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A KINETIC APPROACH TO COLLISION PROCESSES IN GASES.

I. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL

ONE COMPONENT SYSTEMS

by

P. L. Bhatnagar, E. P. Gross andM. Krook

Abstract: A kinetic theory approach to collision processes in ionized and neutral

gases is presented. This approach is adequate for the unified treatment of

the dynamic properties of gases over a continuous range of pressures from

the Knudsen limit to the high-pressure limit where the aerodynamic equa-

tions are valid. It is also possible to satisfy the correct microscopic

boundary conditions. The method consists in altering the collision terms in

the Boltzmann equation. The modified collision terms are constructed so

that each collision conserves particle number, momentum and energy; other

characteristics such as persistence of velocities and angular dependence

may be included. The present article illustrates the technique for a simple

model involving the assumption of a collision time independent of velocity;

this model is applied to the study of small amplitude oscillations of one-

component ionized and neutral gases. The initial value problem for un-

bounded space is solved by performing a Fourier transformation on the space

variables and a Laplace transformation on the time variable. For uncharged

gases there results the correct adiabatic limiting law for sound-wave propa-

gation at high pressures and, in addition, one obtains a theory of absorption

and dispersion of sound for arbitrary pressures. For ionized gases
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the difference in the nature of the organization in the low-pressure plasma

oscillations and in high-pressure sound-type oscillations is studied. Two

important cases are distinguished. If the wavelength of the oscillations is

long compared to either the Debye length or the mean free path, a small

change in frequency is obtained as the collision frequency varies from

zero to infinity. The accompanying absorption is small; it reaches its

maximum value when the collision frequency equals the plasma frequency.

The second case refers to waves shorter than both the Debye length and

the mean free path; these waves are characterized by a very heavy ab-

sorption.

INTRODUCTION

The dynamical theory of gases may be studied from two points of view.

One may take as starting point the macroscopic equations of aerodynamics with

the density p , mass velocity - and temperature T as independent variables,

and involving various coefficients, e.g., viscosity, heat conduction, etc. On

the other hand, one may use a more fundamental and general microscopic

formalism. The most fruitful of such formalisms available at present is that

in terms of one particle distribution functions satisfying integro-differential

equations of the Boltzmann type.

The aerodynamic equations are adequate for treating a certain wide

range of problems in gas dynamics and most of the developments of the theory

have been in this domain. In this range the microscopic theory would not

yield significantly different results. In fact, subject to certain conditions which

delimit their range of applicability, Uhe aerodynamic equations, together with

explicit formulae for the various coefficients entering into them, are derivable

from the microscopic theory. A detailed account of this derivation is presented
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in the book of Chapman and Cowling. 1)

There are, however many important situations in which the macroscopic

theory does not give a correct description. During recent years interest in

such problems has increased considerably. An extreme example of the breakdown

of the aerodynamic theory, viz., in the Knudsen region, has been known for some

time; here the mean free path of a molecule is large compared to some linear

dimension of the apparatus and behavior at the boundaries becomes important.

Other examples are provided by high-frequency sound waves in a rarefied gas

and plasma oscillations.

The solution of the Boltzmann equation is, in general, a matter of consider-

able difficulty even in cases corresponding to the physically simplest situations.

Significant progress has been confined practically to the study of two limiting

cases in which two different approximation procedures can be applied. A cri-

terion for the range of validity of the approximate methods is provided by the

comparison of some characteristic time r(or characteristic length L) with the

average time Tc (or mean free path Lc) between molecular collisions.

For high density (r F rc or L Lc)the Enskog-Chapman theory may

be used. The first approximation of the theory consists in assuming local thermo-

dynamic equilibrium and a common drift velocity for all molecular species. The

next approximation corrects the distribution function by terms proportional to

the first derivatives of temperature, velocity and density; this corresponds to

the aerodynamic equations with coefficients of heat conduction, viscosity and

diffusion. The high density region (r > r) is in fact the range in which the

aerodynamic equations provide an adequate description. Higher approximations

of the E-C theory lead to correction terms proportional to higher derivatives of

1) S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform

Gases", Cambridge University Press, London, 2nd Edition, 1952.
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T, q, P. The successive approximations of the E-C theory correspond to an

expansion of the distribution function in powers of the mean free path L c . If

we consider sound waves with wavelength L> L c , the first and second approxi-

mations are already sufficient to give all significant features of the process.

However, when L becomes comparable with L c , it is necessary to go to the

third and even higher approximations to obtain adequate results; as discussed

by Herzfeld 2) important dynamic contributions appear only in approximations

higher than the second. The third approximation already involves formidable

labor and has been used to solve only the simplest problems. Consideration of

higher approximations is, in any case, of doubtful value as the entire procedure

breaks down in just the range where the contributions from these higher-order

terms become important. In addition, the boundary conditions in many problems

cannot be specified properly within the scope of the E-C formalism. A different

approach, using expansions in terms of Hermite polynomials in velocity space,

has been given by Grad. 3) He uses some moments of low order in addition to

the usual ones representing p, q and T. The procedure involves a gain in sim-

plicity over the E-C theory but is still quite complicated. It is basically a high-

density theory and is capable of dealing only with boundary conditions which can

be specified in terms of the moments appearing in the theory. The limitations

of any theory based on the use of a finite number of moments will be brought out

in the discussions of this series of papers.

The opposite limiting case (r« F r or L Lc) has been studied exten-
c

sively by mean free-path methods. Jaffi 4) has shown that this case can be treated

2) K. F. Herzfeld, Ann. Physik 23, 465 (1935); cf. also H. Primakoff, J. Acoust.

Soc. Am. 14, 14 1942); H. Tsien and R. Schamberg, ibid. 18, 334 (1946);

C. S. W. Chang and G. Uhlenbeck, Dept. Eng. Research, Univ. Michigan,

APL/JHUCM-443, UMH-3-P, Feb., 1948; M. Kohler, Abh. Braunschweig.

Wiss. Gesell. 2, 104 (1950).

3) H. Grad, Comm. Pure Applied Math. 2, 331 (1949).

4) H. Jaffe, Ann. Physik 6, 195 (930).
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from the point of view of the Boltzmann equation by expanding the distribution

function in a series of inverse powers of the mean free path; the first approxi-

mation consists in neglecting collisions completely. In contrast to the high

density limit, the problem can be solved subject to correct microscopic bounda-

ry conditions. The method becomes extremely complicated when one attempts

to carry out higher approximations to give results which go much beyond those

obtainable by simple mean free-path arguments. For this reason this method

has not been applied to any great extent.

The low-density case- is of particular interest for ionized gases where

the coupling of the material motions with the electromagnetic field plays an

essential and determining role. Ionized gases occur widely in nature and in the

laboratory with densities and temperatures covering a large range. In laborato-

ry discharge tubes and similar devices pressures ranging from 10- 3 mm up to

104 mm are commonplace. In the negative glow of a discharge tube at 10 - 2 mm

the material is at least singly ionized; the electron density is about 1011/cc and

the mean free path is of the order of a few cm. At pressures of the order of an

atmosphere the ionization is only partial; the electron density is of the order of

10 15cc and mean free paths are of the order of 10 - 5 cm. In nature the range

covered is considerably wider.) The interstellar medium has a density varying

from 10 - 2 4 gm /cc up to 10 - 2 1 gm/cc. The gas may be neutral as in the low-

temperature HI regions, or completely ionized as in HII regions near very

luminous stars. In the outer corona of the sun the degree of ionization is high

and the electron density is of the order of 108/cc. As we proceed in towards the

center of the star, the degree of ionizati6n varies considerably. In the photo-

spheric layers (mainly responsible for the sun's continuous spectrum), the

particle density is of the order of 1011/cc and the ionization is small. Near the

center of the sun we of course have very much greater densities and temperatures

5) J. A. Hynek, "Astrophysics, " McGraw-Hill Book Co., New York, 1951.
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and a very high degree of ionization.

We thus see that it would be very desirable to have a theory capable of

treating the whole range from low to high densities for mixtures of neutral and

ionized gases. The treatment of an ionized gas involves certain new elements

in addition to those for neutral gases; this will be discussed in detail in Sec. 2.

The region of intermediate density (r = Tc or L M Lc) has thus far been practi-

cally unexplored on account of excessive mathematical complications. The

procedures discussed above for the two limiting cases of high and low density

are not applicable in this region. For similar reasons, the solution of definite

initial and boundary value problems with the Boltzmann equation has also not

been studied to any extent. In order to make some progress in the investigation

of such problems it is necessary to simplify the mathematical procedures quite

considerably.

The aim of this series of papers is to propose a treatment of collision

processes in gases which leads to just such a simple mathematical formalism.

The main difficulty in handling the full Boltzmann equation arises from the com-

plicated nature of the collision terms. In contrast to other procedures, ours

consists in replacing this troublesome collision integral by mathematically

simpler terms; these, however, are chosen so as to conform to the conservation

laws for mass, momentum and energy and at the same time to represent certain

essential features of colisions, e.g., persistence of velocity. This approach

makes possible a survey of the whole range from low density to high density

and including the intermediate region. It leads to the correct asymptotic be-

havior in the two limiting cases mentioned above. The mathematical simplifi-

cation introduced with the model enables one to solve problems which are physi-

cally more complex than those soluble with the standard Boltzmann equation;

in addition, one is able to treat definite initial and boundary-value problems.
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Each collision term in a Boltzmann equation consists of two parts. The
onepat1 )  -O -NIl, ,t - 2.02 x, - t ) kl2d 29

one part, -fJ f" " dv, t) f(V , tk dt d' 2 , represents particles re-

moved or absorbed from a definite velocity range by collisions; the other part

represents the particles emitted into that range as a result of collisions. Our

absorption term, -n(I, t) k(7 1, t) f(_, 1, t), where n(1, t) = ff( , X, t)d

is substantially the same as that in the Boltzmann equation. The emission term

(which is the real source of difficulty) is replaced in our crudest model by a

term representing a Maxwellian distribution of the emitted particles with a den-

sity, mass velocity and temperature satisfying mass, momentum and energy

conservation requirements. This bears some resemblance to the "local thermo-

dynamic equilibrium" model used in discussing the formation of the continuous

spectrum in stellar atmospheres. The similarity of the Boltzmann equation to

that governing propagation of radiation has been discussed by Jaffa. 4) The

method proposed here is quite different, however, and is capable of considerable

extension and generalization to include the study of physically complex problems.

We shall show in a later paper that it may be used to provide a method of so-

lution of the standard Boltzmann equation.

The plan of this series of papers is the following. In the first paper we

study systems which are, or may be reduced to, one-component systems; to

illustrate the technique we avoid mathematical complications by making the sim-

plified assumption of constant collision time. This simple model is applied to

the study of dispersion and absorption of sound in a simple unionized gas and

also to the oscillations of an ionized gas with the additional simplifying assump-

tion that the positive ions may be replaced by a uniform constant distribution

of positive charge. The physically most significant feature here is the study of

the transition from low-pressure plasma waves to high-pressure sound-type

wave s.
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In the second paper we extend this treatment to a consideration of two-

and three-component systems. This includes a discussion of the translational

dispersion effect for sound waves in unionized gas mixtures. The further

effect on small oscillations arising from the coupling between positive ions

and neutrals will be studied over the whole range from low to high pressures;

the two types of wave which occur at low pressures are found to merge into a

single type of wave as the pressure increases and the collision mechanism begins

to predominate.

Paper III will deal with the oscillations of ionized gases in static external

magnetic fields. The range of validity of the conventional magnetohydrodynamic

theory will be discussed there. An important point dealt with in that paper is

the way in which gaps in the frequency spectrum, present at low densities, dis-

appear as the density is increased.

The discussions of the first three papers are confined to initial value

problems in the theory of small oscillations. The accent there is substantially

on the study of the mechanism of co-operation in ionized and unionized gases.

In Paper IV we abandon the assumption of constant collision time and examine

physically more realistic models. The connection of our kinetic equations with

the standard Boltzmann equation is discussed in more detail. In subsequent

papers we shall study particular boundary-value problems and some nonlinear

processes.

2. EARLIER TREATMENTS OF SYSTEMS OF CHARGED PARTICLES

The theory of oscillations in ionized gases is still in a rather tentative

state. However, a number of features can be understood at least qualitatively.

An essential difference from the theory for neutral gases is that approximately

undamped waves can be propagated not only at high pressures (T >> Tc)

but also at low pressures (T << Tc).
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The mechanisms responsible for the co-operative behavior of the medium

are different in the extreme cases of low density and high density. 6) At low

densities the collisions are only of secondary importance and the forces acting

to change the state of motion of a particle are electromagnetic in character.

Energy and momentum are transferred from one group of particles to another

through the intermediary of the electromagnetic field in a way now familiar

from the study of microwave devices. It is important to note, however, that

the transfer of energy by the high-frequency components of a pulse is a very

slow process in low-pressuxe plasmas. If one neglects the effect of random

thermal motion, the group velocity of the waves is zero and a disturbance

would remain completely localized. Including the effects of thermal motions,

the group velocity of high-frequency waves is approximately vg = (3pa/ )a,

where a =(kT/m)1 /2 ; this is much smaller than the sound velocity, 5a/3, for

waves whose wave number p is smaller than the inverse of the Debye length

(a/w p). In addition, waves with pc a/wp are very heavily damped.

Let us now turn attention to attempts which have been made to treat the

oscillations of ionized gases quantitatively by the methods of kinetic theory.

It is clear that the long range of the Coulomb force implies that the concept of

a definite binary collision will be inadequate except for very close encounters.

Instead, every charged particle is continually interacting with all the particles

of the assembly. An important theoretical step, making possible the approxi-

mate treatment of many properties of ionized gases, was taken by Vlasov. 7)

Langmuir 8) had already pointed out that the Debye length is characteristic of

the dynamic behavior as well as of the static properties of an ionized gas.

6) D. Bohm and E. P. Gross, Phys. Rev. 75, 1851, 1864 (1949).

7) A. Vlasov, J. Phys. U.S.S.R. 9, 25, 130 (1945).

8) I. Langmuir, Proc. Nat. Acad. Sci. U.S. 14, 627 (1928).'
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Processes involving characteristic lengths longer than the Debye length call

into play the co-operative behavior of the particles of an ionized gas. Vlasov

assumed that apart from close collisions, a particle moves in an average

electric field arising from the other particles and proposed to describe the

system by a one-particle distribution function f( v, X, t). He wrote for the

description of longitudinal disturbances,

+€" )fV LE -' # (1)
c

V E4we no -ffdv} (2)

where n0 is the density of the uniform continuous positive background. The

force eE arising from the charge concentrations of the particles themselves

has been inserted in the position in the kinetic equation generally reserved for

body forces. Vlasov termed this the integral interaction term; it is designed

to treat the forces on a given particle arising from other particles at distances

greater than a Debye length. The term 6f presents the instantaneous
It c r

change of the distribution function arising from closer collisions. The question

6f Ithen arises as to the explicit form to take for "I c h eycoeecutr

at a distance less than the interparticle distance can be treated by the binary

collision term of Boltzmann type. For the more distant collisions such an ap-

proach is less certain. It is important to note that in a low-pressure plasma

the Debye length is, in general, many times the interparticle distance. Thus,

in a collision between two particles there are, in general, many other particles

between them. In spite of this, many authors 9) have treated various processes

in ionized gases using the binary collision approach even for these distant

9) D. Gabor, Z. Physik 84, 474 (1933); L. Landau, Physik. Z. Sowjetunion

10, 154 (1936); D. Bohm and L. H. Aller, Astrophys. J. 105, 131 (1947);

R. Cohen, L. Spitzer, Jr., and P. McR. Routly, Phys. Rev. 80, 230 (1950).



collisions. They treat the distant collisions as involving small momentum

transfers and expand the distribution functions in the collision integral term

in powers of the momentum transfers. Terms very similar to those given

by the Fokker-Planck equation are obtained. This procedure is, of course,

approximate since it attempts to replace many body collisions by a series of

binary collisions. The equation neglects the "Onsager correction" and other

correlation effects; these require a more refined description in terms of many

particle distribution functions. However, in the present primitive state of the

theory it is worthwhile exploring the consequences of this approach. In a later

paper we shall discuss the application of this method to the plasma oscillation

problem in some detail. The Fokker-Planck approach has already been used

in the study of plasma oscillations by Logunov. 10) He obtains a damping and

dispersion, but his method is incapable of treating high-pressure plasmas be-

cause of an inadequate representation of the collision terms.

3. KINETIC MODELS OF COLLISION PROCESSES

The equations described above for neutral and ionized gases are compli-

cated to handle in practice because of the intractable nature of the Boltzmann

binary collision term. We shall now discuss some simple kinetic models which

permit of exact mathematical treatment including the solution of definite boundary-

value problems. A more detailed discussion of the validity of our representation

of collisions and its relation to the standard Boltzmann equation will be given in

a subsequent paper. In this section of the present paper we introduce the simplest

kinetic model; we give the underlying motivation for the form of this model from

one point of view.

In many other kinetic problems, for example, the effect of electron col-

lisions on the propagation of radio waves in the ionosphere, it is convenient to

10) A. A. Logunov, Zhur. Eksptl. Teoret. Fiz. 20, 458 (1950).
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avoid the complexities of the Boltzmann equation by using a mean free-path treat-

ment. One replaces the collision integral by a relaxation term of the form

6f _ 0o f_ _, t)

- - r M) 
(3)

where T(v) is a velocity dependent collision time. This expresses the fact

that collisions tend to relax the distribution function to an equilibrium value f 00

We illustrate our discussion of collision models by referring to oscillatory

problems where a characteristic time enters in a natural way. The relaxation

model then describes the destruction of phase of an ordered motion on collision

and leads to a damping frequency of order 1/t in the amplitude, where r is

some suitable average collision time. This type of model has the defect 11) that

charge is not conserved instantaneously but only over a cycle. It is, however,

easy to remedy this at least in the case of constant collision time by taking for

the collision term

= - j + n(-,t) f(C ) (4)bf I - ' T oco

where n( , t) =f d is the fluctuating density. Thus particles in a range d-

about velocity v are absorbed at a rate proportional to the number ftc, v, t) at

(b, t) and reemitted at a rate proportional to the density at ( - x*, t) and with a

Maxwellian distribution of velocities. We may regard this as a model represent-

ing electron neutral collisions. (This representation will be studied in more

detail in Paper 2, where we treat the coupling of charged and uncharged systems

more adequately.) Upon integrating over velocities we findJ - 'c d " = 0 so

that the number of particles is instantaneously conserved in collisions in contrast

to the earlier case where the conservation holds only when averaged over finite

times. There is, however, no instantaneous conservation of momentum or

11) E. P. Gross, Phys. Rev. 82, 232 (1951).

* For a discussion of this model from a different point of view, Ref. 6, p. 1864.
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energy. In fact, we have fm - - c - V f fd 5fI
- m T0 - f f d"- . This representsa gain or loss of totald

momentum during collision, depending on the phase of f.

Thus far we have discussed a model which can represent only electron-

neutral or ion-neutral collisions in which the collision term is linear in the

electronic distribution function. The linear feature would also be present in a

more exact study of the collisions. However, in considering electron-electron

or ion-ion collisions which are important in the high-pressure ionized gas, we

will expect to find collision terms quadratic in the electron and the ion distribution

functions. (In the study of small amplitude disturbances such terms may be

linearized, but we now seek a general formulation.) We shall construct a simple

model, quadratic in f which reproduces essential features of the collisions with-

out introducing the troublesome Boltzmann collision integral. Let us write
f~~~ --eE* n "

a f- eE =f - n(x, t) f t n (x, t) )
Y+ V ) - m 3V C (v X, t)+ (5)

2m v
m 3/2 e- 2 6e . (6)

0

Thus fF dv = 1. We have taken the rate at which particles leave a particular

velocity range at (X, t) as proportional to f( v, X, t) and to the density n(x, t).

The number of particles emitted at (x, t) equals the number absorbed at (X, t);

this number is proportional to the square of the density and is emitted with a

Maxwellian velocity distribution. k = n 0/r is a collision frequency, here

assumed independent of velocity. It is easily verified that the total number of

particles is instantaneously conserved by the collision processes, while momen-

tum and energy are not.

It is now worthwhile to examine the dispersion relation for small-ampli-

tude oscillatory processes governed by Eq. (5). For brevity, we adopt the
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approach of looking for plane-wave solutions of the type exp (i (px - wt)). We

shall show later that this procedure is valid for the treatment of certain types

of initial value problems for finite collision time and for waves of large wave-

length. We write

f=f(l +) f 0 n F (7)

n('x, t)= nol + V ) (8)

where + and V are dimensionless quantities small compared to unity. We as-

sume 4, V , and E oscillate as exp (i (px - wt)) and neglect products of these

variables. Then Eq. (5) becomes
eE

i (pu _ u) 0 + eE U = ( / 9)

0

We also have

V =fF dv (10)

4wren
i(11)

Eliminating E we find the distribution function

Re V + 4wn eZ (
XF +R ki pu - W) _7-~ IT

and the dispersion relation 2

P Fd 'v 4irn e2

I=J+ i pu -) o (13)

If one expands in powers of ipu/(X - iw) and restricts oneself to the study of long

wavelength one finds kT { 2

2 2 i W X o P 2 2 4 )
P" -I ()L-i .c14

We conclude from this relation that the oscillations are strongly damped at high

pressures. For the case of a charged gas the complex frequency is approximate-

ly .-x + X + ca2 ) 1/2 this is of the order of the collision frequency for X
"" - --- P 4wn e2 ./2

small and always corresponds to damping. For a neutral gas, p = ( 0 )/2 0
kTo 

m
and so i + 2 thus in the limit of very high collision fre-

quency one obtains highly damped oscillations instead of undamped sound waves.
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We thus see that this model is incapable of yielding correct results at

the high-pressure limit? What is the origin of this failure . As discussed

earlier and in Ref. 6, the processes of organization are very different for a

plasma and for a sound wave. In particular, one must recognize the velocity

organization characteristic of a sound wave. Thus a particle with excess

velocity at a point makes collisions which slow it down to the flow velocity at

the point in question. Similarly particles which are moving too slowly tend to

have their speed increased to that of the flow velocity. The collision models

studied thus far fail to incorporate this feature so that it is not surprising that

they do not yield sound-type oscillations in the high-density limit.

We now propose a simple model which succeeds in giving an adequate

description of both the high- and low-density plasma. For a one-component

system, one writes

71. * - v x. t)+5--

= M 3/2 - m. .zl 1
2wkT ( t) exp ZkT t)(v-q(xt) (16)

n (_X", t) df (1 x 0 )

x t) f ( v x, t) dv (18)
n( , t)

3kT(', t) 2 fdv
m n

V t E = 4-,e In-ffdl (20)

q(x, t) and T (X, t) define the flow velocity and temperature at x and t. We have

assumed the reemitted particles at (, t) to emerge with a Maxwellian distri-

bution centered about the flow velocity q and for a temperature T ( *, t). It is

easily verified that, with the definitions of q and T given, the collision terms
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instantaneously conserve particle number, momentum, and energy. The ki-

netic equation (15) is a nonlinear integro-partial differential equation. How-

ever, it is considerably simpler than the standard Boltzmann equation since

the distribution function enters into the collision terms of Eq. (15) in a simple

way; as f, ff d , j f d' andfv 2 f d*. Thus one finds a solution of Eq. (15)

in terms of the undetermined functions q(x t), n(", t), T(x, t), E(x, t), and

then inserts this solution into Eqs. (17) to (20). This establishes the con-

ditions of compatibility which serve to determine the solution completely. For

the particular case of small amplitude oscillations the procedure yields a dis-

persion relation specifying the connection between frequency and wavelength in

its dependence on collision frequency, plasma frequency, temperature, etc.

The use of conditions of compatibility bears a certain resemblance to the

first step in the Enskog-Chapman method of solving the Boltzmann equation.

However, the methods are quite different. In the E-C technique one assumes a

locally Maxwellian form for the distribution function in first approximation and

then determines the density, velocity and temperature entering in this choice

by conditions of compatibility; here we change the collision term itself and

solve for the distribution function rigorously. The solution will, in general, not

have the form assumed in the Enskog-Chapman method. Our approach has the

virtue that one can solve definite initial and boundary-value problems wholly

within the framework of a microscopic formalism. The model we have described

involves the assumption of a collision time independent of velocity. In Paper 4

we shall show that this is not an essential restriction and shall discuss the gener-

alizations to take into account velocity-dependent collision times as well as

others; in the present paper we shall follow the consequences of Eqs. (15) to (20)

inasmuch as it appears to be the simplest model capable of yielding physically

satisfactory results throughout the entire range of pressures.
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There exists a number of studies of the oscillations of ionized gases

using transport equations. For example,the Thomsons 12) and subsequently

Bailey 3)base their discussions on Maxwell's equations of transfer. As ap-

plied to a one-component system of charged particles these equations are those

of continuity, of momentum transfer and Poisson's equation. When no static

2 2 kT
magnetic field is present one obtains the dispersion relation w = w + (-2 p

pm

It is not clear from these transport treatments whether the results are meant

to apply at low pressures or high pressures; in fact, they could be valid only at

high pressures. Even ther-e, however, they are inexact, as they correspond to

an isothermal treatment. Thus, in terms of the model discussed above, the

temperature T is treated as a constant and energy balance is not maintained

instantaneously by collisions; we shall obtain Thomson's results from our

model at high pressures in the isothermal approximation. The high-pressure

nature of the Thomson approach for a one-component system is brought out in

an alternative treatment by Linder 14) who adds a pressure term to the equation

of motion of a particle and with an isothermal assumption obtains the same

result as Thomson. At low pressures the correct dispersion relation as found

2 2 3kTo 2by an exact treatment of the kinetic equation is w = P + - p , differingp m

from that at high pressures by the factor 3. We expect then that, in an iso-

thermal treatment, there will be a change in the frequency corresponding to a

given wavelength as one goes from low to high pressures. This is indeed the

case as will be shown with our collision model; in addition, we find an accom-

panying absorption which reaches a maximum value when the collision frequen-

cy is of the order of magnitude of the plasma frequency.

12) J. J. and G. P. Thomson, "Conduction of Electricity through Gases,

Cambridge University Press, London, 1933, Vol. 2, p. 353.

13) V. A. Bailey, Phys. Rev. 78, 428 (1950).

14) E. G. Linder, Phys. Rev. 49, 753 (1936).
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We have thus far confined discussion of the transport method to iso-

thermal models. It is possible to generalize the transport procedure to in-

clude temperature variations by applying a moment method to the Boltzmann

equation. 11) One finds a dispersion relation w = w2 + p kT /m. For the

uncharged case this gives the correct "adiabatic" law of sound-wave propa-

gation w = (5/3)1/2 (kTo/m)l/2 p. We shall see that the result is also correct

for an ionized gas; the transport approach owes its validity at high pressures

to the fact that momentum and energy are collisional invariants. Existing

transport treatments are certainly incorrect quantitatively in the low-pressure

region and even fail to give a qualitatively adequate description when magnetic

fields are present. 11) For the treatment of the effects of heat conduction and

viscosity which depend on the mean free path a kinetic approach of the type

here presented is needed.

4. ISOTHERMAL APPROXIMATION

The simplest collision model yielding both low-pressure plasma waves

and also sound waves at high pressures may be obtained by taking T constant in

Eqs. (15) to (20). This is not entirely realistic since it yields the Newtonian

isothermal sound speed at high pressures. But the fact that the number of vari-

ables is one less, simplifies the calculations considerably. For the sake of

ease of exposition we shall discuss this case in detail and only sketch the treat-

ment of the more general case including temperature variations. The isothermal

case is also of some interest in itself since the work of Thomas and Bailey is

based on the isothermal approximation. The results of main physical interest

are presented in Figs. 1 to 5. Figures 1 and 2 show the dispersion and absorption

of a one-component charged system as a function of collision time. Figure 5 shows

the absorption and the translational dispersion effect in a neutral monatomic gas.

The equations describing the system of particles in the approximation of
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this section are Eqs. (15) to (18), (20). We do not use Eq. (19) but set the

temperature equal to a constant T o, the equilibrium temperature of the gas.

As we are concerned with small amplitude oscillations we shall neglect quanti-

ties quadratic in the oscillating variables and arrive at a set of linear equations.

The consistency of the linearization procedure can be checked by comparing

the terms neglected (as estimated with the linear approximation) with the terms

retained. For the case of low-pressure plasma oscillations a breakdown of the

linear approximation is closely connected with the presence of a large number

of trapped particles moving with a velocity close to the wave velocity. These

particles play a role quite different from other particles and make possible

types of solutions outside the scope of a linear approximation.

Put

f( , t) =nF {l+0} (21)

n (x, t) = n 1 + i/} (22)

Then (0 and I are dimensionless quantities. Equations (15) to (20) then become

Z (-X, t) =f 0d V (23)

S(x, t) =/v F dv (24)

V E = -47re n 0 (25)

In the linearized theory, *, Z/ , q, E are quantities of first order of smallness.

We consistently neglect all products and higher powers of these quantities. On
2

expanding the exponential in Eq. (16) (neglecting q and higher powers), we find

F 1 -7 v" q(6

The linearized kinetic equation then becomes

"+ eE • v m *at- +( V) (0+ -V_ CX V- + k- v-q) (27)
0 0

Equations (21) to (27) form the basis for the further analysis of this section.

Landau 15) has emphasized the lack of rigor in the procedure of looking for

15) L. D. Landau, J. Phys. U.S.S.R. 10, 25 (1946).
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solutions of Eq. (27) of the type where all quantities have a time and space

variation ei (px - wt). One must consider also the solutions of the homogeneous

parts of Eqs. (20) and (27) and take the correct linear combination in order to

solve a definite initial or boundary-value problem. In this paper we examine a

one-dimensional initial value problem, the propagation of a pulse. More general

boundary-value problems will be treated in subsequent papers. Suppose that at

times t < 0 the particle density is uniformly n0 throughout unbounded space

except for a small region between - x0 and x 0 confined between two walls, where

the density is n0 + t/o . At time t =0 the walls are removed and we ask about

the subsequent behavior of the system. To solve the problem the distribution

function at t = 0 must be specified. This initial distribution depends on the par-

ticular (macroscopic) mode of preparation of the system. If, for example, the

present system has been prepared by compressing the gas in ( -x o , +xo) slow-

ly over a time very long compared to the mean time between collisions, the

initial distribution function will be very nearly Maxwellian. For the case of

sound waves it is clear what will happen. Two pulses are propagated with sound

speed in opposite directions parallel to the x axis; the shape of each pulse is

maintained except for the small absorption and dispersion effects. In a low-

pressure, ionized gas the pulse will move slowly but will alter its shape appre-

ciably because of the high dispersion.

We take as initial conditions at t = 0
vp ( XI 0) =V ° F ('Vw) for - xo4 x < x °

= 0 otherwise
Z8)

V/ =o for-x < x<xo

-0 otherwise J
The mass velocity q is zero throughout all space at t = 0.

The special problem is typical of a large class of problems which may be
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solved by first performing a Fourier expansion in unbounded x space. We write

*(. -t) f4( t) elp xd , etc. (29)

From Eqs. (23) to (27) we find the following equations for the Fourier trans-

forms,
3---i eE v M -W (30)

(pt) -- fo v , t d (31)

d(t) =/v"ppF d (32)

lip •E = -4wen 0/ V t) (33)
E o p

These equations are a determined set if one specifies 1 p(V , t) at time t = 0.

Thus we must find the solutions of Eqs. (30) to (33) for which each Fourier

component satisfies the appropriate initial condition. One then superposes the

Sto find (v, , t).

For example, in the problem discussed above

-X 00 00

p 0

sin p x
= 2 o x 0 6 (py) 6(pz) (34)

sin Px x
Vp(0) =2 V o 6(p) 6(p)
p 0 pX y) (Z

where 6(x) is the Dirac delta function. Let us suppose that V/ (t) has the value
V 0) P

p +iwt -iwt
(t) = ( + e For oscillations of a one-component plasma with-

out thermal motions, co = w is independent of p and the disturbance remains
p ,kT )V2

localized. For isothermal sound waves, w = p(- ) and we obtain two oppo-

sitely directed pulses. For long wavelengths and low pressures, the plasma,
3 kT 2

including thermal effects, obeys the dispersion relation w = W + 2 m _
P I m WP
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To investigate the properties of a density pulse we form 3kTo
si pxiW t "i' 3 -2p2t .

r*. inpx 0  p 7T mtV( ,t) = h e x P 6(py) 6(pz)[e pe m +conj.comp.

The detailed discussion of this integral is complicated and will not be given

here. In the limit of long times, 1/(x, t) tends to zero throughout all space in-

dicating the spreading of the initially sharp pulse due to dispersion. As we

shall see later, in reality the dependence of 11 (t) is more complicated than

that assumed here; for pulses with widths large compared to the Debye length

the general features are unaltered.

We solve Eqs. (30) to (33), following Landau's procedure, by performing

a Laplace transformation with respect to the time variable.

We write

= jv, t) e dt (35)

for the image of ( , t). For the inverse transformation we have
c+iOO

t) = f Op, ea t d- , (36)
10 pv t ii _O a'

where the integration is carried out along a line in the right half plane of the

complex variable Tr. For the case of waves propagated along the x axis Eqs. (30)

to (33) become

(Xk + a- + ipU)p, =0 "u '(Ep cx+k , X .+ X RT'- U(qp, ~+(VO) (37)

PT-p,a-)x p, - Pa-)x p
4- ~ 0 * ~0

I/ P = s f~a'-i V (38)

(q P)x j u (p, a- P d  (39)

ip(Ep, a)x = -4wen V (40)
0 p, Oa

Here (0 (v, 0) is the Fourier transform of the initial velocity distribution. By

multiplying Eq. (37) by F and integrating over all velocities one finds

V,a + ip(q )x  V (0) (41)
*, pt T
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where 0) = pv 0) F d.
V

Using this equation together with Eq. (40), we eliminate (q tP,)x and (E )x

from Eq. (37) and are left with the set of equations

kz  (0)Xmu a. 0 mu(X + 0- + ipu) (pe:4kTX u 'pe + 1W° u) VT, + p(0) + (kT -p 442)

0 -r 40

Up I T p, T dr (43)

Solving forVP, • we find u V (0)
d" p + p(0))

Vp C 0 d" (44)

1 - + ipu Rt- ip uj.

Here k0 /a. The expression for is obtained by inserting this value of

into Eq. (42). Equations (42) and (44) thus provide a complete solution to
-p

the initial-value problem since we have merely to invert the Laplace transform

to find the dependence of the density and velocity distribution on time. However,

the integrations are along paths in the right half plane of the complex variable r

and, aside from being difficult to evaluate, yield little physical insight into the

behavior of the solution. We therefore note that Eqs. (42) and (44) are defined

only for a- in the right half complex plane but that it is possible to effect an

analytic continuation of the functions into the left half plane of r by modifying the

path of integration in the integrals with respect to velocity. We integrate in the

complex u plane along a path C which passes below the singularity, X + 0- + ipu 0

o u The two integrals entering in the numerator and denominator

of Eqs. (44) are then entire functions in the complex a plane. 15)

With the path of integration C, the Laplace transform of the density V.
-p

will have poles at values of a given implicitly by

k2

1 dl~ X - Z!U~ + 0 .u 0 (45)
_C -K+ a +ipu~ { _ . -1- 1-P

,-C 1 0 4s)



-24 -

There will be an infinite number of such poles, all lying in the left half plane of

T-. If one deforms the contour into the left half plane in Eq. (45), one finds that

the density after a long time t is given very nearly in terms of the poles at the

residues of Vp, a-. For shorter times the remaining parts of the contour give

a significant contribution and there is in fact no advantage in deforming the con-

tour in the above way. For t large then
u v o) (0)t

V() v"(km e

kT + (0))

since the numerator in Eq. (44) is independent of a-. Y(t) may thus be repre-

sented approximately as a sum of damped oscillating terms. The asymptotic

behavior for t large is determined by that root a-1 of the dispersion relation

Eq. (45) which has the largest real part.

The dispersion relation Eq. (45) differs from that obtained by the ei(px - wot)

substitution in that the path of integration is not necessarily along the real

axis. We shall see shortly, however, that the substitution analysis gives a

correct account of the behavior at long times when the damping is not very great.

The behavior of the velocity distribution p. (-v*, t) is different from that of

the density V (t) since the Laplace transform of , has an additional pole at

a value of ar given by

X + a-0 + ipu = 0. (46)

In this expression the velocity u is, of course, real since we are investigating

the behavior of the distribution function for particles of a given real velocity u.

The asymptotic behavior of (v, t) depends essentially on the relative values

of the real parts of the pole given by a-0 = - ipu - X and of the pole a-1 with largest

real part satisfying the dispersion relation Eq. (45). It is easy to see that the

dispersion relation will be the determining factor when the damping frequency is

smaller than the collision frequency X. For this case both the density and the

distribution function (for any value of the velocity) have the same time dependence
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S1t

e . We shall call this the "collision-damping" case. From our later ex-

pression Eq. (68) for the frequency as a function of wavelength and collision

time, we see that Re o-= Wi= " [ -Z+ 1)] [pa/wp] for waves larger than

either the Debye length or the mean free path. We see that the damping fre-

quency is indeed smaller than the collision frequency for these waves. This

condition has the further consequence that the contour C may be taken along the

real axis so that the e i(px - wt) substitution analysis will lead to correct results

for the behavior at large values of time.

If, however, one is dealing with processes in which wavelengths less than

both the Debye length and the mean free path are important, the path C cannot be

deformed into the path along the real axis; this is due to the fact that the damp-

ing frequency is higher than the collision frequency. The distribution function
-)kt e-iput

at long times will vary as e e while the density will have the more

rapid decay given by the root a-l of the Eq. (45). Thus the distribution function

for long times contains, in addition to the organized component of velocity, "free-

particle" components which give rise to negligible macroscopic density fluctu-

ations.

For the "collision-damping" case one can easily write explicit expressions

for the asymptotic behavior of the oscillating quantities. We have

V /Re e i(px - Wt) e 1.oxtt) (47)
0 o px - tr

41ten WA~E x  P e 1 sin (px - (rt) (48)

W. 2-1
0os (pX-rt) (+o) +1 P

(X+ w.) +(pU-w) fpa w (
2 (49)

+ sin (px-t {rwr) (2I - ( up
pa W pa J
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The real and imaginary parts of w are given by the equations obtained in our

study of the dispersion relation in Secs. 5 to 7.

Using the above expressions it is now easy to verify that the approxi-

mations made in the linearization procedure are valid for all velocities in this

long wavelength case. The amplitude 1/ can be chosen arbitrarily small and,
0

provided the collision frequency is not zero, the linearization leads to consistent

results.
+1 2

For the high-pressure limit we have from Eq. (68) w--i2 p p a

W.--v 0 as X --*oo. The distribution function is P
1

0. co0s (px - W rt) (1+ 2z~(o
a
2 2 2 2+3 p a k. p a

For the low-pressure plasma w -i- w~ + 3 ; " ---r p

Then p p
Voe I"uW XuW2

0- +( - Cos (pX-wrt) Z-P (pu-c)) sin (px- t) 2 (51)

X + (Pu-W d pa pa

For sound waves in an uncharged gas we again have co -v I/o cos (px-wrt)(1+UZ a-
a

here however, one must take w = pa. Thus

-v ocos p (x - at) (I + u. (52)

All the above distribution functions exhibit the same general feature that the

magnitude is greater for those particles moving in the direction of the wave than

it is for those moving in the opposite direction. This is in fact necessary for

maintaining a wave. For the low-pressure plasma case we note also the oppo-

site contributions from particles moving faster and slower than the wave.

5. DISPERSION RELATION FOR INITIAL VALUE PROBLEM

The present section is devoted to a discussion of the techniques needed

for the study of the dispersion relation Eq. (45). The results for important

special cases are given in the following two sections. At this stage, it is con-
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venient to introduce dimensionless variables. We measure frequencies in units

of the plasma frequency wp, velocities in units of the thermal velocity a = (kTo/m)l/2,

and lengths in units of the Debye length ID = (kT/4wn0 e 2 1/2In these units the

dispersion relation becomes 2

= 2W) c X + a + ip + ipx. - a-Cr 3 dt (53)

We shall at times deal with w rather than o-; the two quantities are connected by

"= -i (.

Let us first study the position of the singularity of the integrand in the

plane. Since the oscillations are damped, o* has a negative real part and a neg-

ative imaginary part. Thus X + a- can be either positive or negative according

as the damping frequency is less than or greater than the collision frequency.

Since p is real this means that the singularity o = - (X + o-)/ip is in either the

first or the fourth quadrant in the C plane. For C in the first quadrant, the

contour appropriate to the e i(px - WO substitution, i. e., along the real axis,

gives correct results. This represents the situation where the main damping

arises from collisions. When to is in the fourth quandrant, the damping

frequency is larger than the collision frequency; the additional damping is of the

Landau type and results from the destruction of phase by drift motion. The

representation of this latter type of damping requires the use of the contour C.

The damping frequency is small for long wavelengths but increases rapidly as

the wavelength approaches the Debye length.

The most direct approach to the evaluation of Eq. (53) would appear to be

an expansion of the term 1/(X + o- + ipC ) in powers of ipt /(X + c-) and an inte-

gration term by term. This is a development in powers of p/(x + a-) or, revert-

ing to usual units, in powers of pa/(X - iw). Thus one requires pa to be small

compared to either the collision frequency or the frequency of the waves. Alter-

natively, the wavelength is long compared to the Debye length or the mean free
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path. This is actually the case in two important limits. The case of sound

oscillations in neutral gases is one where the collision frequency is large

compared to pa for all but very short waves and very low pressures. A second

situation occurs with electron plasma oscillations of wavelength long compared

to the Debye length ( pa pa Debye length 1) irrespective of the col-"W W- p wavelength

lision time, so that one can study the entire range of pressures. In fact, both

of these cases can be treated by the same expansion. The expansion breaks

down for heavily damped waves in both the neutral and ionized gas cases. An

objection to the above procedure is that the series does not converge; it is, in

fact, asymptotic so that it is useful where the first few terms are all important.

In order to establish this and to give alternative developments, we express the

dispersion relation in terms of the error function of complex argument.

Let us now displace the contour parallel to the real axis so that it has an

imaginary co-ordinate equal to that of the singularity. If one breaks up the

integral into the contribution of the small semicircle about the singularity and

that of the principal value of the integral one finds

1 e A 1 11 2/2 - 2 e sinh d(
(2- (z.)ll2 o( 54

where
0 - + iA (55)

p

Making use of the identity

sinh 0 A )'/2 f dO' e0 /2 (56)

and introducing
ie X - iWS= i _ -(57)

we find the dispersion relation2 " _. <+ ix F
=-  I ++ i 1W+ wp1 i f2 (58)

Here) 1/2 2 2

7e t '1 (59)
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is the error function of complex argument.

Examination of S1 shows that, for waves with positive real frequency,

it lies either in the fourth or third quadrant. The function F (£2) is treated

in detail by Rosser.1 6 ) It has the expansion

F(£) =e - (60)
n =0 (Zn + l)n (

convergent for all values of £, but useful only for values of £2 with modulus

less than unity. F (11) can also be expanded in an asymptotic series of the form

F(2)- 1 1 l.3 l.3.5
F4,L +6£2 . (61)

7114S2 8 S' 16

This asymptotic series is in powers of pa and yields the same result asX - ia

the procedure outlined at the beginning of this section.

Finally, we note that F (a) can also be expanded as a continued fraction

F 2 4 6 ... (2

+ -z£+ + z2 (62)

for £2 in the first and fourth quadrants. This expansion does not correspond to

a simple development in powers of the Debye length or mean free path divided

by the wavelength; however, it converges rapidly over a large portion of the

complex £2 plane and is more generally useful than the asymptotic development.

To obtain information in the regions of moderate and strong absorption for both

neutral and ionized gases, we require a knowledge of F (SI) over portions of the

complex n2 plane not covered by any of the developments given; this knowledge

has been obtained by numerical computations.

We also require a knowledge of F (£2) for £1 in the second and third

quadrants. This is found by making use of the identity

z 2

16) J. B. Rosser, "Theory and Application of J e x dx," Mapleton House,

Brooklyn, N.Y., 1948. 0
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We see that the damping frequency is proportional to p 2, in contrast to the

damping arising from the electron-neutral gas collisions, which contains a
2 2

leading term independent of wavelength. The coefficient of p a /wp is plotted
p

in Figs. 1 and 2. The absorption reaches a maximum when X = wp, i.e., when

the collision frequency equals the plasma frequency. At this point the real

part of the frequency is exactly intermediate between the limiting values for

zero and infinite collision times. The absorption is approximately linear with
2 2

pa XX at the low-pressure limit, varying as Z W , while at high pressures it
p

p 2 p

is hyperbolic, varying as -- The negative frequency root of Eq. (67)
2

yields P

+pa 2 2 +3(A2.i 2wpl}

and gives absorption and dispersion which corresponds completely to the results

for the positive frequency case. It is important to note that the absolute magni-
2 2

tude of the damping is very small since it is proportional to p a For example,

for pa =w p/100 the maximum damping frequency is less than p 10-4 Wp.

The dispersion relation Eq. (68) gives adequate information for pa «< w Pp

We are also interested in the case where pa is approximately or greater than

cp , i.e., waves of length comparable to the Debye length. For this case the

development in powers of pa/w is not appropriate; one must also have detailedP

numerical information concerning F (R). In Figs. 3 and 4 we plot the real and

imaginary parts of w for the case pa = w (waves equal to the Debye length) as ap

function of the collision frequency. The results are the same as for the long-

wavelength case when X >> w . However, at values of X smaller than u the

P P
very large "'drift" damping discussed in Sec. 4 manifests itself.
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7. OSCILLATIONS OF AN UNCHARGED GAS

The general results of Secs. 3 to 5 apply to the initial-value problem

for uncharged gases; the plasma frequency wp is then zero. For our constant-

collision time, isothermal model the general dispersion relation Eq. (58) be-

comes, in ordinary units,

p- a 12 + + + w+ik i(2) F/2 ( (69)
-~ -=1 +

pa(2)li
2

As discussed in Sec. 5 the asymptotic expansion Eq. (61) is valid provided

pa «< X, i.e., the frequency of the sound wave is smaller than the collision

frequency. The first few terms of this expansion yield the result

w +pa+4i X + pa 3 - 18iw/ = 0 (70)
(I - iw/,) 2 (1 - i

2 2 2
In the limit of infinite collision frequency we find w = p a , the correct isother-

mal sound speed. The correction for finite, but large collision frequency, ex-

pressed in powers of pa/X, is

w= pa I ka + a (71)

This expression indicates both an absorption and dispersion of sound for finite

value of the collision frequency. The physical situation is similar to the Lang-

muir description of the damping of plasma waves with wavelength near to the

Debye length. 8) Here, because of the translational motion, fast moving par-

ticles can occasionally move ahead of the sound wave from one region to a

distant region without undergoing a collision and thus carry ordered motion from

one region to another where the phase for ordered motion is different. The

ordered energy is then dissipated into random thermal energy by collisions.

This effect, of course, increases with increasing mean free path and with de-

creasing wavelength.
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The series expansion Eq. (70) breaks down when pa 2 X and one must

resort to numerical evaluation of Eq. (69). The results for the real and imagi-

nary parts are presented in Fig. 5. The accuracy of these results is, however,

limited by the inadequate tables of the function F (1Q) available to us at present.

According to the discussion of Sec. 4 the asymptotic behavior of the

distribution function differs according as ao = - iw0 
= - X - ipu, or a- I - i 1 ,

as given by the dispersion relation Eq. (69), has the larger real part. The

second case is what we have previously called the "collision-damping" case.

For this case the damping frequency is less than the collision frequency and the

asymtotic behavior of the distribution function is the same as that of the density.

From Fig. 5 we see that this is the situation when pa < 1. 5)L. For the first

case the damping frequency is greater than the collision frequency, the distri-

bution function and density have different asymptotic behaviors, and the distri-

bution function is directly sensitive to the initial value of the distribution function.

The individual features of the particular initial value or boundary-value problem

treated are then important.

For the "collision-damping" case, one may study the physical processes

with the aid of the distribution function Eq. (49). Using the value of W given by

Eq. (71) we see that the deviation from the Maxwellian distribution is greatest

for fast moving particles and short wavelengths. From Eq. (39) for the mass

velocity, we see that the greatest contribution to the out-of-phase component of

mass velocity comes from fast moving particles and short wavelengths in

accordance with the picture discussed above.

8. GENERAL TREATMENT

In this section we shall remove the restriction made previously and allow

for temperature fluctuations. The problem is now characterized by the full set

of Eqs. (15) to (20). The passage to the linear approximation involves the
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additional fluctuating quantity T( X, t), defined by

T ( , t) = T + t)} (72)

Equations (21) to (25) remain valid in the general case, but the expansion of

in Eq. (26) must be replaced by 0 0O=. {l+1rov. q+t( (73)- -

Equation (19) defining the temperature leads to

3kT 4Y + r) v2 d v (74)

The basic set of linear equations governing the Fourier transformed vari-

ables for a disturbance in the x direction is

I 4p e(E p)x 2
-- :*+ ipu do + U u=k X / -~ + m- - U(qp)x + Tp  mv -3

at __T._k_ _2R_ 7

V P P d V

(qp)x f u p dv (75)

+ 0

3kT° (1/ + ) v
E_ IP+rp) jv p F dv

Ep = -4yen

ip(E ) 4x e p

One may eliminate (E x and 4%) in the same way as in the isothermal case.

Corresponding to Eq. (44) one now finds a coupled set of equations for the

Laplace transforms of / and T . This set is

MI Ia 0 [my 3l I
Fdv~ p+ pd' k_-7

//p 1 1 0

-- } X + a +ipu +-p +]

u V (0)

d + -0 (0)(76)

o + + ipu
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I m v 2 j~ F d k- m uo"
p -* 1 - fo- + ipu x"T + }

2- k~ 2

V I_ T- dojvoiu V -)

=If o +ipu a. ip +

The dispersion relation in dimensionless units is then

(2t)3/ffm pu~ w)k+ +~j

P, r T p - p0 0
2/2 2 2

r1+ ~rrev d; v(3-v 3)Ji (8

+ r+ i(pu - (77)

0_v/__u u_/ 3 vI) d0)f T C ipu R ( p pu0)

In order to study this dispersion relation we express all the integrals

occuring in terms of the single integral

ifc X 2T dT = i- F(i)

which was discussed in Sec. 5.
We find e - 2 /2  d 2 (3 v 2()

(7r)3/2 N + i(pu-) -p
C

-VfJ 2e/2 2 2d X+ fiW &+ 2(:-~ )FX2 ( (3 v .
rrr-v2 /wz 4 1f2.ff 3 2 QN k+iku

j ev d 2 e(QF)

(21)3 i ) + i(pu - w) - "+
(2r)32 + i(pu- -o pW T 7

1 [e-V2/ uv2 dv I23 z F2- 2( 4- 2 , F ( )
(z,)3Y Nj T, + i(pu - W) Tp

Xf +-?"i'p - " -P (-79)
(21T) 3 / 2 JJ X+ (pu - ) p

JfJ2-2 3-{ *
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d/ 2 / 2 2p- 3 (,2p 4)
312N'+ i(pu - W) +1

.0We also find

Jff k~i

( if) 3/2 [++ i(pu) +  - {-pQ FS }
2 (1 + x 2 2(8

? T)32-i ip - ) [p - , p]

p

Using these results we can write the dispersion relation as

+ I 2- xrz l - F C,1,) [X42+ C1 ( + x2- px, "2,I)

Pp 
p

+ X 2 2I + SI + + 2SI - 41 4) F(81)

{), ft + - +(1'S1 1 2  2

{ T [ I +(l+ 2)F]}

The dispersion relation Eq. (81) for the general case is considerably more

involved than the relation Eq. (58), which holds in the isothermal case. However,

as emphasized in Sec. 5 one can obtain simple results for wavelengths long com-

pared to either the Debye length or the mean free path. For this case the asymp-

totic development for F (Q) holds and one finds (in dimensionless units)

(I-W2 W x 2 r5 l9w 2 5iwX+ i(1~~ ~ 3 T)(-i ) )- - -T+
AW~) 1 (82)

+ 4  5X-320 if 2 + (7 + 3w,2) 20(l - 2) 15i, 0
(\, _T
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For the study of the oscillations of an ionized gas we obtain an expression for

the frequency which corresponds to Eq. (66). Keeping terms of order p 2a 2/

we find for the frequency

+ a5 + 3 Z 4 X p (83)
p k (2 + 2p

p
At high pressures the collision frequency X is large compared to the plasma

2 2
frequency and one finds w -*. w + • , . This is the value found previously

p 2 Ca S

by a generalization of the Thomson method1) and verifies the high-pressure

nature of the transport type of procedure. At low pressures we find W * +p
2 2

p a 3, the correct dispersion relation for waves of length large compared to
2cW

p
the Debye length. The maximum damping frequency for the general case occurs

again when the collision frequency is equal to the plasma frequency. It is in

magnitude 2/3 that for the isothermal case; the decreased absorption accompanies

the smaller dispersion for the general case. The detailed variation of frequency

as a function of collision frequency as given by Eq. (83) is plotted in Figs. I and 2.

In the event that the wavelength is comparable to both the collision frequency and

the Debye length one must resort to numerical information concerning F (SI).

Tables of sufficient accuracy to solve the complicated Eq. (81) are not available

to us at present; we leave the detailed investigation to a later time.

For an uncharged gas the expression Eq. (82) reduces to

W 2 + p a 19 iw 5 + p a 5iX 20 3iw 0. (84)

(1 - /X)Z -3 7- 1 X (l _ i/)4 - - =0 .

Developing in powers of pa/\, one finds for pa/X << 1

S=(1) 5pa ) 1i()2 pa 9 p (85)paT- •- +  11.3 (85)

Thus one finds both an absorption and a dispersion of sound waves. No attempt

has been made in this paper to connect our collision frequency X with molecular

parameters; it is known therefore only to within a factor of the order of unity.
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This comparison will be undertaken in Paper 4, where we also discuss models

more realistic than the present constant-collision-time model. For the present

we note that if one fits X by taking the absorption equal to that predicted by the
2

Navier-Stokes equations (and also the Burnett equations) one finds X = 90 a._

where 77=z 1 (Tr I ; 77 is the coefficient of viscosity; is the mean

free path. The coefficient of the dispersive term in Eq. (85) is then 25 percent

higher than that given by the Navier-Stokes equation; it thus lies between the

predictions of the Navier-Stokes and of the Burnett equations. The interesting

experimental observations of Greenspan on the dispersion and absorption of

helium gas reveal important discrepancies between experiment and the predictions

of both the Navier-Stokes and the Burnett equations when pa =-- X. From the point

of view of the present work the study of this region requires a numerical analysis

of Eq. (81). We shall therefore later take up the study of the translational dis-

persion in a more detailed way.


