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A method is developed to determine the control response of a single- F
rotor helicopter equipped with unbalanced, flexible blades. The detailed

analysis is simplified, without great loss in accuracy, in order to present

a practical method for use by the helicopter engineer. The detailed analysis

is included for those interested.

By use of this method, the influence of rotor blade flexibility and

unbalance on the stability and control of a conventional aircraft is investi-

gated. Typical values are assumed and their effects evaluated. It is shown

that blade flexibility and unbalance can have a noticeable influence on the

damping in pitch of a helicopter. Consequently, the period and divergence

of the unstable fuselage oscillation, as well as the automatic control

system requirements for stability, are affected. Neglect of blade

flexibility and unbalance could materially reduce the effectiveness of an

automatic control system design.
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2. INTRODUCTION

To date, most treatises on helicopter stability and control have

dealt with the problem under an assumptibn that the rotor blades are

structurally rigid. This was necessitated, principally, for the sake

of simplicity in the formulation of a basic theory.. For contrary to this

assumption, it is well known that in practice, helicopter blades have a

high degree of flexibility and are subjected to deflections by the actions

of various inertia and aerodynamic forces encountered in flight. Basic

theories have now been established and refined (i.e. Ref. 1, 2, and 3))

and are comonly accepted as capable of predicting the nature of helicopter

stability and control. Therefore, it appears appropriate at this time,

to extend the basic theory in order to study the effects of various

existing conditions such as rotor blade flexibility and unbalance.

The motion of a conventional articulated or "see-saw" rotor blade,

with reference to the rotor shaft, may be described as:

(1) Rotation about the rotor axis

(2) Oscillation about a flapping hinge

(3) Oscillation, about a blade root feathering axis

(e) Structural twist about a blade span axis (elastic axis-).
.-This axis may coincide with the feathering axis, depending
upon the structural characteristics of the rotor system.

Additional components of the motion are, oscillation as a pendulum in the plane

of the rotor disk about a drag hinge (lagging), and blade structural

bending in the flapping plane." These additional components can materially
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effect the twisting tendency (unbalance) of the blades. However, as was

pointed out in Ref. , experimental evidence has shown that for articulated

blades, these components directly have only a second-order influence on the

air forces on the blade. This may not be the case for rotors in which the

blades are rigidly connected to the shaft, or have blades of extremely low

bending stiffness. In these instances, structural deformations (bending) in

the flapping plane may be of prime importance (Ref. 6). The analysis

presented herein is principally concerned with helicopters having an

articulated or "see-saw" type rotor.

On the other hand, it has been shown by Wheatley (Ref. 4 and 5), that

the torsional flexibility and unbalance of a rotor blade has a pronounced

influence on the flapping motion of a blade. Except in the case of balanced

blades (i.e. blades having symmetric airfoils whose elastic, aerodynamic,

and mass gravity axes coincide), the resultant of the air forces and mass

reactions produce a couple which tends to twist the blade. This resulting

twist has a constant magnitude for pure hovering flight, while in disturbed

or forward flight it has periodic values as well. This twist, naturally,

affects the flapping motion of the blade, and consequently the characteristics

of the helicopter's motion.

The existence of the above phenomenon has long been appreciated by

blade designers, due to its associated disturbing effect on stick forces.

To eliminate blade twist and the disturbing stick forces they have striven

to design balanced blades. With this condition satisfied the disturbing

stick forces due to the blades, as well as blade twist would be eliminated.

REMICTED
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For it is well known that in the conventional rotor-control system, oscillating

stick forces are due entirely to blade unbalance, having both mass and aero-

dynamic origins. Unfortunately, however, the attainment of balanced blades

in practice is extremely difficult. This fact is readily apparent when one

considers) as previously stated, blade distortions in flight, in the flapping

and lag planes. In many cases a balanced blade design proves impractical.

In addition, constructional imperfections and use often cause unbalance.

Consequently, blade twist and oscillating stick forces are present in

varying degrees in helicopters.

Due to the disturbing nature of these oscillating stick forces recent

helicopter designs resort to the use of irreversible control systems. This

approach tends to eliminate the disturbing stick forces. However, since

the cause, blade unbalance, has not been eliminated, blade twist, and its

associated effects are still present in these designs.

Contrary to the above tendency to eliminate automatic blede twist,

there is a feeling among many that effective stability and control may be

obtained by proper design of the rotor system utilizing unbalanced blades.

Naturally, such a system would entail a minimum weight penalty on the

already relatively poor carrying capacity of helicopters. For unlike the

fixed-wing aircraft where automatic stability and control requires the

installation of special gyroscopes, the helicopter can make use of its C

rotor system which itself is a gyroscope.

The results which follow attempt to give some indication as to the

effects of blade flexibility and unbalance on the stability and control
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of a typical helicopter. The effects on the automatic control system re-

quirements for stability are discussed in Section 7.
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3. Results of Analysis

Similar to fixed-wing aeroelastic phenomena, the effect of blade

flexibility depends primarily upon the relationship in flight, between the

blade's elastic, aerodynamic and mass gravity axes. Using the analysis

presented in Section 5, both mass and aerodynamically unbalanced blades

have been investigated. To demonstrate the procedure and application of

the analysis, a typical calculation is presented in Section 6.

For the quantitative investigation, the parameters of a typical

5000 pound helicopter were assumed (section 6) and the results compared

to that obtained under the assuMtion of structurally rigid blades. The

blades were considered fixed in torsion at their root end, and to be of

uniform spanwise construction, thus having principal torsion modes of the

type 0 (r) , sin . It is worthy to mention however, that in the analysis

(Section 5) blade twist is introduced through a general torsion mode, 0 (r),

and consequently the analysis may be applied to helicopters with blades

havin any arbitrary torsiona'. stiffness or mass distribution.

a) Mas Unbalanced Blades

For overbalanced (center of gravity forward of the elastic axis) as

well as underbalanced (e.g. rear of elastic axis) blades the controlling

dimensionless flexibility parameter was found to be (X ) ; where,

12 is the blade mass product of inertia about the flapping hinge and blade

elastic axes (positive for forward c.g.) _(L is the rotor speed, andK is

the blade torsional stiffness.
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The principal effect of overbalanced blades is to increase the damping

in pitch of the helicopter. This is shown in Fig. 1, in which the increase

in damping in pitch of the helicopter is given for various values of

relative to the damping for = . This effect can be explained
as follows. With conventional rotor-control systems, the rotor tip-path plane
tends to pitch with the helicopter fuselage. However, in so doing, coriolis
forces which oppose pitching of the tip-path plane are created on the blades.
These forces are proportional to the pitching velocity of the tip-path plane,
which is approximately equal to the fuselage pitching velocity. Thus, pitching
of the tip-path plane lags behind the fuselage pitching motion. The resulting
inclination of the tip-path plane relative to the rotor shaft is responsible
for the pitch damping of the helicopter . Moreover, the above-mentioned
coriolis forces when acting on unbalanced blades cause the blades to twist.
Overbalanced blades twist so as to increase the inclination of the tip-path
plane and thereby increase the pitch damping. This effect is therefore quite
similar to that obtained by increasing the "heaviness" (I ) of the blade.
The opposite is true for underbalanced blades.

The response of the helicopter in pitch to a control step input is shown

in Fig. 2 for various values of - The response in the first second

is shown more accurately in Fig. 3. It is noticed that as the blades become

more flexible or more overbalanced, decreased fuselage oscillations of longer

period result. This comes about principally through the increased stability

in pitch of the craft. However, as pointed out in Section 7, without control

displacements in phase with fuselage attitude, the helicopter cannot be

stabilized by increased pitch damping. In the limit, only a neutrally stable

craft results. The damping rates and frequencies of the unstable fuselage

motions of Fig. 2 are as follows:

( 1 2 Damp. factor (ml ) Fre uency Time to double Period

k nl) amplitude (sec) (sec)

o 0.188 o.441 3.7 14.2
.2 0.179 0.441 3.9 14.2

1.4o 0070 0.378 10.0 16.6
2.2 0.045 Q.344 15.6 18.3.

In the case of underbalanced blades, increased fuselage oscillations as Fell
as decreased periods are to be expected due to the decrease in pitch damping.

RESTRICTED
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By the addition of a proper amount of damping to the twisting motions

of the blades it is possible to introduce a time lag, and the blades could

effectively have a response component in phase with attitude as well as

pitching rate. The amount of torsional (structural and aerodynamic)

damping introduced by most blades is, however, relatively small.

Blade flexibility and unbalance can materially affect the automatic

control system requirements for stability. In fact, consideration of blade

flexibility and unbalance could mean the differencebetween satisfactory or

unsatisfactory behavior of a automatic control system. This effect is

discussed in Section 7.

bW Aerodynamically Unbalanced Blades

In the case of aerodynamically unbalanced blades the controlling

dimensionless parameter was found to be Ch/K, where Ch = 1/2eac a2 R3 h1 .

"c" is the mass density of air, "a" the aerodynamic lift coefficient of

the blade and "hl", the aerodynamic chordwise unbalance in feet (positive

for forward of elastic axis). The other symbols are as previously defined.

Similar to the action of mass overbalanced bLades, aerodynamically

underbalanced blades increase the damping in pitch of the helicopter.

Fig. 4 shows the relative increase in pitch damping of the helicopter for

the case of aerodynamically underbalanced blades. This increase can be

attributed to the aeroelastic twisting of the blades. Similar to the action

of mass-overbalanced blades, aerodynamically underbalanced blades t1ist so

as to increase the inclination of the rotor tip-path plane relative to the

pitching rotor shaft. Aerodynamically overbalanced blades, on the other

hand, decrease the inclination and consequently the pitch damping of the

helicopter. RESTRICTED
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The response of the fuselage in pitch to a control step input is shown

in Fig. 5 for various values( ) . The response in the first second is

shown more accurately in Fig. 6. As would be expected with increased pitch

damping, the amplification of the fuselage oscillation is decreased and the

period is increased. The damping factors and frequencies of the unstable

oscillations of Fig. 5 are,

Ch Damp. factor Frequency(nl) Time to double Period
K (ml ) amplitude (see) (see)

0 0.188 0.41 3.7 14.2
-2.1 0.136 o.422 5.2 14.9
-3.5 0.106 0.398 6.6 15.8

For the uniform blade considered, the amount of unbalance represented by

the above values of Ch/K are,

4Ch/K aerodynamic unbalance (% chord)

0 0
-2.15 5%

-3.5 9.1%

As in the case of mass unbalance, aerodynamic unbalance blades do not

respond, relative to the rotor shaft, to fuselage attitude but to the rate

of pitch of the machine. Consequently, the effect on the automatic control

system requirements for stability is similar to that of mass unbalanced

blades (Section 7).
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LIST OF SYMBOLS

a aerodynamic lift coefficient of the bladeD

2
A- rotor disk area, ft.

a i/29ebcfnR2

2
b = number of blades

B1 = control angle of attack input to blades (sine " component), radians(Eq.4)

c = blade chord, feet

Ch = blade aerodynamic unbalance parameter, ft. .fl -4 -.C' _2FR'h,

E, L, N, etc = blade motion influence factor$ (see Eq. 59)

g = acceleration due to gravity, ft/sec
2

h = distance of rotor above helicopter center of gravity(including blades),ft.

hI = aerodynamic chordwise unbalance, positive for forward a.c., ft.(Fig.8)

Iy = moment of inertia of helicopter about a lateral axis located athelicopter c.g. (including blades), the mass of the blades being

considered concentrated at the rotor hub, slug - ft2

K = blade torsional stiffness (ft.#/radian).

= mass of helicopter, including blades, slugs -

R = effective aerodynamic blade radius, ft.

r = radial distance from rotor hub to a blade element, feet (Fig. 7)

t time, sec.

T = rotor thrust, pounds - A

W = gross weight of helicopter, pounds

RESTRICTED
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12. = rotor angular velocity, radians per sec.

= blade azimuth position, radians (Fig. 7)

= flapping of blade neutral axis from horizontal plane, radians (Fig. 7)

" 6o-, coV' -4, kq"

(, = fuselage pitch, radians (Fig. 7)

= chordwise distance of blade center of gravity from neutral axis,
positive for forward c.g., ft. (Fig. 8)

O(r) - blade torsional mode shape (see Eq. I).

@(r) = geometric angle of attack of a blade airfoil section (Fig. 8)

@o = control collective pitch of the blades
0 = blade twist at tip, collective component, radians (Eq. I)

= blade twist at tip, cosine tv component, radians (Eq. 4)

= blade twist at tip, sine P/ component, radians (Eq. .)

= mass density of air (slugs/ft3)

- dimensionless rotor induced downwash

I - dimensionless blade parameter

A- dimensionless horizontal linear velocity of rotor hub

a - complex roots of characteristic equation for fuselage oscillation,
1/sec.
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Rotor Blade Inertia luterals:

Rotor Blade Mode "Shape Integrals:

0-
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5. THEORETICAL ANALYSIS OF HELICOPTER HOVERING STABILITY AND CONhTROL INCLUDING
THE EFFECT OF ROTOR BLADE FLEXIBILITY AM) UNBALANCE

Method of Attack

The general method of attack is quite similar to that presented by Nikolsky

in Ref. 1, in which however, the blades 'were assumed to be structurally rigid.

In the above reference, the helicopter system was considered to possess three

degrees of freedom, namely, fuselage horizontal translation and pitch, and blade

flapping. In this analysis tc account for blade twist, an additional degree of

freedom Is introd1uced. Blade twist is introduced by assuming a general blaae

torsion mode, 0 (r). This perits the results of the analysis to be applied

to helicopters with blades having any arbitrary torsional stiffness or mass

distribution. Basically, four equations of motion are developed to describe the

resulting behavior of the helicopter. To preserve the continuity of this

development certain parts of Ref. 1 are repeated herein.

Although in the following investigations the motions are assumed to take

place in the longitudinal ,lane of symmetry of the helicopter, the analysis

equally holds for the leteral motions. For simplicity, and since this analysis

is principally concerned with the effect of blade flexibility and unbalance,

the case of a helicopter with no effective flapping hinge offset is treated.

However, by use of Ref. 1, and the following procedure, the effect of a

flapping hinge offset may be included. In addition, the tip loss factor is

accounted for herein, by using an effective aerodynamic rotor radius (R) in

all terms except those involving inertia effects, such as the blade inertia

integrals (Ii, 12, etc., pg.12 ).

RESTRICTED
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Coordinate Axes

The coordinate systems are shown in Fig. 7 and 8. The stationary vertical

axis is assumed to coincide with the rotor shaft when the helicopter is iii

its undisturbed hovering condition. The stationary X0 and Yo axes are perpen-

dicular to the vertical axis to form a right-handed set of axes.

The moving blade axes (x and y) are taken to coincide, respectively,

with the blade's neutral and flapping axes.

Allo-w.ing xb.t yb and Z b to represent the instantaneous coordinates of

a blade element with reference to the stationary axes, the coordinates and

their time derivatives are as follows;

3- - c..- C rW

,RESTRICTED
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where the dots refer to the time derivative of the function.

Blade Flapping Equation

The equation of motion of a blade about its flapping hinge is obtained

by equating the total moment at the flapping hinge to zero. Considering

moments positive that tend to increase 6 , this may be stated as,

y = 0 = (My)m + (My)( M a (2)

where

(MY)m = the moment due to the inertia loads.

(My)a = the moment due to the airloads.

The moment due to the inertia loads may be evaluated from the expression,

(My). a = .oA ca 'Ko .. (3)

Following the usual convention, the blade flapping angle and blade angle of

attack may be expressed as,

e#.-- 4 -c . --4.,.'

where

s4- 0("(-

REMS ICTED
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where % (r) is the principal torsional deflection mode for the blade, Jo

is the constant value twist of the blade tip, while ( and J are,

respectively, the cosine and sine components of the blade tip twist. From

Eq. (4), the following flapping and blade twisting velocities and accelerations

are obtained:

" - I(4 ,-2 I I 29 )<5-.

asa

As is relatively small for conventional aircraft, cos 6 ; 1, and

the first term on the ,xight hand side of Eq. (3) may be expressed as,

where 0 0 0

<4-': - -r/" /0v

RESTRICTED
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The second term on the right hand side of Eq. (3) may be expanded to,

whose values are,

if

(10)

-'4

-10 -4'40 1 2 .. 2'S/c

BiESTRICTED
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Similarly, the final term on the right hand side of Eq. (3) may be expressed as,

Yb sin ,dm + 7b sin dE di (12)
0

where,

,--2 -,z c-t-mr0-~ 2-? 2 44 ~s~'

6'z

RESTRICTED
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Thus, the moment due to inertia loads becomes,

-- Z7

- --

The moment due to the air loads is

where,

•7" A, 2-./?

Z,6 CO-.i

and ( -kcx5 L

RESTRICTED
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Consequently,

and.

S(17)

Thus, the first integral of Eq. (16) becomes,

_e - <-~ - cas,

which, may finally be written as,

RESTRICTED
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Evaluation of the second term of Eq. (16) leads to,

e 22 )e% o

(20)F -5

Substituting Eqs. (15) and (16) into Eq. (2) results in an equation whose terms

are dependant on sin K cos #, or are independent of these harmonic functions.

Therefore, in accordance with Fourier's analysis this equation gives rise to

three independent equations, namely, constant terms (steady-state),

cosine terms, (22)

_._1 2.1 577J.

_x- ~- -/

(23)
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sine terms,

_ _ p f'-q ___+_

/ -

There has, consequently, been obtained three equations to describe the

resulting blade flapping motion.

Blade Torsion Equation

The equation of motion of the blade about its neutral axis may be

developed by evaluating the moments about this axis due to inertia loads,

airi.oads a~d elastic restraint. Considering moments positive that tend to

decrease the angle of attack, the equation may be stated as,

= 0- (Mx)m + (Mx)a + (M)d (25)

where,

(MOM = the moment due to the inertia loads

(MX)a = the moment due to the airloads

NOd the moment due to the elasticity of the blade.
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The moment due to the inertia loads (MX) may be evaluated from the

expression:

(26)

Evaluating the various terms specified above there is obtained,

AA

7,,

~*22 2~22 2~~, (27)

74 1 e -d cz, cc-'1-Z-rr l

RESTRICTE
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(30)

--z.
< .,y~~~j ,,,+~~ 0,7_z~ _ f , _. <I (31)

Combining Eqs. (27) through (31) as specified in Eq. (26), the moment due

to inertia loads becomes equal to,

re -Z 7 ~ -Z-~ I-z

S (32)

RESTRICTED
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The moment due to airloads has the alue,

This may be evaluated simply by use of Eqs. (17) and (19) to yield,

/2AZ

- d2 _ 9.

+ ' - "7(°s(34)

The moment due to the elasticity of the blade may be written as,

where K is the effective torsional stiffness of the blade and root attach-

ment combined.

The blade torsion equation may now be determined by substituting

Eqs. (32), (33), and (35) into Eq. (25). Similar to the case of the flapping

equation, the resulting torsion equation contains terms which are dependant

on sin Y , cosf/, or which are independent of these harmonic functions.

Therefore, this equation also gives rise to three independent equations,

namely, constant terms (steady-state),

~ 2~2~ 2 ~ -#9o ~ e9 (36)

STICTED
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and since,

~ -~.~tM' ~-~ A,- (37)
-i

-,- (38)

cosine terms,

w "2 , a 4 (39)

where Ch _ eac _aR 3h
2

sine terms,

Equation of Horizontal Translation

The motion of the helicopter parallel to the x0 axis, assuming thatcz'#

is small, may be described by the equation,

where,

Hx = the component of the left and drag forces, acting on the

blades, along the axis.
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/(4-e(42)

In Ref. 1 (pg.J192 ), the above expression has been evaluated for the case

of rigid flapping blades and yields,

(4'4) *(43)

_ -  Ar, +* 1/ (1',

However, when considering the flexibility of the blades, this expression

must be modified to account for blade twist. Specifically, this necessitates

adding to Eq. (42) additional components of the lift, acting on the blades

along the xo axis, due to blade twist. These components may be evaluated

from the expression,

4- 4!) ,

0 )

here

RESTRICTED
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Evaluating the various terms of Eq. (44) there results,

/ J 2 6 el(1+5)

i0

~ (-, &V~c/-~ x5 ~ ~ o ~(46)

Mll other terms equal zero. Consequently,

flexibility

a -,

Since,

X0 = (Hxo) rigid.+ (Hx
flexibility

RESTRICTED
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Adding Eqs. (43) and (48) yields,

(49)

-,,.d~// .vz~'7 .!< #d/

2
where a 1 lbc .2R

The equation for horizontal translation becomes,
%, -. 4.,. * Ma- . -/,,, , / , (50)

74a, Ila, "4" / - -4 1,6, , 4,' -;o 45-," -11/',
where,

RESTRICED
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Equation of Fuselage Pitch

The motion of the helicopter in pitch about the y0 axis may be described as,

By use of Eq. (49), the above equation may be written in the form,

(52)

where

" ( - h/- ,44

,'. .,= ,~
A? (52a)

/' . I.h Ale ,
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The motion of the disturbed helicopter, under the assumptions made, have

now been fully specified by eight equations, two steady-state and six disturbed

equations of motion. The latter consist of two blade flapping equations, two

blade torsion equations, the equation of horizontal translation and the

equation of fuselage pitch. However it is immediately obvious that the

solution of the six equations would be extremely tedious and time consuming.

It would therefore be desirable to simplify these equations, if possible,

without any great loss in accuracy. Such a simplification can be accomplished

following the procedure presented in Ref. 2.

Simplified Equations of Motion

The quantitative determination of the response of a helicopter may be

greatly facilitated by simplifying the blade equations.

In Ref. 2) it has been shown that the flapping blade motions consift of

high-frequency heavily damped oscillations. The order of magnitude of these

oscillations was such as to suggest that their influence on the motion of the

helicopter would be small, i.e., the blade response following a disturbance

is rapid (within a couple of rotor revolutions) compared to the long-period

fuselage oscillation which is of principal concern. In fact, the disturbance

of the flapping motion is reduced to a tenth of its initial value in . _

revolutions of the blade. Based on this, little error appears to be introduced

by neglecting all acceleration terms proportional to a and b 1" It is also

realized that al is approximately equal to , since a1 approximately

RESTRICTED
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equals < , and both quantities oscillate at the same frequency. However,

since small differences in a Iand o<, introduce major contributions to the1

response of a helicopter it cannot be assumed that al equals o(, The co-

efficients of b appear small and since b itself would be small, its

contribution may be neglected.

From the characteristics of typical rotor blades it may be established
that, I5 << I ; I6<< I ; I< < Il ; I3< Ii; I7 1I ; and

5 1 6 1 21 3 1J I7<* 12

18<< 12

Accepting the above simplifications appears not to affect the long-period

oscillations to any parked degree. However, under these simplifications

the equations of motion of the blades about the flapping hinge will permit

direct solution for a1 and bI in terms of the other degrees of freedom.

By extension of the above arguments to the case of the blade torsion
oi .

equations, the contribution of the dynamic terms , el and 141

may be recognized as small. Thus, the simplified blade flapping and

torsion equations are as follows.

Simplified Blade Flapping Equations

constant term (steady-state),

cosine term,

4~ - 6e~ 4 ,,: 4 ~ , ~ (514)
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where

-Z7., -- (54a)A y. = - ,o

sine term,

/ '(/5

where

- (55a)

Simplified Blade Torsion Equations

constant term (steady-state),

,, _ (56)

cosine term,

7-elx (57)

where,

(57a)
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sine term

where

7 -7-;, -z -1:#

, ~ ~ (58a)3

, ,- -

It is now possible to solve for the quantities al, bl, r and i in

terms of the..two degrees of freedom, fuselage translation, and pitch.

This results in the following values,

S- -MA, - // L.7- (59)

where, letting /7 7&

~~- (A1, - L.
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/V/

ad, letting AV=~ / 7 " ,

L7 ,=,

A--

14/
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Substituting Eqs. (59) into Eqs. (50) and (52), the simplified equat,.ons

of fuselage translation and pitch are thereby obtained.

Simplified Equation of Horizontal, Translation

where

(60a)

Al, --//x,e -- ,,,+ -, -+x, ,

Simplified Equation of' Fuselage Pitch

pi

/u"- ITK Z774, /--- , -y"'..Is
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where

~ (61a)

Response of a Helicopter to a Control Step Input

The response of a h licopter to a control input may now be easily

determined by use of Eqs. (6o) and (61) and Operational Calculus. The general

procedure for the determination of the fuselage pitch response is briefly

discussed below. For the response in translation (/- ), and a detailed

description of the use of operational calculus for stability analyses, use of

Ref. 1 is suggested.

Taking the Laplace transform of the above two equations there is

obtained,

(62)
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where,

,- #4 . A ,-A..

The trsnpsfer functions is given by,

S ~(63)

in which

4/ / A= 2. (6i6)

where

... (64a)
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According to Routh's stability criterion, dynamic stability only occurs

if the coefficients b ,b b and b are positive and if,
2 1 0

b b1  3b
2 1 3 0(64lb)

For a typical helicopter, b is negative, and therefore is inherently

dynamically unstable, By inspection of the terms involved in the above

equations, it can be seen that the major effect of blade flexibility and

unbalance is shown in the factors My6, and , ,and

consequently b 2 " The values of b 3 , b2  and bo remain essentially un-

affected. For mass-overbalanced or aerodynamically under-balanced

blades My., and H. are increased and vice versa. This is, therefore,

equivalent to increasing or decreasing the "heaviness" (coriolis effect)

of the blades, which is associated with damping in pitch of the rotor.

Expanding Eq. (63) there results

34 (65)

where

(A/ (65 a)
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Setting 6 - 0 yields, for conventional type helicopters,, one real root

and one complex pair, say

(66)

Thus, the time history of the pitching motion is,

~(67)

where

By use of the boundary conditions, . - - at t = 0, the

constants , and K3 may be evaluated and thereby

A similar approach may be used to determine 4 . However,

since the characteristics of the motion can be seen by use of either

or there is no need to present, herein, the solution for
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6. Procedure and Application of Method

To demonstrate the procedure and application of the method derived in

Section 5, a typical helicopter, equipped with aerodynamically underbalanced

blades, will be analyzed. The aircraft considered is the same as that

analyzed in Ref. 1, and has the following specifications,

w = 5ooo#

R = 24 ft.(the aerodynamic effective radius)

b=3

c = 1.5ft. (the effective chord)

.1 = 20.3 rad/sec

I = 540 slug ft
2'

1

12 = 0

Wb = 102.2f. (the weight of each blade)
2

IYo = 5775 slug ft (including blade mass at hub)

a = 5.75 per radian

= .00238 slugs-ft
3

h = 6.25 ft.

6- = o.018

S-- m - 12.65

a ,z =-0.095

a2  = 62.7

h1 = -0.082 ft

K = 2300 ft.#/rad

Ch/K = -2.1.
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The step-by-step procedure is as follows:

a) Based on the blade's mass and structural characteristics determine

0 (r). This may be approximated by the first torsional mode shape of the

blade. For a uniform blade, 0 (r) sin 7 .
2R

b) Evaluate the mode shape integrals (pg. ,. )

so = o.637R

s1 = o.405R
2

S2  = 0.296R3

S3 = 0.231R
4

3

c) Determine the steady state values of o , , and from the

equations,

-~ 4(O*~A~7 (53)

c -~ d~)(37)

--~- (56)

thus,

g= 0.213

-= -o.06
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d) Evaluate the stability derivatives Eqs (50a) (52a), (54a), (55a),

(57a), aid (58a).

Ft, = 75,600 = -16.3

H~ = 1958 Hb -14245

= -970 Hr = 3769

= -2175 Hr = -1761

H =1  - -209.1 "1 = 2175

Hal = 2825

om4y0  12,210 Myo b, -26,530

MYo= = 5775 Myo = 23,559

MYO = = 17,656 Myo - -11,004

MYo.J = -1307 M0 . = -13,594

MYoo, = 17,656

MYo4 = -101.9

= -6i5.3 T'pu = 1008

T~l = 143.9 T , -2921

TbI  = "2921 TuaI  = 0

S -6761 T'al = -2921

T 'Va = -6761

= 2921
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My = -0.00765 bt 4 = 0.3272

My, = -0.1933 M , = -0.0623

My = 0.0493 My = -0.924

My, - -o.924

e) Determine blade motion influence 
factors Eq. (59).

L - 0.6008 N 0.6008

D = 0.3154 A = -0.0127

F =-0.1037 H =-0.1772

M - -0.0128 J = 0.o493

P = -0.049 C = -0.0055

E = 0.0174

f) Evaluate stability derivatives Eqs (6Oa) and (61a)

=75,567 My. =-208.2

=2,009 My- = 12,554

HR = -970 7.5 =

= 371.9 My. = 2321

1 = -5000 MYo ' = 31,250

H of = 5000

g) Determine characteristic equation coefficients Eq. (6)

b = .436.2 x 16

106
b 2 = 199.5 x

2 6
b =-.041 x 101 . o6
b I -62.77 x 10,
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h) Determine roots of characteristic equation, 4 = 0.

?'=-0.730

Evauae K,. K2"anad K31Eq. (67)

K, = 5.833

K2 = -5.833

K ' 11.969
3

.J) Thus, the response is,

.0-730t 0-136t,
-=5.833e -833e cos 0-422t

0. 136t
+ 11.969e sin o.i422t.

A graph of this response is shown in Fig. 5.
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7. Effect of Blade Flexibility on Automatic Control System Requirements

In general, for the rapid subsidence of a disturbance of a helicopter,

periodic control displacements (which tilt the rotor tip-path plane

relative to the rotor shaft) in phase with fuselage attitude (-?) aid

pitching velocity (damping) are required (Ref. 6). The first corresponds

to a kind of static stability and decreases the period of the motion.

The latter increases the period, and when applied alone tends to prevent

a further increase of the disturbance. Moreover, the latter has a

remarkable stabilizing effect when combined with the first. By proper

combination of the two any helicopter can be stabilized.

Since it has been shown that blade flexibility and unbalance

noticeably affects the damping in pitch of the helicopter, it is

reasonable to expect that these factors would also affect the automatic

control system requirements for stability. To demonstrate this fact,

consider a helicopter equipped with an attitude gyro system so as to

yield control displacements in phase with the fuselage attitude (-4)r.

For this case, Eqs. (60) and (61) are expanded to,

RE/Y4 (69)
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The coefficients of the characteristic equation become,

Ai~~ (70)

-7 - - -F

It is noticed that while pitch damping (Myo. ) affects the coefficient b2 ,

automatic attitude control (B4 ) affects the coefficient S. The stability:1

condition Eq. (64b) may thereby be satisfied. It is interesting to notice

that without attitude control (B = 0), stability cannot be obtained. In other

words, increasing the pitch damping of a helicopter can only lead to a

neutrally stable craft.

To quantitatively show how flexibility and unbalance affect the

automatic control system requirements, assume a system in which BA = 0.09.

The coefficients (Eq. 70) for various values of mass unbalanced blades

become,

2
2 12

K 1. 0

S436 x lo6x10 6  218x 10 629x1
1.4 4I36 x 10 393 10 218 x 1066-62.2 436 x 1 558x 218xl0 6  71.7 x 106
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The frequencies and clamping factors of the fuselage oscillations are therefore,

A2 n 2 Damp. factor Frequency Time to half Period
K(ni) (n) amplitude (see) (sec)

0 0 0.705 00 8.9
1.4 -.175 0.500 4 12.5
2.2 -.167 0.420 4.2 15.0

Thus, a neutrally stable machine of short period results when balanced or

rigid blades are assumed. The machine becomes more stable as the degree of

overbalance or flexibility increases. Finally a very satisfactory stable

oscillation of long period is obtained. In the case of underbalanced blades,

unstable oscillations would result. Thus, consideration of blade flexibility

and unbalance can often mean the difference between a satisfactory or

unsatisfactory automatic control system design.
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