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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

CONSIDERATIONS IN THE ADAPTATION OF LOW-COST FUELS TO
GAS-TURBINE~POWERED COMMERCIAL ATRCRATT

By Henry C. Barnett and Richard J. McCafferty

SUMMARY

In recent months interest has increased in the possible use of dis-
tillate and residual fuel olls as fuels for commercial gas-turbine air-
craft. However, the use of such fuels entails the solution of many
problems pertaining to fuel physical properties and combustion character-
istics. his report reviews some of these problems and discusses the
status of current knowledge in relation to their solutionm.

INTRODUCTION

For some time fuel cost has been accepted as a major consideration
in the conversion of commercial airline operations from piston-engine
aircraft to gas-turbine-engine aircraft. For example, it has been esti-
mated (ref. 1) that fuel cost represents about 20 percent of the direct
operating cost of airlines operating with piston engines, und this cost

may increase to 33 percent for airlines operating with turbine-propeller
engines.

The most frequently proposed fuel for use in gas-turbine transports
is kerosene, but in recent months there has been increased interest in

~the possibility of further fuel-cost reductions by use of low-cost dis-

tillate and residual fuel oils. These fuel oils are all considerably
cheaper thun aviation gasoline, and the residual types nre substantially
less costly than kerosene. Despite the attractiveness of the cost fig-
ures, the physical properties and combustion characteristics of such
fuels offer many problems that must be solved before successful utiliza-
tion in commercisl aircraft can be achieved.

The present report discusses the properties of distillate and resid-
uval fuel oils and indicates the influence of these properties on engine
performance and handling procedures. Brief discussions of relative costs
and availability are included.
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AVATILABILITY OF PETROLEUM PRODUCTS

The yields of products derived from a barrel of crude oil by present .
refinery methods are listed in the following teble along with the daily
production of the various fractions, based upon a current crude-oil pro-
duction rate of about 6,500,000 barrels per day (ref. 2): -

Product Yield, Daily Low-cost "
percent | production, | fuel oils o
of crude bbl obtained, %
grade
Gasoline 45 2,925,000
Kerosene 5 325,000
Distillate fuels 18 1,170,000 |1, 2, and
Diesel
Residual fuels 19 1,235,000 4, 5, 6 .
Lubricants 5 325,000
Other products .
and losses 8 520,000
N ——— R Fo
Total crude 100 6,500,000
The so-called low-cost fuels referred to in the INTRODUCTION are
obtained from distillate and residuual fractions as indicated in the pre-
ceding table. These fuels are commonly designated by numbers correspond-
ing to certain commercial specifications (table I). The more conventional
uses of the distillate fuels are home heating, Diesel engine operation,
and industrial heating, in which it is impractical to heat the fuel to im-
prove flow characteristics. Residual fuels are residues from petroleum
stills and in marketed form are blended with less viscous materials.
These fuels are used in applications in which it is feasible to heat the
fuel for flow improvement.
It has been estimated (ref. 3) that the daily requirement of fuel for
gas~turbine-povered nonmilitary aireraft will be approximately 13,000
barrels by 1962. This figure is based upon an estimate that the commer-
cial Jjet-fuel demand will be about 15 percent of the aviation-gasoline
demand in 1962, which is predicted to be twice the consumption in 1951
(44,000 bbl/day in 1951). .
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The yields of products derived from a barrel of crude oil by present
refinery methods are listed in the followlng table along with the daily
production of the various fractions, based upon a current crude-oil pro-

duction rate of sbout 6,500,000 barrels per day (ref. 2): -

Product Yield, Daily Low-cost
percent | production, | fuel oils
of crude bbl obtained,

grade
Gasoline 45 2,925,000
Kerosene 5 325,000
Distillate fuels 18 1,170,000 |1, 2, and
Diesel
Residual fuels 19 1,235,000 4, 5, 6
Lubricants 5 325,000
Other products
and losses 8 520,000
Total crude 100 6,500,000

The so-culled low-cost fuels referred to in the INTRODUCTION are
obtained from distillate wnd residual fractions as indicated in the pre-

ceding table.

ing to certain commercizl specificutions (table I).

These fuels are commonly designated by numbers correspond-
The more conventional

uses of the distillate fuels are home heating, Diesel engine operation,

and industrial heating, in which it is impractical to heat the fuel to im-

prove flow characteristics. Residunl fuels are residues from petroleum

stills and in marketed form are biended with less viscous materials.
These fuels are used in gpplications in which it is feasible to heat the
fuel for flow improvement.

It has been estimated (ref. 3) thut the daily requirement of fuel for

gas-turbine-powvered nonmilitary sircraft will be approximately 13,000

This figure is based upon an estimate that the commer-

cial jet-fuel demand will be about 15 percent of the aviation-gasoline
demand in 1962, which is predicted to be twice the consumption in 1851
(44,000 bbl/day in 1951).

CONFIDENTIAL

3023

e




NACA RM ES3HOS CONFIDENTIAL 3

! The requirement of 13,000 barrels per day of jet fuel could easily é .
be met by fuels from the kerosene, distillate-oil, or residual-oil frac-
N tions of the crude. In the case of kerosene and the lighter fuel oils,
however, there would be an overlap with military requirements, and pro-
i duction of the military fuel, JP-4, would decrease the availability of
C kerosene for other purposes, The significance of this overlap in future
i plans cannot be evaluated accurately until more reliable information is
: aveilaeble on the Jjet-fuel requirements for military and airline opera-
tions,
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Because of the dual demand on kerosene for commercial and military
operations, the possible use of heavier fractions of petroleum for com-
mercial aircraft may become more attractive. It is emphasized, however,
that high emergency requirements of heavy distillates and residual oils
for other purposes could appreciably reduce the availgbility of such fuels |
Tor aviation. The heavier distillate oils and residual oils are much i
less affected by emergency production of JP-4 fuel than 1s kerosene. This !
fact is illustrated in figure 1 (estimated from the preceding availsbility '
table and ref. 4). For zero production of JP-4, the percentages on the
ordinate of this figure correspond to the percentages of crude shown in :
the table. As the "all-out" production of JP-4 fuel increases, the avail- i
ability of each of the three stocks decreases. The percentage decrease
4 ’ in kerosene for all-out production of JP-4 is quite large (72 percent);

whereas distillate fuels and residual fuels decrease moderately, 25 and
3 percent, respectively.

P CE‘l back

COST OF PETROLEUM PRODUCTS

Fuel prices at airports depend upon airport location relative to
; refineries und bulk terminals; however, prices quoted in the literature
| for petroleum stocks are reasonebly uniform on a relative basis. Some
relative costs (March, 1952) of petroleum products are presented in fig- b
4 ure 2 (from ref. 5). o

The cost of kerosene is about 55 percent the cost of grade 100/130
aviation gaooline; and any further savings must come from use of grade 2
or heavier fuel oils. Current prices for aviation gasoline may range
between 20 and 25 cents per gallon. If commercial gas-turbine aircraft
were able to utilize distillate fuels such as grade 2 or 4 fuel oil,
savings in fuel costs might be expected; if grade 5 or 6 fuel oil were
used, marked savings could be realized.

On the other hand, representatives of the petroleum industry have
emphasized that the heavier fuel oils (grade 5 and 6) would be impossible
to hold to a narrow specification. Consequently, grade 4 probably repre-
sents the heaviest fuel oil that might be considered for aviation uses.

CONFIDENTIAL
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The current price differentlal between kerosene and grade 4 fuel oil is
about 3 cents, and this difference would diminish if any attempt were
made to write more rigorous specifications than those shown in table I
for grade 4. The current price differential between kerosene and grade 2
fuel oil is still less (1 cent); therefore, little saving could be ex-
pected through the use of grade 2 with narrow aviation specifications.

PHYSICAL PROPERTIES OF PETROLEUM PRODUCTS

In addition to cost and availability considerations, the physical
properties of distillate and residusl fuels offer problems relating to
engine performance, handling, and safety. In crder to clarify later
discussion on these three factors, existing Jdate on physical properties
are reviewed to indicate the variations to be expected for distillate
and residual fuel oils (see table II). Data on fuel oils 1, 2, and 4
were compiled from surveys of the U. S. Bureau of Mines (refs. 6, 7,
and 8). Data on fuel oils § and 6 are quite scarce; therefore, it is
necessary to resort to comparisons of single samples of these two fuels
wvith averages for the three lower grades. Comparisons are made between
the properties of the fuel oils and JP-4 fuel. The kerosene-type jet
fuel (JP-1) is not included in these comparisons, since its properties
are very similar to those of grade 1 fuel oil with the exception of
volatility. The volatility of JP-1 fuel is between that of grade 1 fuel
oil and JP-4 fuel.

Wherever possible, the influence of temperature on certain proper-
ties is presented. These variations with temperature were estimated by
methods described in references 9 and 10.

Density

Under current fuel-oil specificaetions, mppreciable variations of
density are encountered among marketed stocks, as is illustrated in fig-
ure 3 for grades 1, 2, and 4 fuel oils. The maximum percentage deviation
from the average curves increases as the grade of fuel oil becomes
heavier. For grade 1 fuel oil, the maximum deviation is 2.7 percent; for
grade 2, 6.7 percent; and for grade 4, 8.0 percent.

In. figures 3(z) and (b) it is also seen that for the numerous samples
examined, none had specific gravities as high as that permitted by the
specifications. Figure 3(d) compares the average gravities of fuel oils
1, 2, and 4 with single samples of groudes 5 and 6 fuel oil and with JP-4

fuel.
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Volatility

One of the commonly accepted measures of fuel volatility is the
A.S.T.M. distillation curve. The curves of figure 4 indicate the varia-
tions of volatility under a given specification and the relative vola-
t11ity among the grades of fuel oil. The higher the temperatures on such
plots, the lower the volatility.

Some of the samples included in the evaluations shown in figures 4(a)
end (b) are near the upper limits of the current specifications. Only
grades 1 and 2 must meet A.S.T.M. distillation requirements (see table I).
As was the case with the specific-gravity data (fig. 3), the spread be-
tween minimum and maximum values of distillation temperature tends to
increase as the grade of fuel oll becomes heavier.

In figure 4(d), distillation data for four grades of fuel oil are
compared with data for JP-4 fuel. All these fuel oils are counsiderably
less volatile than JP-4 fuel, as indicated by the high distillation tem-
peratures. Similar data for grade 6 fuel oil are indeterminate, and the
curve for grade 5 fuel oil is incomplete because of cracking of the sample
at 1025° F.

Vapor Pressure

Vapor pressure - temperature curves for the fuel oils and JP-4 fuel
are presented in figure 5. It is apparent (fig. 5(d)) that the volatility
of the fuel oils is much less than that of JP-4 fuel. At 100° ¥ the vapor
pressure of grade 1 fuel oil is about one-fiftieth that of JP-4 fuel.

Heat of Combustion
The net heats of combustion for the fuel oils estimated from specific

gravities (ref. 10) are listed in the following table together with data
for JP-4 fuel (ref. 9):

Fuel oil, Net heat of combustion (estimated)
grade Btu/1b Btu/cu £t
Min. Max. Av. Min. Max. Av.

IP-4 fuel| 18,590 | 18,840 | 18,740 | 88.3x10% | 93.8x10% |  90.8x10%

1 18,520 | 18,670 | 18,570 | 92.2 94.9 94.2
2 18,140 | 18,620 | 18,400 | 93.2 100.2 96.8
4 17,420 | 18,230 | 17,930 | 99.1 106.9 10z2.4
§ | memmme| mmmem- 817,800 | ==== | —==-- 8103.7
B | mmmmmm| = 817,620 | ===~ | ===-- 2105.2

8gingle sample.
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On & weight basis, the average heats of combustion decrease as the density
of the fuel becomes greater; on a volume basis, the heats of combustion
increase with density. As indicated in the taeble, there is an overlap on
the ranges of gravity for each type of fuel. For example, some of the
less dense samples of grade 2 fuel oll may have heats of combustion within
the range for grade 1 fuel oils.

Latent Heat of Vaporization

The latent heats of vaporization for three fuel oils are presented
in figure 6. These deta were estimated by & method described in refer-
ence 10. Average curves are not shown in figures 6(a) and (c) because
of the narrow spread between minimum and maximum limits. The three dis-
tillate fuel oils are compared with JP-4 fuel in the following table:

Fuel Latent heat, Btu/lb, at -
oil, 200° F 3000 400° F 500° F 600° F
grade B

Min. | Max.| Min.| Mex.| Min.| Max.| Min. | Max. | Min. | Max.

a8Jp-4 | 136 | 143 | 120 | 13L | 102 | 117 | === | === | mme | aua
1 135 | 139 | 125 | 128 | 113 | 118 97 | 103 71 87
2 135 | 142 | 124 | 133 | 113 | 123 98 | 113 79 | 100
4 145 | 147 | 134 | 139 | 123 | 129 | 111 | 120 96 | 110

8pate from reference 9.

The latent heats of vaporization for all four fuels are of the same
order of magnitude at the low temperatures, but at the high temperatures
the latent heats increase as the fuel density increases.

Viscosity and Pour Points

The variations of viscosity with tempersture for fuel oils are shown
in figure 7. The samples of fuel oils 1 and 2 all fall within the limits
of the specifications (table I); however, some samples of fuel oil 4 fall
outside both the minimum and maximum specification limits. Regardless of
this condition, the samples were averaged, because the original reference
sources (refs. 6, 7, and 8) stated that these samples had been marketed
as grade 4 fuel oils.

The comparison of fuel-oil viscosities with data for JP-4 fuel
(fig. 7(d)) indicates that much higher viscosities may be encountered in
the heavier grades of fuel oil. At 100° F the viscosity of grade 6
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fuel oil is approximately 450 times that of JP-4 fuel. The pour point
(indicated on the curves in fig. 7) is a measure of the tendency of the
fuel to flow and is determined by a standard A.S.T.M. procedure (D97).

In general, the heavier the fuel, the higher the temperature necessary to
maintain the fuel in fluid condition. This relation is illustrated in
figure 8, where the trend is in the direction of increasing pour point
with increasing end point, the end point being an indication of the heavi-
ness of the fuel. This relation is not rigorous, however, because of the
influence of fuel composition. The scatter is attributable to differences
in composition of the samples,

Sulfur and Ash Content

The sulfur content of several fuel oils is compared with that of JP-4
fuel in figure 9, which shows clearly that appreciable quantities of sul-
fur are found in the heavier fuels. However, it should be recognized that
the current specification for JP-4 fuel allows a meximum sulfur content
of 0.4 percent by weight, and average grade 1 and 2 fuel oils are within
this limit. On the other hand, the specifications for these two fuel oils
permit higher percentages of sulfur than 0.4 (see tables I and II).

The ash contents of fuel oils are shown in the following table:

Fuel | Numbexr Ash content,

oil, of percent by weight

grade’ semples | Min. | Max. Av.
1 53 0] 0.010 | 0.0004
2 107 0 .020 .0008
4 6 0 .18 .03

These ddta indicate that the heavier fuel oils mey be expected to have
greater ash contents. The data for grade 4 fuel oil are not considered
conclusive, inasmuch as one sample showed an ash content of 0.18 percent
by weight, and the remaining five samples contained no ash.

PROBLEMS RELATED TO AIRCRATFT RANGE
Heats of Combustion and Specific Gravities
In the preceding discussion, it has been shown that for hydrocarbon
fuels the net heating value per unit weight decreases and the heating

value per unit volume increases as the specific gravity increases. Un-
fortunately, this inverse relation is not counsistent with the two main
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8 CONFIDENTTIAL NACA REM E53HOS

requirements for increased flight range. It is desirable to have high
heating value per unit weight, because low total weight is important in
establishing maximum range; it is also desirable to maintain high heating
value per unit volume because of adrcraft volume limitations.

The following table shows the gains to be expected on the basis of
heating value and specific gravity:

Fuel oil, Net heat of combustion ' Specific | Change,
grade Btu/1b | Change, | Btu/cu ft| Change, | gravity, | percent
percent percent | 60/60° F

JP-4 fuel | 18,740 - 90.8X10% - 0.777 --

1 18,570 -1 94,2 4 .813 5

2 18, 400 -2 96.8 7 .842 8

4 17,930 -4 102.4 13 .915 18

5 217,800 -5 | %103.7 14 .934 20

6 817,620 -6 | ®105.2 16 .957 23

85ingle sample.

For all the fuel oils, an increase in specific gravity (and in turn,
volume heat content) over JP-4 is apparent, although the heat content on
a weight basis is lower. On the other hand, the gain in volume heat con-
tent mey be cancelled by the induced drag arising from the increase in
fuel weight. For this reason the anticipated gains in flight range may
not be realized.

This fact is illustrated in figure 10 for an assumed volume-limited
aircraft. A grade 6 fuel oil shows a 10-percent gain in range over JP-4,
whereas the volume heat content previously discussed showed an expected
increase of 16 percent. The other fuel oils in figure 10 show similar
trends in comparison with JP-4.

The data in figure 10 are illustrative of possible flight-range in-
creases from the use of high-density fuels in a volume-limited aircraft.
Similar data were estimated for an assumed supersonic bomber, a supersonic
interceptor, and a subsonic bomber, all of which were altered in design to
permit maximum range with each fuel. The supersonic bomber and inter-
ceptor show much smaller potential range increases than does the volume-
limited aircraft. In the case of the subsonic bomber, an increase in fuel
density indicated a decrease in aircraft range. It is emphasized that
these calculated data are preliminary in nature and are significantly
dependent upon the assumed aircraft configuration and conditions.
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Combustion Efficiency

Effects of volatility and fuel injection. - One of the major per-
formarice problems to be faced with low-cost (low-volatility) fuels is the
attainment of high combustion efficiency. There is a decided tendency in
some combustion chambers for efficiency to decrease as the volatility of
the fuel decreases. This tendency is illustrated in figure 11 for various
petroleum fractions. Included also are JP-1 fuel and a Diesel oil. The
data in this figure are reported in reference 11, and the effect of vola-
tility shown is confirmed by other data reported in references 12 and 13.

The tendency for high-volatility (low 50-percent point) fuels to
give higher efficiencies is presumably accounted for by the fact that
veporization is rapid; and, under the test conditions chosen, combustible
fuel-air mixtures are obtained in the low velocity zone of the combustor.
Conversely, the high-boiling fuels vaporize more slowly and have insuffi-
cient time for complete burning.

That the relation shown in figure 1l varies from one engine to
another indicates that the degree of depreciation of efficiency with fuel
type is dependent upon the adequacy of the engine design for veporizing
and burning the fuel. For this reason, difficulty may be expected in the
use of the fuel oils in current engines. TFurthermore, it is probable that
the use of the heavier fuels would necessitate development of o special
combustion chamber.

One method by which the vaporization characteristics may be improved
in a given combustor is improvement of injection-nozzle design. The
effect of nozzle design on efficiency (ref. 14) is shown in figure 12, in
which a flared-tip nozzle is compared with an unflared-tip nozzle. In
both cases the nozzles had a fixed orifice size. The modified (flared-
tip) nozzle simply increases the spray angle, particularly at low fuel
flows. The original nozzle produced = spray angle of about 80°, whereas
the new nozzle produced an angle of 180° at the low fuel flows. No effect
of the flared tip on droplet size was apparent.

The increase in efficiency (fig. 12) achieved with the modified nozzle
may be attributed to the fact that with the wider spray angle a more satis-
factory mixture of fuel and air was produced in the primary zone of the
combustor. It is emphasized that such changes cannot be made indiscrimi-
nately, since other performence factors, such as carbon deposition and
altitude operational limits, could be affected. These factors will be
discussed in the following section of this report.

The effect of injection variables on combustion efficiency is further

demonstrated in figure 13 (ref. 15) for gasoline and Diesel oil. Fuel-
injection nozzles having capacities of 3 and 10 gallons per hour were used
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10 CONFIDENTIAL NACA RM E53HOS

in these tests. In both cases, the low-capacity nozzle produced better
atomization, particularly at low flows; but the temperature rise of gaso-

line with the 3-gallon nozzle is low, and that of Diesel oil is high. .
This result 1s attributed to the fact that gasoline is by nature a vola-
tile fuel, and improved atomization tends to improve its vaporization.
Conseguently, the mixtures of fuel and air achieved in the combustion
chamber are overrich and combustion is more difficult. Diesel oil is

not a volatile fuel; therefore, the improved atomization with the smaller
nozzle enhances its vaporization characteristics to the point that satis~
factory mixtures of fuel and air are produced in the combustion chanmbers.
In this particular test of Diesel oil, the temperature rise of the small
nozzle drops below that of the lorge nozzle at high fuel flows because of
the low inlet-air pressure and high inlet-air temperature. These condi-
tions combine to produce overrich mixtures even with Diesel oil.

3023

Another obvious approach to better fuel-air mixture preparation is
the use of preheated or prevaporized fuel. The fact that high effi-
ciencies may be wttained by use of vaporized fuel has been verified in
NACA investigations (refs. 16 and 17). These studies show that, although
combustion efficiency and other performance factors are improved, the
distribution of the vapor fuel in the primary zone of the combustion
chamber is critical. The use of preheated or vaporized fuel also presents .
the problem of supplying the necessury heat to the fuel, as discussed in
a later sectionm.

PROBLEMS RELATED TO AIRCRAFT RELIABILITY
Engine Storting

The process of ignition in an engine is dependent upon the presence
of & flammuble mixture at the source of ignition, which is in turn de-
peudent upon fuel volatility and the method by which fuel is delivered to
the combustion chambers. Because of these requirements, the problem of
ignition of the heavier fuels may be expected to be difficult.

The fuel-flow requirements for ignition of three fuels in a tubular
combustion chumber at sea-level conditions are shown in figure 14 (ref.
18). Tor a given inlet-air temperature, the fuel flow required for igni-
tion increases as fuel volatility decremses. At high inlet-air tempera-
tures the differences in required fuel flows are much smaller than
at low temperatures.

The data from figure l4 are cross-plotted in figure 15 to indi-
cate the influence of volatility on required fuel flows for ignition.
Since the fuel oils have A.S.T.M. lO-percent distillation points in excess
of 3659 F, it is apparent that greater fuel flows will be required for .
ignition in this particular combustor. The data at 355° ' 1l0-percent
point (fig. 15) are for a kerosene-type fuel.
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Similar effects of volatility on engine starting are found at alti-
tude conditiouns (fig. 16). The lower the fuel volatility, the greater
the required fuel flow for ignition. At high altitudes the differences
among the fuels are greater.

Another important factor to consider in the problem of igniting
low-volatility fuels is the quantity of energy available for ignition.
Investigations (refs. 19 and 20) of this factor indicate that the lower
the fuel volatility, the greater the quantity of energy required for
ignition. By use of surface discharge spark plugs, ignition may be
effected at very high altitudes. Such results may be due to creation of
combustible mixture near the plug by the high-energy discharge itself.
Thus, fuel volatility is less critical if sufficient energy is available
for ignition.

In addition to volatility, the fuel viscosity will play an important
part in the ignition of the heavier fuels. Viscosity influences drop
sizes obtained from liquid-fuel injection wozzles; counsequently, the more
viscous fuels (fig. 7) must be injected at higher pressures to achieve
satisfactory spray for ignition.

Altitude Operational Limits

In early investigations (ref. 21) of turbojet-engine performance it
was shown that an increase in fuel flow will increase combustor temperc-
ture rise until a limiting point is reached. Fuel-flow increases beyond
this point will result in an exhuaust-gos temperature decrease, and con-
tinued enrichment will ultimately result in blow-out. This blow-out
point is called "rich blow-out" and is attributed to the presence of so
much fuel vapor in the primary zone that the resultant mixture will not
burn. This belief leads ‘to the obvious conclusion that fuel volatility
plays an important part in determining altitude operational limits, since
a volatile fuel is more likely to form rich mixtures in the primcry zone
than a nonvolatile fuel. Fortunately, this trend is in the right direc-
tion insofar as the utilization of low-cost low-volatility fuels is con-
cerned. However, equal difficulties could be anticipated with an opposite
trend, that is, "lean blow-out". In this case the low-volatility fuels
at low flow conditions would not produce sufficient vapor in the primary
zone to support combustion. These possible difficulties impose upon the
designer responsibility for planning a combustion chamber in which fuel
volatility at the instant of delivery to the chamber is sufficient to
produce the desired fuel-air mixture.

A plot of altitude operational limits for two fuels is shown in fig-

ure 17. At 95 percent of rated engine speed, the kerosene-type fuel gave
limits considerably above those obtained with gasoline. This result is
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consistent with the previously mentioned belief thalt the more volatile
fuel (gasoline) vuporizes more readily than the kerosene and at high
fuel-Tlow rates produces an overrich mixture in the primary zone. Al-
though dato are lacking on fuel oils (boiling range 421° to 692° F), one
test (ref. 22) indicated that u Diesel oil in the boiling range of 364°
to 664° T wus satisfactory with respect to altitude operational limits
at 100 percent of rated englne speed; but at lower speeds the altitude
limit was lower thun that obtained with more volatile fuels.

Corbon Deposition

Another difficulty in the utilizotion of fuel oils for aircraft
propulsion is the problem of carbon deposition. Numerous investigatiouns
hzve been conducted to determine the carbon-forming tendencies of various
fuels, ud severul correlotions between fuel properties and engine de-
posits have been developed. One of the most promising correlations
(ref. 23) is shown in figure 18. As indicated on this plot, the higher
the volumetric nverage boiling point ond the lower the hydrogen-carbon
ratio, the grewter the omount of curbon deposited. Although only one
correlation line is shown in fipure 18, other opersting conditions would
produce different lines.

The dotted lines on fipure 18 indicate the relative quantities of
curbon thut might form if the various fuel oils were used in a particular
combustor. On the busis of its physicul properties, grude 4 fuel oil
would be expected to form much more carbon thun fuels of the JP-4 or
kerosene type.

Pressure also has an important effect on carbon deposition, as shown
in figure 19. The largest quantities of carbon occur at low altitude
(high pressure). This fact, considered together with the properties of
the fuel oils, suggests that the application of such fuels to future high-
compression engines mey be exceedingly difficult. Tangible evidence of
this belief is presented in figure 20, which shows a large deposit of
carbon obtained in a 2-hour run with a Diesel fuel at sea-level conditions.

Exhaust Deposits and Corrosion
In regard to exheust deposits and corrosion, experience with heavy
fuels in aircraft gas-turbine engines is nonexistent; however, experience

with such fuels in industrial gas turbines adequately demonstrates some
of the problems that may be encountered.
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Deposits., - Combustion of residual fuels in gas turbines produces
deposits of ash on surfaces exposed to the exhaust-gas stream. Analyses
reported in reference 24 indicate that these deposits consist largely of
sodium sulfate and vanadium peutoxide. Sodium vanadates may also be
present. Melting points for these substances are as follows:

Deposit Melting
point,
o

Sodium metavanadate 1166
Sodium pyrovanadate 1209

Vanadium pentoxide 1274
Sodium orthovunadate 1591
Sodium sulfate 1623

Melting points for these substances are very near the maximum tempera-
tures at turbine entries; consequently, the possibility exists for such
materials to be present ian both solid und molten state.

An effort was made (ref. 24) to remove sodium from fuel oils, and
a satisfactory method was found. However, it was concluded that the
method would be difficult to opply on an inexpensive commercial scole.
No satisfactory method was found for removel of vonadium. Various con-
centrations of vanadium and sodium were ndded to kerosene in order to
evaluate the effect of these materials on turbine-blade deposits. Results
indicated that sodium produced more than twice the deposit obtained with
an equal weight concentration of vanadium. It was clso found that a truce
of carbon in the exhaust-gas stream almost completely prohibited ash de-
posits.

Corrosion. ~ The problem of corrosion may arise from the presence of
sulfur, vanadium, and sodium in residual fuels. Sulfur has no appreciable
effect on most present-doy alloys (ref. 24); however, there is some evi-
dence that intercrystalline penetration may occur and result in fatigue
failure o. certoin materials. Sulfur may corrode certain nickel alloys at
high temperatures in o reducing atmosphere. Sodium sulfate appears to
have little corrosive effect below 1470° F; however, corrosion increases
rapidly above this temperature ond becomes severe as the melting point of
the salt is approached at 1623° F. Vanadium is the most corrosive agent
in the fuel, and its effect on some alloys may be serious. There is some
evidence that o light coating of vanadium oxide is Jjust as dumaging as a
heavy coating.
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PREHEAT REQUIREMENTS IN UTILIZATION OF HEAVY FUELS

There are three situations to be evaluated in the determination of
preheat required for heavy fuels, the amount of heat required (1) to
maintain the fuel in fluid condition (gbove pour point and at suitable
viscosity ror pumping), (2) to maintain & suitdble viscosity for atomiza-
tion to ensure sutisfuctory combustion, and (3) to provide a vapor pres-
sure satisfuctory for starting purposes.

It is known thut kerosene can be pumped and atomized satisfactorily
and that its ignition choructeristics are suatisfactory with proper injec-
tion und ipnition systems. The Reid vapor pressure of kerosene is about
0.1 pound per square inch; therefore, for ignition purposes it may be
assumed rbitrarily thut uny heavy fueéel utilized in aircraft must be pre-
heated to o temperature sudficiently high to achieve a comparable vapor
pressure. for u grade 4 fuel oil, this temperature would be about 200° F
(fig. 5(d)).

In regord to pumpdbility, two values of viscosity are mentioned in
the literature us the maximums that may be tolerated before pumpability
problems arise. These limits ure 2000 centistokes (ref. 25) and 500 cen-
tistokes (ref. 26). Despite the discrepancy in these values, both are
sufficiently high to indicate thot fuel oils up to grade 4 may be pumped
(rig. 7(d)) so long us the fuel is in the liquid stute. In fact, for
fuels of the grade 4 fuel oil type or lighter, the primary reason for
preheat would be to maintain the liquid stote rather than to aochieve a
selected viscosity., This point is illustrated by the following data from
figure 7(d):

Fuel | Pour Viscosity at
oil, point, | pour point,
0

grade F centistokes
1 =37 16
2 -7 21
4 -8 1300
5 40 5000
6 50 7500

Since it is known that a1l these fuels could, in flight, be subjected to
temperatures below these pour points, preheat would be required. Although
the viscosity ol the average grade 4 fuel oil is sbout 1300 centistokes

at its pour point, this value could be decrecsed to 500 centistokes by
prehenting to 7° F.
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If it is agsumed that the fuel oils may be held at or above the
pour point, the remaining factor to consider is the quantity of heat
required for satisfactory atomization at the combustion chamber. In-
formation in the literature (refs. 25 and 26) indicates that a maximum
viscosity of 15 centistokes is the limit for pressure atomization; there-
fore, it would be necessary to preheat the fuel in order to obtain this
viscosity. The temperatures required for a viscosity of 15 centistokes
(fig. 7(d)) are -33°, 5°, and 105° F for grades 1, 2, and 4 fuel oil,
respectively.

Based on the foregoing discussion, the utilization of a fuel as
heavy as grade 4 fuel oil requires a temperature of 7° ¥ to maintain the
fuel in pumpable state; & temperature of 200° F would be necessary to
provide a suitable vapor pressure for ignition; a temperature of 105° F
would be necessary to ensure proper atomization. The requirement of a
200° F fuel temperature for proper ignition could be reduced somewhat by
use of high-energy ignition systems and by improved fuel-injection tech-
niques. In the subsequent discussion, however, consideration is given
to both conditions; that is, where the quantity of preheat is determined
by the viscosity at the nozzle or by the required vapor pressure. The
heat requirements for these two cases would be met at some location be-
tween the fuel tank mnd the fuel-injection nozgle.

Calculations of preheating requirements werce made for the various
grades of fuel oil. In these culculations the following conditions were
assumed: flight speed, 500 miles per hour; zltitude, 30,000 feet; fuel
consumption per engine, 400 gallons per hour; wnd fuel curried, 2000
gallons rer enzine. These conditions upproximate those of the Comet air-
plune. The assumed fuel tank had v diameter of 4 feet and & length of

21% feet. An actusl fuel temperature-time curve for the Comet (ref. 27)

was used to estimate the amount of fuel consumed before the remaining
fuel reached the pour-point temperature. Then from heat-transfer coeffi-
cients corresponding to the assumed flight conditions, the amount of heat
required to maintain the remaining fuel above the pour point and below

a viscosity of 500 centistokes wos calculated. Calculations were made
for two effective wir temperatures, -22° and -40° F. These are stagna-
tion temperatures corresponding to ambient temperatures of -67° and

-85° ¥, respectively. The results of the calculations are presented in
fTigures 21 and 22.

Figure 21 shows that no heating is required for grude 1 fuel oil;
however, this result is accounted for by the fuct that the fuel never
cools to 1lts pour point according to the assumed fuel tempersture-time
curve (ref. 27). For heavier grudes of fuel oil, the heat requirements

increase to appreciable proportions up to about 275 kilowatts for grude 6.

Under current fuel-oil specificutions, it would be possible to have much
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greater heat requirements than those indicated in figure 21. For example,
the average properties (table II) of grade 4 fuel oil were used in pre-
paring figure 21, yet calculations based on the maximum values in table

IT indicate the heat requirements to be about 2.5 and 2.0 timee greater
at -22° and -40° I effective air temperatures. It is emphasized that the
heat requirements in figure 21 correspond to the time of flight when the
maximum quantity of fuel has cooled to the required temperature for pump-
gbility. These required quantities of heat will decrease as fuel is
consumed.

Calculations were also made to indicate the influence of the maxi-
mum allowable viscosity for pumping on the preheat requirements. Since
the viscosity limitation will depend upon the type of pump and its oper-
ating requirements, there is no certuin method by which to estimate the
highest permissible viscosity. For this reason the data in figure 21
were based upon the value of 500 centistokes given in reference 26. As
mentioned previously, reference 25 cites o value of 2000 centistokes as
the limiting viscosity. With this vaelue the heat requirements were com-
puted, and comparison with figure 21 shows the following changes:

Fuel Required heat input, Btu/br, at -
Z;iée Effective air temperuture, -22° F|Effective air temperature, -40°’§L
500 cs 2000 cs 500 c¢s 2000 cs
1 0 0 0o | 0
2 64,769 64,769 142,492 142,492
4 132,870 60,438 215,249 138,144
5 687,258 428,978 810,964 532,500
6 805,372 831,728 934,232 757,000

The hewt requirements do not change for fuel oils 1 and 2, since
the addition of heat is necessary only to keep the fuels above the pour
péint. An uppreciable decreuse in required preheat occurs for the
heuvier fuel oils if ¢ viscosity us high as 2000 centistokes can be tol-
erated for pumping.

The culeculations in figure 21 and the preceding table were all based
on a heat-trunsfer coefficient of 26 Btu/(hr)(sq ft)(°F) with uninsulated
tanks. Further calculation indicates that the use of insulation would
effect consideruble reduction in heut requirements. Similar calculations
reported in reference 28 indicute that the use of l/4-inch cork or foamed
plastic insulotion will reduce the heat requirement by a factor of 10.

In addition to the hewt required to maintuin the fuel above its pour
point und below wu pumping viscosity, heat must be added between the fuel
tank wnd the fuel-injection nozzle in order to provide a certain vapor
pressure or low viscosity for atomization. In figure 22 two curves are
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shown, the upper curve for heat required if vapor pressure is limiting,
the lower curve for heat required if viscosity is limiting. Somewhere
between these curves the true curve will fall, its position depending
upon combustion-chamber design, available ignition energy, and type of
injection nozzle. The quantities of heat indicated in figure Z2 repre-
sent the heat to be added to raise 400 gallons per hour of fuel from the
required preheat temperatures of figure 21 to the required preheat tem-
peratures for the selected vapor pressure and viscosity of figure 22.

SAFETY AND HANDLING PROFERTIES

With respect to safety, the use of low-cost fuels is advantageous.
Such fuels are more difficult to ignite, less prone to propagate a flame
rapidly, and less susceptible to atomization by impact than the lighter
fuels. Moreover, flammability characteristics are such that a hazardous
condition would seldom exist within fuel tanks. From toxicity consider-
ations, the low-cost fuels would offer hazards no greater than those of
any other hydrocarbon fuels.

Although no comprehensive study of handling characteristics has been
made, it is well to mention a few possible problems for the sake of com-
pleteness. Among these are odor, storage stability, and comtamination
by water, dust, and rust. All three of these will probably be more im-
posing problems with the fuel oils than with current fuels.

CONCLUDING REMARKS

In this discussion, four potential advantages of the heavier petro-
leum products were indicated:

(1) Lower cost

(2) Reasonable wuvailability
(3) Greater flight range
(4) Greater safety

In order to realize the full value of these advantages, certain per-
formance and handling problems must be solved. The distillute and re-
sidual fuels cannot be utilized in current turbojet engines without
significant power-plant redesign, but studies to date indicate that the
use of such fuels in suitably designed engines is certainly feasible.

The rapidity with which the solutions to the major problems may be
achieved is, of course, dependent upon the emphusis placed upon the over-
all problem of utilizing the heavier low-cost fuels in gas-turbine en=
gines for commercial aircraft.
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The major performance and handling problems, together with a brief
statenent of current knowledge, are as follows:

Engine starting. - The problem of ignition does not appear serious
in light of possible use of high-energy ignition systems together with
improved injection techniques. The problem can be further simplified by
consideration of starting requirements in the over-all combustion-chamber
design in order to provide optimum fuel-air mixtures at the spark-plug
location.

Combustion performance. - Sufficient knowledge exists to indicate
that requirements of combustion efficiency and altitude operation limits
cun be met by proper combustion-chamber design.

Combustion-chamber deposits. - The background in carbon deposition
problems is excellent, yet it is apparent that the elimination of carbon
deposition with distillate and residual fuels may be difficult to effect
by design changes alone.

Exhoust deposits and corrosion. - Perhaps the most imposing problem
in the utilization of the low-cost fuels is the problem of exhaust depos-
its and corrosion. This problem arises from the presence in the fuel of
certain constituents that promote deposits and corrosion under high-
temperature conditions. At the present time there is no economical re-
fining procedure for complete removal of tiiese constituents; conseguently,
the solution to the problem will be a compromise between the best fuel
that the refiner can supply und the most recict.nt materials that the
engine manufacturer can build into the engine. It is emphasized, however,
that the seriousness of this problem would be greater for residual fuels
thaen for distillate fuels.

Fuel-system design. - An important problem in the use of distillate
or residual fuels will be the requirement of preheating or prevaporiza-
tion equipment to mauintain fuel fluidity and desirable fuel-injection
characteristics. Although the difficulty of this problem should not be
minimized, its solution is primarily dependent upon existing sound en-
gineering principles.

Fuel stability, contamination, and odor. - The problem of supplying
a stable and odorless fuel, free of contamination, rests primarily with
the petroleum industry. It should be understood, however, that in meet-
ing these requirements there are certain limits beyond which fuel cost
may increase. For this reason these requirements must be controlled by
specifications satisfactory to both supplier and consumer.

Over-all evaluation of the foregoing comments indicates that, in
regard to performance end handling, the use of low-cost fuels in commer-
cial gas-turbine-powered aircraft is feasible. On the other hand, the

CONFIDENTIAL

3023

e e W, g ey e




Le ame -

c20e

CE-3 back

NACA RM ES3HOS CONFIDENTTIAL 19

most expeditious solution of problems relating to performance and handling
will not be achieved until positive steps are taken to indicate serious
consideration of such fuels in commercial gas-turbine aircraft.

On the basis of the current study, as well as studies reported in
related literature, it appears that the next step should be to conduct a
detailed survey of the actual monetary savings that might be attained by
the use of the distillate and residual fuels. Such a study conducted
under ground rules satisfactory to both the airline operators and the
petroleum industry should aid in determining the intensity of research
and development effort that might be applied to the solution of fuel per-
formance and handling problems.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 11, 1953
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Figure 1. - Effect of JP-4 production on availability of other

petroleum products.
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Figure 2. - Relative costs of petroleum products.
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Figure 3. - Continued. Variation of specific gravity with temperature.
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Figure 3. - Continued. Variation of specific gravity with temperature.
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(a) Grade 1 fuel oil; 67 samples.

Figure 4. - Varlation of A.S.T.M. digtillation temperatures for

fuel oils.
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Figure 4. - Contimued. Variation of A.S.T.M. distillation temper-

atures for fuel olls.
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Figure 4. - Concluded. Variation of A.8.T.M. distillation temper-
atures for fuel olls.
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Figure 5. - Varlation of vapor pressure with temperature.
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Figure 5, - Continued. Variation of vapor pressure with temperature.
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(a) Grade 1 fuel oil; 67 samples.

Figure 6. - Variation of latent heat of vaporiza-
tion with temperature.
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Figure 6. - Concluded. Variation of latent heat of

vaporization with temperature.
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Figure 12. - Effect of fuel-nozzle design on performance. Fuel,
kerosene; simulated altitude, 45,000 feet; 100-percent rated
engine gpeed; tubular combustor.
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g Figure 13. - Temperature rise with gasoline and with Diesel i i
o oil. Annular combustor; inlet pressure, 9.2 pounds per . :
square inch; inlet temperature, 240° F; inlet veloeity, T
200 feet per wmecond. Z
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Critical fuel flow, 1b/hr

Figure 14. - Effect of inlet-air temperature on fuel flow required for ignition in

combustor. Engine speed, 1600 rpm; Mach number, O; sea level.
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Figure 15. - Variation of critical fuel flow for lgnition with fuel

volatility. Single combustor; engine speed, 1600 rpm; flight Mach
number, O; sea level,
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Flgure 16. - Effect of altitude on fuel flow required for

ignition in combustor.
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Figure 19. - Effect of altitude on carbon deposi-
tion. Annular combustor; rated engine speed;

running time, l% hours.
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- Carbon deposit after 2-hour run with Diesel fuel at sea-level conditions,

Figure 20.
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Required preheat temperature at fuel tank, OF

Figure 21. - Required heat input at tank to maintain fuel in pumpable condition, that is,
above pour point and below viscosity of 500 centistokes.
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