the net outgoling
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flux of momentum, we obtain the equation
\! v 3 “ tryt
~dp T _ TLTDAx = &K fu dh - Ag Tew (D-24) 4y + &[h‘[(ms) U (39)
4
14 o

Applying the Bernoulli equation in the frictionless core to evaluate

dp/dx, and using‘tu=,kG&), (39) can be reduced to the form
LN

Ll . y_/(}&s - Lt [U"(siﬁ_@-"ﬂ ‘*‘J}+ Q[{t-z@ +(%)1}U‘] (40)
dx B Wyl BT .Y dx
All of the terms in this equation can then be evaluated by the use of the
assumed velocity profile (21), The first term on the left hand side and
both terms on the right will involve the factor dd/dx since these terms
contain differentiations with respect to x, The equation can then be
solved for d%/dx and its value inserted into (38). Equations (33), (35),
(37), and (38) are then substituted into the boundary condition (31) and y
is set equal to zero., The condition 1s then examined to attempt to
determine the relationship between the undetermined constants so that they
may be evaluated, This procedure is extremely long and involves very large
algebraic expressions, so it will be omitted from this discussion., The
results will be stated and these results will be later verified by
substitution into the boundary condition,

It was found impossible to fully satisfy this boundary condition, so
it was decided to satisfy it partially. The calculations showed that- the
left hand side of (31) had a constant term ag, with all other terms
multiplied by (§/R) or (S/R)e. On the right side, however, no constant
term appeared and all terms were multiplied by (§/R) to the first or a
higher pvower, Thus in order to partially satisfy the boundary conditilon,
ac was taken equal to zero, This means that the boundary conditicn was
completely satisfied in the region where ($/R) is sufficiently small that
all terms except the constant term may be neglected, The boundary condition
was partially satisfied elsewhere,

With 8y equal to zero, the constants 81» 8z C33s Co1» and czy can be
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evaluated from equations (22), (24), (26), (27), and (28), resulting in

the values
a; = 3/2, a, =0, ag = -1/2, ¢ = 1/2, c21'='-1, and czq = 1/2 .
Substituting these into equation (21), we have as a final result

5304 0B <R

To interpret this expression, the terms may be rearranged in the

5+ {2 - ] -6l (0)-wl

From this it is seen that as ($/R) goes to zero, u/U becomes equal to

form

2\}
(see reference 18, page 191), and thus the profile approaches flat plate

3
[%@)— 1(3\] . This is a familar cubic velocity profile for a flat plate

behavior when the boundary layer is very thin in comparison with the pipe
radius, As (8/R) goes to one, the first term on the right side goes to zero
while the second term increases in magnitude. When (§/R) 1s equal to one
the profile becomes w/U ={?G3"G51 , which is the parabolic profile for
fully-developed laminar flow, Thus as (&/R) goes from zero to one, the
shape of the profile gradually changes from a cubic flat plate profile to

a fully-developed parabolic profile.

Evaluation of Terms in Continuity and Momentum Equations

Using the approximate velocity profile (41) we will now proceed to
golve the continuity and momentum equations to determine the growth of the
boundarv layer as a function of distance along the tube, Substituting the
values of the constants into (37), which has been obtained from the

continuity relation, we have

U = ' ‘(45)

{\'-F) H ()]

Differentiation of this expression results in

0 v[?*”(&)' ()] &

b RO TE-LET

(44)
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Now, for convenience let

he (-3 &m ‘t“o(%ﬂ (45)

be (1300 20 - 6]

The first term in the momentum equation (40) can then be expressed as,

VA . VT A B (47)
M 3 B dx

To evaluate the seccnd term in the momentum equation, we determine

Gﬂ% from equation (33), with the result that
Y=o

B ol e

 +(3+4(8)] (49)

so that the second term in the momentum equation (40) may be written

Now let

-:41/(3_\*) . -wV E (50)
R\ s B
Now consider the third term in the momentum equation,
b
2 40w (R Yy (51)
2 dx , U

This is differentiated by parts to obtain

) §

V'L z_“&yqa-w SRR

ixlz‘,U 1 4 R.‘QUQU)J o (52)
Evaluating the integral, we have

1
? ¢ o3 [8)'_ 33 (5 _ 1 )
gzg()mﬂj [ () \t.%o(a) w(?) st.o(ii) (53)
Sub?tituting this 1ntq (52), introduping U and dU/dx from continuity, and

carrving out the differentiation,we obtain

G R AR AR R It
EEREO RO R

(54)
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Now, for convenience, let

a2l -l

ANELR=CRETORE)

so that the third term in the momentum equation becomes

vllela oo L]a
{E‘HR] dx +G‘[ R B dx

or %E{VE\] {%_ - 2_('1;&] (57)
% B

The fourth term of (40) 1is then considered,

£ [0l

Carrying out the differentiation, we have

‘\-Z(%)%%ﬂl\)% +%‘{-1+z(§‘i)]% (59)

Substituting into this the values for U and dU/dx from continuity results in

R s -

Now, setting

Def-ol@] 5 Pl e

this term becomes

4% ﬁ]{'__mﬁ v+ £ (63)
x| R B B

By equating the four terms just evaluated, the momentum equation can
}

be written in the form,

_V_‘LQ-Z_V£=L§!‘K&-EA]+ QI[—Q\@«“E. (64)
B B*dx B B dx R |B RS d» | B® B
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Rearranging, and letting Rep = VDA,

~4 b h 26k | 2AD +_E][§]_\- (65)
R, & [B B B B BIRE
Now let
e | A, L _26h _2AD s]{_@‘_
J:'(KB'[B”b g B R]E (66)

so that we obtain

_%:: j(% % (67)

Separating variables, we may now integrate the expression
Y

[ A

-]

and find Rex/ReD2 as a function of (3/R). This has been done graphically
by calculating 5(% at several values of (§/R). A curve of F vs, (%/R)

is then plotted, and the area under the curve up to any (8/R) 1is the value
of -BRex/ReDz at that (8/R), Also, from continuity (43), we may find the
value of U/V at that (b/R). Then from Eq. (24), Appendix C, we have

4( l:(_‘l)l-\ (69)
AP S v

Thus a value of 4T,pp(x/D) 1is obtained at each value of Rex/ReDz, and a
curve may be plotted which is shown in Figure 31. Numerical values
obtained during the graphical evaluation are tabulated in Table III,
Verification of the Fifth Boundary Condition

We shall now return to the last boundary condition and give a
verification that the constant ag 1s equal to zero as previously stated.

The boundary conditicn to be fulfilled was that at y = O

Yuw o, Low .U dU (31)

W Y-k 2y 7 dx

TR

Subgtituting



(5/R)

0.005
0.010
0.050
0.1090
0,300
0.500
0.600
0.800
1,000

(3/R)

0.005
0.010
0.050
0.100
0.300
0.500
0.600
0.800
1,000

TABLE III

Summary of Factors Obtained in Gravhical Integration

A
-, 75000
-~ 74717
-e 74434
-,72192
-.69433
-«58900
-.49167
-.44600
-+ 06067
-.28333

F

0
~-.00094
-,00192
-,01071
-.02425
-.10544
-+22315
-029073
-.42721
-,53651

B
1,00000
0,99625
0.,99253
0,96320
0.,92780
0,79960
0.,69163
0.64480
0.56427
0.50000

C
0.97143
0,.,96546
0.95948
0.91143
0.85084
0.60242
0.34405
0.21103
~.06290
~-.54762

0.200
0.300
0.400
0.500
0,600
0.700
0,800
0,900
1,000

(8 /R)
0.050
0.100

O
1.00000
0,99003
0.98010
0.,90250
0.11000
0,49000
0.,25000
0.16000
0.04000

0

E
1,50000
1.50250
1.50500
1.52500
1.55000
1.65000
1.75000
1.80000
1.90000
2.00000

Rex/ReD2
0.0000318
0,000135
0.000638
0.00164
0.00328
0.,00566
0.00887
0.01299
0.,01794
0.02364
0.03002

F
-2,00000
-1,99000
-1,98000
-1,90000
~1.80000
-1,40000
-1.00000
-0.80000
~0,40000

0

0.07786
0.16169
0.34874
0.56406
0.81046
1.09049
1,40519
1,75569
2,14073
2.55730
3.00000

52

G

0]
00484
.00965
04707
.09114
«23662
033143
35921
37420
«33333
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we have,

Substituting

we obtaln,

g b

where Rey, = V§/,,
But,

3N I T ‘

A R =

o

B'l.
Then (73) reduces to,

1Y

%(23* i!(% ) @ (n+eB zE:A - D +FB)
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(71)

(72)

(73)

(74)

If a5 had not been equal to zero there would be a constant term on the left

hand side of (74)., Eowever, there are no constant terms on the right hand

side as the first term will be of order (3/R). Thus to partially satisfy

the relation (74), ag had to equal zero as stated previously,

Continuation of Curve of 4¥,pp(x/D) vs. Rer/Rep?

On Figure 31 the boundary layers meet when 4?APP(Q/D) i1s exactly equal

to three, at which point (x/D) = 0,03002 Rep (the latter value is a little

larger than the value, (x/D) = 0,02875 Rep, which was obtained by

Schiller(ls)). Beyond the point where (§/R) = 1 we may extend the curve

by using the Hagen-Poiseuille Law, Thus we write,

Afer X = AP A Mo Wt AR ,MLQ
D ;_(:v‘ pscone D Rep, R,

Kex

(75)
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where A signifies that this 1s the additional friction factor to be added
to 4T,pp(x/D) = 3. Thus for example when ARex/ReD:2 s 0,07 A4TAPP(x/D) N
64(0.07) = 4.48, Then 4T,pp(x/D) = 3 +84T,pp(x/D) = 3 + 4,48 = 7,48,
Thus a doint 1s plotted at Rey/Rep® = 0,07 + 0,03 = 0,10 and 4T,pp(x/D) =
7,48, through which the curve may be extended. The theoretical curve

obtained (Figure 31) follows the data of Kline and Shapiro(s) for the

becinning of the entrv rezion, and then gradually approaches the Hamen-

Polseuille line,

Behavior of the Solution as (8§ /R) Approaches Zero

To determine how the solution behaves in the region very close to
the entry of the tube as (3/R) goes to zero, we begin with expression (66)

and neglect terms of order higher than (3/R). This results in,

PPN (G R EE

which reduces to,

vz’/(%\ z - 22 (E) (76)

o3 \R
Integrating according to (68) we have,
420

e
ki\ 4_(%) r -3 Kes
R ey
which becomes, )

Re. r 13 (i)‘l : (77)

Rl Uzo iR

- R

-
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Thus,
(_s_) ¢ 9.29 (B, as (é) 0 (73)
14 Pe,

From continuity (43) we obtain,

U . \ = l+2 121@}+---
4 .
v T
U+ e E_e_, .o (79)
Vv Rep
Then we have,
= 2
4{App % = (L}] —~ I g |3‘12 ‘J__E _i’&_ (‘30)
v Reo

which 1s valid near the pipe entry., This 13 shown as a dashed line on
Fipgure 31, and may be compared with the expeririental value 13.741Rex/ReD
of Kline and Shapiro(s).

As a check on this result, we have for the flat plate profile

3
w/U = %(%)~-§k%) (see reference 18, pages 190-191),

e« [z 2“3‘\JWEJZ

. Ucb 1 U‘ 13 U.o

(AL

U‘x/ Ya )
§ _ Jue 1 ‘V = 929 | Fey (81)
R i3 U-o D/Vt EQ‘D

which is equivalent to (78),

Local Anparent Friction Factor Along the Tube

The method developed has led directly to an expression for the mean
apparent friction factor TAPP’ but it is also of interest to observe the
variation in the local aprarent friction factor, rAPP, along the tube,

This can be found by differentiating the log-log plot for mean aprarent
friction factor in the following manner, Beginning with the definition for
mean apoarent friction factor we have,

- ¥/
4hep =1 _ i 4f, 0 4(1‘) (82)

(x/o) P

°
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Differentiating results in,

4 = :( 7 4‘&?9 (l)

which 1s equivalent to,

\ .
[ — d{4fyp > <
4‘(APP Rep = & [“APP %] - e} ( e J . 4Lopp %

EE |
—_—X _— & QQ)( 1 gcx T
ee;) gy o) Pl
Finally we have, °
4£I\PP ?QD = 29: &(\N 4‘%?? %} 4“\” _X_ (33)
Rex [| 4 (In Rex/Rer) b

By measuring the slope of the mean ap»arent friction factor curve
(Firure 31), it is nogsible to determine values of the oarameter 4f,ppRep
at various valuesg of Rex/ReDz. The universal curve thus obtained is shown
in Figure 32, and is in agreement with the experimental data of Kline and
Shapiro(s) (the exverimental data extend up to Rex/ReDz = 10'3).

These results can also be plotted as 4fAPP vs., Rey, In this case a
family of curves is obtalned (Fisure 33), each curve being for a different
diameter Renolds number,

Growvth of the Laminar Boundary Laver ¥ithin a Tube Zntry

The values of (3/R) vs. Rex/ReDg which were obtained from the gravhical
integration orocess have been plotted in Figure 34. The curve 1llustrates
the manner in which the boundary laver thickness increases along the length
of the tube. For comparison purposes the flat plate relation (81) has also
been plotted on the same figure, The curves illustrate that the favorable
pressure gradient, which is present as the flow develops within a tube entry,
causes the boundary layer to grow at a decreased rate as compared with the
growth on a flat plate with no external pressure gradient,

Substitution of the Pohlhausen Profile for the Cubic Profile

It is recalled that as (§/R) am)roaches zero, the exrression (42)

reduces to a cubic flat-plate velocity nrofile. It was thouzht that a
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better annroximation misht be obtained if the fourth order Pohlhausen

profile were substituted for the cubic expression, Thus a new orofile was
formulated,

v [2(1) -offf +(a_\‘“\ @\] + [z(ﬁ) i (&)]H (s4)
U 3 ® & R 8) \s) L%
This ex~ression was used to evaluate the terms in the continuity and
monientum equations In a manner similar to the comnutations vreviously
carried out, Substitution into continuity yielded the expression,
U. v
1%

[l o

Differentiating with respect to x gave,

V..V Q e (87)

dx R P dx

RMIERECIE )

The first term in the momentum equation then became,

(85)

where,

where,

1
Udb .-V Q@ 48 (89)
dx R P> dx
The second term in the momentum equation could be imrediately evaluated as
-Z.Z/(l"_‘j - -4V (90)
R 3\3 Y=o E% P

After evalustion of the integsral, the third term in the momentum equation

assumed the form,

3 *
liv‘g &‘-ata_s[‘/_][l-z_sg (
L4 o] (ene) 21T

S [m(&) m(.&)‘ , 1(&)‘ -l_(;)‘] (92)
3IS\R/  3As\R L3 (R  3o\R

where
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e |30 _w} .31(3)‘ 2[5y
T ‘us b3 \2)+ 210 \R/ ~ 3\5(’[{) (93)
Finally, the fourth term in the momentum equation became,
rs 1-2(5.)-(3)1.U‘ L 43V 248 + B (94)
dx Rl R/ dx| ® pr P
Equating the terms and simplifying yields the momentum equation in the
form,
S48, T 250 | 208 L F|D (95)
E‘u x|p* P p* P PlIR
Setting
Z(i\ E{-géﬁ-l-— (RSO K +£]{l] (96)
Rl P P P Pile

produces the equation,

R

This expression can then be integrated,

-1, Rex ‘IRZC_) L(% (98)
—Ee—:_ R/ \R

°
This has been carried out graphically as in the previous computation, and

the principal results are shown in Table IV, The results were found to
lie on the same curve (Figure 31) which was obtained using expression (41),
except that the entrance length was slightly smaller, the value being
x/D = 0,02961 Re;, as compared with the earlier value, 0,03002 Rey,

To determine the behavior of this solution as (S/R) approaches zero,
we follow the same procedure that was used to evaluate expression (78)

with the result in this case,

—
(§_\) X Il.(‘&y&* as (i) — O (99)
R Pe, |3
From continuity (85) and (86) we obtaip, i
\ . 3- ir ! ‘ ?
ul i

(1- 3+ Feo



TABLE IV

Summary
(8/R) P

0 1,00000
0.005 0,99700
0.010 0.,29401
0.050 0.9701%7
0.100 0,94070
0,300 0.82690
0,500 0.72083
0.600 0,67120
0.800 0,87973
1,000 0.50000

Q S T
-,60000 0 1.16508
-.59933 0,00530 1,15619
-+ 59866 0,01156 1,14732
~+59308 0.05604 1,07663
-.58667 0,10768 0,98906
-.55100 0.27110 0.64743
-.50833 0.36756 0,31944
-,48400 0.39153 0.16047
-.42933 0,39259 -.14763
-,36667 0,33333 -,44286

(5/R) R«ax/ReD2 4T, pp(x/D)
0,050 0.000020 0.06244
0.100 0,000089 0.13005
0.200 0.,000422 0.28276
0.300 0,00111 0.46249
0.400 0,00230 0.67442
0.500 0.00414 0.92455
0,600 0.00682 1.21971
0.700 0.01052 1,56739
0.800 0,01533 1.,97539
0.900 0,02172 2.45105
1,000 5.00000

0.,02961

of Factors Obtained in Graphical Integration

————

Z

0
-0,00119
-0,00242
-0,01354
-0,03092
-0,14679
-0,35705
-0,50526
-0,89555
-1,37460

59
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Then we have,

1

'ﬂm % . (.\l) o2 4o {Re (100)
V ?Co

as compared with the value 13.921Rex/ReD obtained in the earlier calcula-

tions (Eq. (80)). Equation (99) may be checked by the use of the constants

listed in reference 18 (pages 190-191), for the flat plate profile,

w/U = l%\-2(%\3+(%Q . Thus we have,

S = gé_.&ﬁ I l‘v_‘x
ST VS 3‘5 Ve

(_8_51 5685 YRex . 148 (Rey (101)
R 37 EQD ?QD

The boundary layer growth for these computations 1s plotted as a
set of dashed lines on Figure 34,

Correction Factor for a Viscometer

In a viscometer the rate of flow and pressure drop through a tube
leading from a tank is measured, and from this the fluid viscosity can
be determined, The calculations are based on the assumption that fully-
developed Poiseuille flow exists throughout the tube, However, due to the
fact that the flow 1s developing in the entry region of the tube, a
correction factor must be applied, as the actual loss in this region will
be larger than that calculated from the fully-developed laminar equations.

The pressure dron equation used for these calculations 1s of the form,

AP L4 EEL-* |+ Gorrection Constant (102)
L3 2
gV e
The first term on the right represents the pressure loss in the tube 1if
fully-developed laminar flow were to exist throughout the entire tube
length, The second term represents the change in kinetic energy from the

tank to the tube entry, and the third term is the correction factor which

must be applied. This correction factor may be easily calculated by
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taking the actual total friction drop in the entry region of the tube
(up to (§/R) = 1) and subtracting the friction drop that would occur in
that length for fully-developed laminar flow, Thus we have for the case
when velocity profile (41) was used,

Correction = 3,000 — 64(0,03002) = 1,079
For the velocity profile (84) we have,

Correction = 3,000 — 64(0,02061) = 1,105

Values for this correction have been calculated by other investigators,

their results being as follows: Schiller(ls), 1.16; Langhaar(7), 1.28;
Boussinesq{l), 1.24; and Atkinson and Goldstein{5), 1.41. Experimental
values summarized by Langhaar(7), range from 1,24 to 1.32, so it apvears
that the values computed by the present method may be slightly low, with
the Pohlhausen type approximation (84) producing a slightly better result
than the proflle of equation (41). In the actual experiments there may
be a frictional loss at the tube entry, which might account partially
for the difference between the observed values and the present

computations,
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FIG. 2 THE STILLING CHAMBER. THE FLOW WAS STRAIGHTENED BY A

HONEYCOMB CONSISTING OF TIGHTLY PACKED EXTRUDED ALUMINUM
TUBES. THIS WAS FOLLOWED BY 15 STAINLESS STEEL TURBULENCE
DAMPING SCREENS (2 SHOWN IN FIGURE) WHICH WERE EACH SOLDERED
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FIG. 3 DOUBLE CONTRACTION NOZZLES AND BOUNDARY LAYER SUCTION
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6.

FIG.4 TEST SECTION ENTRY SHOWING THE CONFIGURATION OF THE
BOUNDARY LAYER SUCTION SLOT AND PRESSURE TAPS.
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0.042" 0.D. TUBE

TIP FLATTENED AND TOTAL PRESSURE PROBE

GROUND TO 0.028"

1/8" 0.0. TUBE
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FRONT VIEW
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WALL OF TEST SECTION

FIG.5 BOUNDARY LAYER PROBE. THIS WAS INSERTED THROUGH THE
EXIT END OF THE TEST SECTION. IT MEASURED THE TOTAL
PRESSURE IN THE BOUNDARY LAYER AT A FIXED DISTANCE

FROM THE WALL, AS WELL AS THE STATIC PRESSURE IN THE
CORE OF THE FLOW.
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FREE STREAM REYNOLDS NUMBER, Rey

FIG.6 CURVE CALCULATED FOR LAMINAR ZONE AS INDICATED IN
APPENDIX B. TOTAL PRESSURE PROBE ASSUMED FIXED
0.020" FROM WALL. Regy* 100,000 To * T5°F



ProTaL — PsTaTic » inches of water
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FREE STREAM REYNOLDS NUMBER, Re,
FIG.7 ADIABATIC RUN WITH TRANSITION DETERMINED FROM LOCAL
APPARENT FRICTION FACTOR MEASUREMENTS. TO BE
COMPARED WITH FIGURE 8 SHOWING THE SAME RUN
WITH TRANSITION DETERMINED BY THE BOUNDARY LAYER
PROBE
0 RUN SYMBOL Re, %SUCTION T,~T, T,
630 0 88,000 6.6 o 73°F
o~
[
} S
el ) ¢
\0\\ %r(
\
10 10®
FREE STREAM REYNOLDS NUMBER, Re,
FIG.8 SAME RUN AS IN FIG.7. A COMPARISON OF FIGS. 788

SHOWS THAT THE BOUNDARY LAYER PROBE INDICATED

TRANSITION AT THE SAME Re, AS THE FRICTION FACTOR

MEASUREMENTS.




0.0 T T T T-TTT I
RUN SYMBOL Re, %SUCTION T,—T, T,
.} [ v 118,000 3.9 0  73°F
i 2 A 5,000 65 0  73°F
3 6 D 167,000 4. 0 72
5 70 113,000 59 0 74°F
e 9 o 139,000 47 ] 69°F
- 0 X 146,000 26 0 T2°F
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e N o A
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i M 4N
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-4 X
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io® 108
FREE STREAM REYNOLDS NUMBER, Re,
FIG. 9 ADIABATIC PERFORMANCE OF THE SYSTEM FOR SEVERAL
FLOW RATES AND RATES OF BOUNDARY LAYER SUCTION.
0.10
[-8
&
¢ RUN SYMBOL Re, %SUCTION T,-T, T,
22c O 132,000 4.6 0 63°F
22d o 144,000 46 I2°F  70°F
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-

T Grntbotly

LOCAL APPARENT FRICTION FACTOR

108

o¢

FREE STREAM REYNOLDS NUMBER, Rey

FiG. 10 THE EFFECT OF HEATING ON TRANSITION.
TEMPERATURE DIFFERENCE.

SMALL




LOCAL APPARENT FRICTION FACTOR, 4f,p,

LOCAL APPARENT FRICTION FACTOR, 4fypop

o.l0

RUN SYMBOL Re, %SUCTION T,~T, T,

28a o 133,000 4.3 0 66°F

25b o 137,000 4.0 I8°F 68°F

/N

// X:';: .
%

0.0t

FiIG. 1

108
FREE STREAM REYNOLDS NUMBER, Re,

THE EFFECT OF HEATING ON TRANSITION. A COMPARISON
WITH FIG. 10 INDICATES A DECREASE IN TRANSITION Rey
DUE TO ACCUMULATION OF DIRT PARTICLES ON WALLS.

0.10

RUN SYMBOL Rep %SUCTION Ty=Tp, Tp

25a a] 133,000 43 0 66°F

25b 0 137,000 4.0 I8°F 68°F

A MR

0.0l

FlG6.

12

———4

10
MEAN BOUNDARY LAYER REYNOLDS NUMBER, Rexg,

THE EFFECT OF HEATING ON TRANSITION. SAME AS
FiG. 11, EXCEPT THAT MEAN BOUNDARY LAYER REYNOLDS
NUMBER IS USED IN PLACE OF FREE STREAM
REYNOLDS NUMBER.




ProtaL —PstaTic » Inches of ‘water

RUN SYMBOL Re, %SUCTION T,~T, T,
5 26 0 90,000 6.1 (o} 65°F
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10%

FREE STREAM REYNOLDS NUMBER, Re,

FIG. 13 ADIABATIC RUN USING BOUNDARY LAYER PROBE. RUN
TAKEN AFTER SYSTEM HAD JUST BEEN THOROUGHLY
CLEANED.
RUN SYMBOL Re  %SUCTION T, —T, T,
29 v 96,000 8.l 0 70°F
30 0 111,000 6.6 0 74°F
3l a 117,000 45 0 TT°F
o 32 0 121,000 0 0 79°F
N $ |
2 .
ot g
‘ 4
1.0
0% 108

FREE STREAM REYNOLQS NUMBER, Rey

FIG. 14 THE EFFECT OF BOUNDARY

THE ADIABATIC PERFORMANCE

LAYER SUCTION RATE
OF THE SYSTEM.

ON




ProtaL —PstaTic + inches of water

PTOTAL—PSTAT|C . inches Ofv water

RUN SYMBOL Rep %SUCTION Ty=Ty To
34 0 133,000 7.5 40°F 85°F
33 (w] 126,000 7.3 0 T3°F
10
-
‘%T\>w y
\@} jr ‘LLI' 0-
1.0
108 108
FREE STREAM REYNOLDS NUMBER, Rey
FIG. 15 THE EFFECT OF HEATING ON TRANSITION FOR A FLOW
RATE GIVING Reo £ 130,000.
RUN SYMBOL Re, %SUCTION T,-T, To
34 0 133,000 7.5 40°F 85°F
35 (m] 126,000 73 0 75°F
10
]
£
\ /,D" e D~
NNF
1.0 L% r
10 10
MEAN BOUNDARY LAYER REYNOLDS NUMBER, R.‘m
FIG.16 THE EFFECT OF HEATING ON TRANSITION.

SAME AS

FIG. 15, EXCEPT THAT MEAN BOUNDARY LAYER REYNOLDS
IN PLACE OF FREE STREAM

NUMBER IS

USED

REYNOLDS NUMBER.




PtoTAL —PsTATIC » inches of water

RUN SYMBOL Rep  %SUCTION T, -T,
43 x 3000 9. 0
44 ° 56,000 63 0
45 o 61,000 38 0
46 ° 61,000 0 0
ar + 54,000 66 6I°F
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FIG. I7 THE EFFECT OF HEATING ON TRANSITION. THE EFFECT
OF BOUNDARY LAYER SUCTION RATE ON THE ADIABATIC
PERFORMANCE OF THE SYSTEM FOR THE SAME R'D
IS ALSO SHOWN.
RUN SYMBOL Rep %SUCTION T,—T, T,
43 X 53,000 9.l [o} 80°F
44 0 56,000 63 o} 83°F
a5 o 6,000 38 0  8afF
46 ] 61,000 0 0 86°F
10 47 + 54,000 6.6 6I°F T79°F
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NN T N
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0.l
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MEAN BOUNDARY LAYER REYNOLDS NUMBER, Rtxm
FIG. 18 THE EFFECT OF HEATING ON TRANSITION. SAME AS

FI1G.17, EXCEPT THAT THE MEAN BOUNDARY LAYER
REYNOLDS NUMBER IS USED IN PLACE OF THE
FREE STREAM REYNOLDS NUMBER.




REYNOLDS NUMBER
FREE STREAM REYNOLDS

IS USED

IN PLACE OF THE
NUMBER,

L . I 1 1 1 —r 1 1 )
RUN SYMBOL Rep %SUCTION T,-T, T,
49 v 30,400  13.2 0 76°F
L] o 31,900 7.1 0 79°F
52 a 32,600 45 0 78°F
% 83 0 34,000 o 0 79°F
54 0 28,500 T2 79°F  70°F
k]
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£ — i
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£ -°.\
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P N R
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a A
104 108 108
FREE STREAM REYNOLDS NUMBER, Rey
FIG.19 THE EFFECT OF HEATING ON TRANSITION FOR A LOW
FLOW RATE WITH Rep® 30,000. THE EFFECT OF
BOUNDARY LAYER SUCTION RATE ON THE ADIABATIC
PERFORMANCE OF THE SYSTEM FOR THIS Rep IS
ALSO SHOWN.
1.0 S — S - S R — - S— Y 1 T
RUN SYMBOL Rep %SUCTION T,~T, T,
49 v 30,400 13.2 0 T6°F
51 o 31,900 7.1 0 79°F
. 52 A 32,600 45 0 78°F
S 53 0 34,000 o 0 T79°F
» 54 o 28,500 7.2 79°F 70°F
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MEAN BOUNDARY LAYER REYNOLDS NUMBER, Rey,
FIG. 20 THE EFFECT OF HEATING ON TRANSITION. SAME AS
FIG. 19, EXCEPT THAT THE MEAN BOUNDARY LAYER




ProtaL —Pstatics lnches of water

RUN SYMBOL Re, %SUCTION T,-T, T,

60 4 70,800 5.3 0 78°F
6l a] 74,100 32 0 T768°F
62 v 80,500 5.3 97°F  86°F

PTOTAL —PSTATIC' inches of water
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FREE STREAM REYNOLDS NUMBER, Rey

FI6. 2i THE EFFECT OF HEATING ON TRANSITION. CLEANING THE
SYSTEM BEFORE THE RUNS WERE TAKEN HAS CAUSED
THE VALUE OF Rey AT TRANSITION TO BE TWICE THE
VALUE SHOWN IN FIGS. 19 8 20.

10
RUN SYMBOL Re, %SUCTION T, ~T, T,
60 0 70,500 5.3 0 75°F
sl o 74,100 32 0 T8°F
62 v 80,500 53 97°F  86°F
o
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10° 108

MEAN BOUNDARY LAYER REYNOLDS NUMBER, Rey

FIG. 22 THE EFFECT OF HEATING ON TRANSITION. SAME AS
Fig. 2I, EXCEPT THAT THE MEAN BOUNDARY LAYER
REYNOLDS NUMBER 1S USED IN PLACE OF THE FREE
STREAM REYNOLDS NUMBER.



ProtaL —PstaTic» inches of water

LI 1 i1 1 | 1 L1 . IT11
RUN SYMBOL Rep  %SUCTION T,=T, T,
64 A 62,300 42 0 73°F
s e o 64,500 2.4 0  T75°F
e 66 o 63,800 5.9 0 75°F
- 67 0 61,100 3.8 98°F 72°F
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FIG.23 THE EFFECT OF HEATING ON TRANSITION. A VERY
THOROUGH CLEANING HAS INCREASED THE ADIABATIC
Rey AT TRANSITION TO 850,000,
1111 | | N EEEEN
RUN SYMBOL Re;, %SUCTION T,~T, T,
64 A 62,300 42 ) 73°F
65 o 64,500 2.4 0 75°F
66 0 63,800 5.9 0 75°F
67 0 61,100 38 98°F T2°F
™~
1.0 -y Y-
/!-——0
\% Nl o
Vf/ /
Y 7
\ J / 4 -
/ P
0.
10® _ 108
MEAN BOUNDARY LAYER REYNOLDS NUMBER, Re,
FIG.24 THE EFFECT OF HEATING ON TRANSITION. SAME AS
FIG. 23, EXCEPT THAT THE MEAN BOUNDARY LAYER

REYNOLDS NUMBER
FREE STREAM REYNOLDS NUMBER.

IS USED

IN PLACE OF THE
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PTOTAL—PSTATlc' inches of water

[T 1011 ] [ [ 1T T TTTI

0 RUN SYMBOL Rep %SUCTION T,—T, T,
68 o 75700 55 o 7F
69 A 79500 56 29°F  T78°F
70 0O 9,400 53 46°F  B86°F
71 v 82800 55 I08°F 78
72 o 1800 48 o TI°F
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FIG. 25 THE EFFECT OF HEATING ON TRANSITION.  INCREASING
THE TEMPERATURE DIFFERENCE BETWEEN THE WALL AND
FREE STREAM HAS CAUSED A CORRESPONDING INCREASE
IN THE UPWARD DISPLACEMENT OF THE CURVES.
L1 1 I Lt 1 T 111 1
10 RUN SYMBOL Re, %SUCTION T,—T, T,
68 o 75700 55 o TI°F
69 A 79500 56 29°F  T75°F
70 o 9,400 53 46°F  86°F
7 vV 82800 55 108°F  78°F
72 0 715800 48 o 7I°F
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MEAN BOUNDARY LAYER REYNOLDS NUMBER, Rey,
FIG. 26 THE EFFECT OF HEATING ON TRANSITION. SAME AS

FIG. 25, EXCEPT THAT THE MEAN BOUNDARY LAYER
REYNOLDS NUMBER IS USED IN PLACE OF THE FREE
STREAM REYNOLDS NUMBER. INCREASING THE TEMPERATURE
DIFFERENCE HAS CAUSED AN |INCREASE IN THE MEAN
BOUNDARY LAYER LENGTH REYNOLDS NUMBER OF TRANSITION.




RUN SYMBOL Rep %SUCTION T,-T, T,
.2 73 o 45600 53 0 T7I°F
H 74 A 46800 53 78°F  73°F
5 0 75 a 47500 5.3 H2°F  T74°F
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FIG. 27 THE EFFECT OF HEATING ON TRANSITION. THESE CURVES,
TAKEN AT A LOWER FLOW RATE, EXHIBIT THE SAME
CHARACTERISTICS SHOWN IN FIG, 25.

RUN SYMBOL Re, %SUCTION T,—~T, T,
g 73 ° 45600 53 0 TI°F
3 74 A 46800 53 T8°F  73°F
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MEAN BOUNDARY LAYER REYNOLDS NUMBER, Rey,
FIG. 28 THE EFFECT OF HEATING ON TRANSITION. SAME AS
FIG. 27, EXCEPT THAT THE MEAN BOUNDARY LAYER

REYNOLDS IS USED
REYNOLDS NUMBER.

PLACE OF THE FREE STREAM




RUN SYMBOL Re, %SUCTION T, -T, T,

630 0 88,000 6.6 (o] 73°F

63¢ D 97,000 6.8 0 80°F

N\\N\/—WITH DETERGENT

PTOTAL—PSTATIC , inches of water
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2 0.

10° 108

FREE STREAM REYNOLDS NUMBER, Rey

FIG. 29  ADIABATIC CURVES SHOWING THAT THE ADDITION OF
DETERGENT TO THE SYSTEM DID NOT INFLUENCE
TRANSITION.
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£Q. (25), APPENDIX C
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FIG. 30 COMPARISON OF THE RESULTS OF THEORETICAL FRICTION
FACTOR COMPUTATIONS FOR THE LAMINAR ENTRY OF A
TUBE WITH THE DATA OF KLINE AND SHAPIRO'S),
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