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1. SUMMARY

A method 1s developed to determine the control response of a single-
rotor helicopter equipped with unbalanced, flexible blades. The detailed
analysis 1s simplified, without great loss in accuracy, in order to present
a practical method for.use by the hellcopter engineer. The detailed anaiysis

is. included for those interested.

By use of this method, the influence of rotor blade flexibllity and
unbalance on the stability and control of a conventional eircraft is investi-
gated. Typilcal vdlues are assumed and their effects evaluated. It is shown
that blade flexibility and unbalance can have & noticeable influence on the
damping in pitch of a helicopter. Consequently, the period and divergence
of the unstable fuselage osciliation, as well as the automatic control
system requirements for stability, are affected. Neglect of blade
flexibility and unbalance could materially reduce the effectiveness of an

sutomatic control system design.
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2. INTRODUCTION

To date, most treatises on helicopter stability and control have
dealt with the problem under an assumption that the rotor blades are
structurally rigid. This was necessitated, principally, for the sake
of simplicity in the formulation of a basic theory. For contrary to this
assumption, it is well known that in practice, helicopter blades have a
high degree of flexibilify and are subJectgd to deflections by the actions
of various inertia and aerodynamic forces encountered in flight., Basic
theories have now been established and refined (i.e. Ref. 1, 2, and 3),

and are commonly accepted as capdble of predicting the nature of helicopter

stability and control. Therefore, it sppears appropriate at this time,

to extend the basic theory in order to study the effects of various

existing conditions such as .rotor blade flexibility and unbalance.

The motion of a conventional articulated or "see-saw" rotor blade,

with reference to the rotor shaft, may be described as:

(1) Rotation about the rotor axis

(2) Oscillation about a flapping hinge

(3) Oscillation about a blade root feathering axis

(4) Structural twist about a blade span axis (elastic axis).
-This axis may coinclde with the feathering axis, depending
upon the structural characteristics of the rotor system.

e

Additiona.l cormponents of the motion are, oscillation as & pendulum in the plane
of the rotor disk about & drag hinge (lagging), and blade structural

bending in the flepping plene.” These additional components can materially
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effect the twisting tendency (unbalance) of the blades. However, as vas
pointed out in Ref. 4, experimental evidence hes shéwn that for articulated
blades, these components directly have only a second-order influence on the
air forces on the blade. This may not be the case for rotors in which the
blades are rigidly connected to the shaft, or have blades of extremely low
bending stiffness. In these instances, structural defofmations (bending) in
tlie flapping plane may be of prime importance (Ref. 6). 'The analysis
presented herein is principally concerned with helicopters having an

articulated or “see-saw" type rotor.

On the other hand, it has been shown by Wheatley (Ref. 4 and 5), that
the torsional flexibility and unbalence of & rotor blade has a pronounced
influence on the flapping motion of a blade. Except in the case of balanced
blades (i.e. blades having symmetric airfoils whose elastic, aerodynamic,
and mass gravity axes coincide), the resultant of the air forces and mass
reactions produce a couple which tends to twist the blade. This resulting
twist has a constant magnitude for pure hovering flight, while in disturbed
or forward flight it has periodic values as well. This twist, naturally,
affects the flapping motion of the blade, and consequently the characteristics

of the helicopter's motion.

The existence of the above phenomenon has long been appreclated by
blade designers, due to its associated disturbing effect on stick forces.
To eliminate blade twist and the disturbing stick forces they have striven
to design balanced blades. With this condition satisfied the disturbing‘

stick forces due to the blades, as well as blade twlst would be eliminated.

e
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For i£ is well known that in the conventlonal rotor-control system, oscillating
stick forces are due entirely to blade unbalance, having both mass and sero-
dynamic origins. Unfortunately, however, the attainment of balauced blades
in practice is extremely difficult. This fdct is readily apparent when one
considers, as previously stated, blade dilstortions in flight, in the flapping
and lsg planes. In many cases a balanced blade design proves impractical.
In addition, constructional imperfections and use often cause unbalance.
Consequently, blade twist and oscillating stick forces are present in

varying degrees in helicopters.

Due to the disturbing nature of these oscillating stick forces recent
helicopter designs resort to the use of irreversible control systems. This
approsch tends to eliminate the disturbing stick forces. However, since
the cause, blade unbalance, has not been eliminated, blade twist, and its

asgsoclated effects are stlll present in these designs.

Contrary to the above tendency to eliminate sutomatic blede twist,
there is a feeling among many that effective stability and control may be
obtained by proper design of the rotor system utiiizing unbalancud blades.
Naturally, such a system would entail a minimum weight penalty on the
alreedy relatively poor carrying capacity of helicopters. ¥For unlike the
fixed-wing aircraft where automatic stability and control requires the
installation of special gyroscopes, the helicopter can make use of its

rotor system which itself is a gyroscope.

The results which follow attempt to give some indication as to the
fa)
effects of blade flexibility and unbalance on the stability and control
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of a typical helicopter. The effects on the automatic control system re-

quirements for stability are discussed in Section 7.




3. Results of Analysis

Similar to fixed-wing eseroelesstic phenomene, the effect of blade
flexibility depends primarily upon the relationship in flight, between the
blade's elastic, aerodynamic and mass gravity axes. Using the analysis
presented in Section 5, both mass and aerodynamically unbalanced blades
have been investigeted. To demonstrate the procedure and application of

the analysis, a typical calculation is presented in Section 6.

For the quantitative investigation, the parameters of a typical

5000 pound helicopter were assumed (section 6) and the results compared

to that obtained under the assumption of structurally rigid blades. The
blades were considered fixed in torsion at their root end, end to bhe of
uniform spanwise construction, thus having principal torsion modes of the
type ﬁ (r) = ain %_?‘. Tt 1s worthy to mention hovwever, that in the analysis
(Section 5) blade twist is introduced through a general torsion mode, & (r),
and consequently the anslysis may be applied to helicopters with blades

having any arbitrary torsionz) stiffness or mass distridution.

a) ‘Mass Unbalanced Blades

For overbalanced (center of gravity forward of the elastic axis) as
vell as underbalanced (c.;. rear of elsstic axis) bladss the controlling
dimensionless flexibility parameter was found to be ( &\%@e) 3 where,

I, 1s the blads mass product of inertie sbout the flapping hinge and blade
elastic axes (positive for fow&d c.g.)’ L) is the rotor speed, and K is
the f)ladg torsional stiffness.
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The principal effect of overbalenced blades is to increase the damping
in pitch of the helicopter. This is shown in Fig. 1, in which the increase
in demping in pitch of the heiicopter is given for various values of (/ézééézij

2
relative to the damping for (C!}ﬁ§§)= 0. This effect can be explained

as follows. With conventional rotor-cohtrol systems, the rotor tip-path plane
tends to pitch with the helicopter fuselsge. However, in so doing, coriolls
forces which oppose pitiching of the tip-path plane are created on the blades.
These forces are proportional to the pitching wvelocity of the tip-path plane,
vwhich is approximately equal to the fuselage pltching velocity: Thus, pitching
of the tip-path plane lags behind the fuselage pitching motion. The resulting
inclination of the tip-path plane relative to the rotor shaft is responsible
for the pitch damping of the helicopter. Moreover, the above-mentioned
coriolis forces when acting on unbalanced blades cause the blades to twist.
Overbalanced blades twist so as to increase the inclination of the tip-path
plane and thereby increase the pitch damping. This efflect 1ls therefore quite
similar to that obtained by increasing the "heaviness" (1 ) of the blade.

The opposite is true for underbslanced blades.

The response of the helicopter in pitch to a control step input is shown
in Fig. 2 for various values of /QZ%§43§7 . The response in the first second
is shown more accurately in Fig. 3. It is noticed that as the blades becpme
more flexible or more overbalanced, decreased fuselage oscillations of longer

period result. This comes about principally through the increased stability

in pitch of the craft. However, as pointed out in Section 7, without control

displacements 1in phase with fuselage attitude, the helicopter cannot be
stabilized by increased pitch dsmping. In the limit, only a neutrally stable
craft results. The damping rates and frequencies of the'unstable fuselage
motions of Fig. 2 are as follows:

(:szli) Damp. factor (m;) Frequency Time tn double Period

ny amplitude (sec)  (sec)
0 0.188 0.4k 3.7 1.2
.2 0.179 O.hll 3.9 1,2
1.k 0.070 0.378 10.0 16.6
2.2 0.045 0. 3im 5.6 18.3.

In the case of underbalanced blades, increased fuselege oscillations as well
as decreased periods are to be expected due to the decrease in pitch damping.

RESTRICTED
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~:i:,By the addition of a proper amount of damping to the twisting motions
of the blades it is possible to introduce a time lag, and the blades could
effectively have a response component in phase with atpitude as well as
pitching rate. The amount of torsional (structural and aserodynsmic)

demping introduced by most blades‘;s, however, relatively small.

Blade flexibility and unbalance can materialiy affect the automatic
control system requirements for stability. In fact, consideration of blade
flexibility and unbalance could mean the difference’between satisfactory or
unsatisfactory behavior of a automatic control system. This effect is |
discussed in Section T.

b) - Aerodynamicelly Unbalanced Blades

In the case of aserodynamically unbalanced blades the controlling
dimensionless parameter was found to be Ch/K, where Ch = 1/2@ac 2 R hl'
"@" is the mass density of air, "a" the aerodynsmic 1lift coefficient of

the blade and "h;", the aerodynamic chordwise unbalance in feet (positive

for forward of elastic axis). Ths other symbols are as previously defined.

Similar to the action of mass overbalanced blades, aerodynamically
underbalanced blades increase the damping in pitch of the helicopter.
Fig. 4 shows the relative increase in pitch damping of the helicopter for
the case of aerodynamically underbalanced blades. This increase can be
attributed to the aeroelastic twisting of the blades. Similar to the action
of mess-overbalanced blades, aerodynam;cally underbalanced blades twist soﬂ
as to increase the inclination of the rotor tip-path plane relative to the
pitching rotor shaft. Aerodynamically overbalanced bhlades, on the other
hand, decrease ‘the ihclination and consequently the pitch demping of the
helicopter. RESTRICTED
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The response of the fuselage in pitch to a control step input is showm
in Fig. 5 for various values (_C_%) + The response in the first second is

shown more accurately in Fig. 6. As would be expected with increased pitch

demping, the amplification of the fuselage oscillation is decreased and the

period 1s increased. The damping factors and frequencies of the unstable

oscillations of Fig. 5 are,

Ch Damp. factor Frequency(n,)  Time to double Period
K- (my) amplitude (sec) (sec)
0 0.188 0.uh1 3.7 4.2
"2‘01 0.3-36 0-!}22 5 02 = lh 09
-3.5 0.106 0.398 6.6 15.8

For the uniform blade considered, the amount of unbalance represented by

the sbove values of Ch/K are,

y Ch/K , aerodynamic unbalance (% chord)
0 . 0
-2.1 5.5%
-3.5 9.1%

As in the case of mass unbalance, aerodynamic unbalance blades do not

- respond, relative to the rotor shaft, to fuselage attitude but to the rate

. of pitch of the machine. Consequently, the effect on the automatic control

system requirements for stability is similar to that of mass unbalanced

'

blades (Section 7).

N )
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LIST OF SYMBOLS

i

m‘”
]

T w o
i

Lo
it

Ch=

R
fl II‘

=2
L}

K =

o

o
[ ]

r =

ct
[

=
]

a = aerodynamic lift coefficient of the blade,

2
A = rotor disk area, ft .

1/2@bec.N R®

number of blades

control angle of attack input to blades (sine ¥ component), radians(Eq.k)

'bla.dé chord , feet |

blade aerodynamic unbalance parameter, ft. # = 4 f..C ._O_a/?‘?/),

E, L, N, etc = blade motion influence factors (see Eq. 59)

acceleration due to’ gravity, f‘t/sec2

distance of rotor ebove helicopter center of gravity(including blades),ft.

aerodynamic chordwise unbalance, positive for forward a.c., ft.(Fig.8)

Iy = moment of inertia of helicopter about a lateral axis located at

helicopter c.g. (including blades), the mass of the blades being
considered concentrated at the rotor hub, slug - ft

blade torsional stiffness (ft.f/radian).
mass of helicopter, including blades, slugs = f‘
effective aerodynamic blade radius, ft.

radial distance from rotor hub to a blade element, feet (Fig. 7).

= time, sec.

rotor thrust, pounds =

gross weight of helicopter, pounds
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P

rotor é,ngular velocity, radians per sec,

A
"

blade azimuth position, radians (Fig. 7)

™
]

Bo-2,cosy ~& sy
o,
z

fuselage pitch, radians (Fig. 7)

positive for forward c.g., f£t. (Fig. 8)

@ (r) = blade torsional mode shape {see Eq. 4).

o(r) = geometric angle of attack of a blade airfoil section (
Oo = control collective pitch of the blades
¥o = blade twist at tip, collective component, radians (Eq.

¥, = blade twist at tip, cosine ¢ component, radians (Eq.
Y. = blade twist at tip, sine §/ component, radians (Eq. 4)
€ = mass density of air (slugs/ft3)

Aq = dimensionless rotor induced downwash

= - V=255

7 = dimensionless blade parameter
Cac T

/

Ady= dimensionless horizontal linear velocity of rotor hub

*
= Xo

LL R

/\4‘g = complex roots of characteristic equation for fuselage
1/sec.

-mlj;inl

RESTRICTED
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flapping of blade neutral axis from horizontal plane, radians (Fig. 7)

chordwise distance of blade cehter of gravity from neutral axis,

Fig. 8)

L)
L)

oscillation,
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Rotor Blade Inertia Tutegrals:

Z, = [ %2 -
| Zy =/ /& Hr 7 Zog =/ Fctbrs
o b '
Lo =) £ /277 Ze = [F i) trr
dboe bocre.
Z, = / & o) s
Glcre LI

”
So = | #Has
”
S, =/ +5) o
S = f- e
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5. THEORETICAL ANALYSIS OF HELICOPTER HOVERING STABILITY AND CONTROL INCLUDING
THE EFFECT OF ROTOR BLADE FLEXIBILITY AND UNBALANCE

Method of Attack

The general method of attack is quite similar to that presented by Nikolsky
in Ref. 1, in which however, the blades were assumed to be structurally rigid.
In the sbove reference, the helicopter system was considered to possess three
degrees of freedom, name;y, fuselage horizontal translation and pitch, and blade
fleapping. In this analysis tec aécount for blade twist, an additional degree of
freedom is introduced. Blade twist is'introduced by assuming & genersl blade
torsion mode, ¢ (r). This permits the results of the analysis to be applied
to helicopters with blades having any arbitrary torsional stiffness or mass
distribution. Basically, four equations of motion are developed to describe the
resulting behavior of the helicopter. To preserve the continuity of this

development certain parts of Ref. 1 are repeated herein.

Although in the following investigations the motions are assumed to take
place in the longitudinal plane of symmetry of the helicopter, the analysis
equally holds for the leteral motions. For simplicity, and since this analysis
is principally concerngd with the effect of blade flexlbility and unbalance,
the case of a helicopter with no effective flapping hinge offset is treated.
However, by use of Ref. 1, and the following procedure, the effect of &

. £flapping hinge offset may be included. In addition, the tip loss factor is
accounted for herein, by using an effective aserodynamic rotor radius (R) in
all terms except those involving inertia effects, such as the blade inertia

integrels (I;, Io, ete., pg.12 ).
RESTRICTED
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Coordinate Axes

The coordinate systems are shown in Fig. 7 and 8. The stationary vertical
axis is assumed to coincide with the rotor shaft when the helicopter is in
its undisturbed hovering condition. The stationary X, and Y, axes are perpen-

dicular to the vertical axis to form & right-handed set of axes.

‘The‘moving blade axes (x snd y) are taken to coincide, respectively,

with the blade's neutral and flapping axes.

Alléwing Xy Yo and £ b to represent the instantaneous cooOrdinates of
a bléde element with reference to the stationary‘axes, the coordinates and
fheir time derivatives are as follows,
Ao = N —fcOoS Y + Esmy
Yo = =rour Y — Ecas ¢
Zp m B)y 4+ £SO

Ko = X, fr_a;s-/ny #* ELLcasy/
Y= — A2 COS Y AL St Y
By = fpr o+ XS

/&i = /é;'*'lb-111fERJS‘;V -—.;?.4112;777527
jgi =, P50+ F Rcas ¢
E = B FS

RESTRICTED
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where the dots refer to the time derivative of the function.

Blade Flapping Equation

The equation of motion of a blade about its flepping hinge 1s obtalned
by equating the total moment at the flapping hinge to zero. Considering

moments positive that tend to increase /B , this mey be stated as,
My = 0 = (My), + (W), (2)

where

'the moment due to the inertia loads.

(4},

(My)g = the moment due to the airloads.

The moment due to the ;.nertia. loads may be evalueted from the expression,
(My), | = v—/g@'acos,éf - Mo cas Y8+ &)
[

(3)
* Gy S0 Y B+ £6)fHr

Following the usual convention, the blade flapping angle and blade angle of

attack may be expressed as,
A=A —acosy —bysm¥
6F) =ds ~d cos ~do s

vhere
b= & + g P(*)
o = & @7
= B+ + Iz H7/

RESIRICTED
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vhere & (r) is the principal torsionsl deflection mode for the blade, 45
is the constant value twist of the blade tip, while 4, and /- are,

~ respectively, the cosine and sine components of the blade tip twist. From

Eq. (ll-), the following flapping and blade twisting velocities and accelerations
are obtained:
,é = —/a', -mé, _O_/ca.s¢ ——/é,' -, 11/5//7 (74 (.5)
B = —(&, # 24 (2~ _()_‘ajcasgﬂ
~ (L —zd, 2 -t %),y
o) = —[J%é _Q/c‘a.s 74 —/Jar —J_Q/:/ﬂgﬂ
9"//'/ = —/aﬁ-ff/;_fl —aC_O_‘yc'a:;ﬂ
‘/ag - 2d, 2 —.«,g_rz_"-j:/ny/

As ﬁ is relatively small for conventional aircraft, cos £ /¢ 1, and

the first term on the right hand side of Eq. (2) may be expressed es,

/ s #roP? = ,er‘o’m + /z-'/-é'a’m (6)
[

\;here

R -
Brown = - (a, »28 (2 -« _Q‘ycqs;p (7)
—Z, b - £G4, - é,_(:_f/:/ﬂ 4

o

RESTRICTED
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/é’/—eam = [I rel, 5 B r2Z <, rLZ, (2

A
(8)
—I_n_/]cos;// /-Z—ﬁ-f-fdffr
—2Zy 2 f = I e, — Ty QF [
The second term on the right hand side of Eq. (3) may be expanded to,
Vg
//\2(05 ,/W‘,éa’m %ﬁ cas W LSz (9)
vhose values are, i
/Xécas{ﬂ/',éo/m - Z_fl,% cos ;k Za _n_,éa_r/”,w casgs (10)
10

*.Z-/,Jocas;ﬂ 7_2’_0_ =, cos Y j—,z-_rfé sw2
+% L P, sy tF T 24 cosy

” .
/A;;cas;éféa’m = 2o "o, cas o rZy = J;cczs“"-'ﬂ/
__z;,_‘r;_z(;g:/”wco_syf.z\}/ﬁa,cwy/ﬁz;,ﬁ)gmsy
~Z5 ﬁ‘%:ﬂ;ﬂms% ~&z, ..Q.a/,’(:o.s;ﬁ
2 o
‘,léj_Q/ﬁff(/S//yy/ /.z—_tld’:/ﬂy
"‘4-—22—0- /://7;&7",4 _Q‘EKEM/CGS/%
+ 4 25 27 45 cas .
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Similarly, the final term on the right hand side of Eq. (3) may be expressed as,
R

R
,/.ib sin ¢/ rMSdm + /’jb sinlw,!adm : (12)
o y

°
where,

A
—34-_2;_()_2@_,;/,75#_;_“_2;_(254 cas g

# ,
/ y", KOy pator =Ly (2°Q serSsp # Z5 258 s iy (1)

L r T RPE casyswoy + 25 (25 Jo cos o
SF Tz 28 cos yp —FZp YL vy s y
~F T 2L sy —F 2o 2P s
=7, ..Q.a/ﬁ -/-—-(,jcasy/ —aﬁ_Zj _Q_‘-‘/‘Scasy/

| RESTRICTED

18




S T e Y R S
o r?@ “&H e fas M

iy T B

RESTRICTED

Thus, the moment due to inertia loade beccmes,

é.%ﬁ: &, +228)+F (28 +.e_a¢«/
7‘: //"‘3"0"// =Fhp - 2= K e
/]cas;/z A —2a,2) (15)
ﬁv«c-()-ahfr—l-?// ~2.(7-d,’/]:/n/¢
——.(:ziié? ;255‘_4’1L2 ;é;;z..rzflaﬁé

N

The moment due to the air loads is

Ve
(M= 2aec)fots s tp o) rat (16)
o g

- where,

';64’"iééACZZEA?'%yf}i<:czs;zy7152§.5227;2515044747 - A 24

Uy = /é?.ﬁ%evgé“-v9a¢rzzr;zv
-,#i;syz7;é’v‘,kifil

!

and

E17) =G + Jofil) - cas ) ~[ B, +=, # do ) [

RESTRICTED
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Consequently,

2 .
G = infr i sy
.and

e;é4f = rinife+ LHE) #1207 F Brr) casy 5
' (17)

+j2 4 02/G (7)) —+ 25 B, e, + s ) ] j s ¥
Thus, the first integral of Eq. (16) becomes,

2
f;(/reka//‘ - -‘%‘i'égo 7‘\5:?.&2% "'n.?,-, -Q.ZJTCOS/W

= . *
() nAa o5 0 e — LB,

n?El S 25w
vhich, may finally be written as,
' / A;/ 2 2
&£ pac, Sy rar Ft
~ERes = Z/g .:f:éé;/g —Z3 floas g

>2 s
#E B G 5By L Vo -5,

-4z;£§£ 425250775%3)7

(18)
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Eveluation of the second term of Eq. (16) leads to,

Uplly = Aa 2°0 F+ (+20%4 #4212 5, -4 3 R )casy  (19)

..,«/_/{Q_zcz‘, ~ 2.8 *Aa QLAPX,) s>

" - Py .
/U/’(/r/’a? = la L« Ai?ﬂ _/_/_O_f;?"’é -+ -——-———-—-""?Eaa (20)
o . .
-V Yd A Y Y, e
= cqsy/ ,4/ — Wely— 2 -r‘-_.__‘?___.__.’

3.
* Aa LEE R ) 51 gt

2 7 z . ,
i}f&’. Lo Urrap = 5= /?/)M«/A, » BB s (1)

7‘-/-—4, # ?éf_j- 3 ———-——-_‘:{_\;/\6/5‘//7 y‘//

Substituting Eqs. (15) and (16) into Eq. (2) results in an equation whose terms
are dependant on sin ¥, cos #, or are independent of these harmonic functions.
Therefore, in accordance with Fourier's analysis this equation gives rise to

three independent equations, namely, constant terms (steady-state),

s - S Z, Z_
lo=d(6,» F hat THL)- Fra -F= &2

cosine terms, (22)
) (BB |, BOTilP . Bk T K f2
_{{‘,«;:( i T Z i TZFn =R /é’ 4/

L) - B 4 H )b S F
(7w 2) (53 i )

-— e La ) B (23)
7= :z—;‘)ﬁ,
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sine terms, :

J—’%‘j-?[a/:?fé‘,+ ‘-;'5;5'5- ag-r-/\a.)/v'- é/ﬁ%v‘ é/ﬁ//

—a/le | v S L S P JE
% J’,n./ a’*d’/_‘z'-f' 7l = ffé—;-‘?_—;z/ (24)

e ST 16 V2 8 ) #E==
= x/}‘f—f dzf,f_a_‘%' ﬁ*”‘:‘-

- o -Z- 8
‘5’/.27‘5'5"_&-’/_)"‘5

There has, consequently, been obtained three equations to describe the

resulting blade flespping motion.

. Blade Torsion Equation

The equation.of motion of the blade about its neutral axis may be
developed by evaluating the moments sbout this axis due to inertia lcads,
airioads and elastic restraint. Considering moments positive that tend to

decrease the angle of attack, the equstion may be stated as,

M = 0 = (1), + (), + (1), (25)
vwhere,

(Mx)m = the moment due to the inertia loads

(Mx)a. = the moment due to the airloads

(Mx) g ™ the moment due to the elasticity of the blade.
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The moment due to the inertia loads (Mx)m may be evaluated from the

expreasion:
A
Wi —%ﬁ;f*&}c&sﬂ b Gy ALY B = Koo Y&

oo (26)
7‘-% cos g & g/c/m

Eveluating the various terms specified above there is obtained,

/ 2o Saler ==/ /’é‘/‘.fc/m :ﬁzé 27

(24

=-Z(E, r2l 2 —a, ni)cosy— 7, (4 25, N

—é,_a‘y:/ﬂ;ﬂ— Zz d.,"-;s 22, L r2Z752<, (27)

-0

rETy L~ 5 PF Jros Y — (2355 + Ty, ». 25 &2

.

—EZa L =75 R - T 2%, - Zp R Jswr g

”

/\.’; cos W_f,la/m = Z, N4 cosey -Z, _Q% 5-//7;/ car%

| 4

# Ll My Acar - F 2L a,cos T b sy (28)

vﬁ;fi_r:ta_ZT}cz,;sae{;é-f;;f%J?;._CzéLéfczar;é

A , ‘
/94 Sy o MBA7 - T, Woky A ‘w7, L2580 S Hecos Y

——é-_fQ.ZJ; x, ca:y/-—g-_()f{;ém/ (29)

~F P e, s~ 25 2P car g
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/4’25//7;%}90//;7 L X, S'//?;ﬁ-v‘.z—//.f//?/ Zo, 2% 6‘,5,4;//

o

Is 51724 ——:,.L_Z:; 224 s g (50)
* Ty 2P cosy —f T REB cos - T 1oy
37/'_[' o cos %_Z; A2E snr

_‘;Z -Q-a(;‘/ﬂ/‘f“‘" -Za_NZ )"s—/ﬂ;ﬂ

R
ﬁ;w,«weafm = ~FZ R sy QB cas g (3

©

'L.Z" _Q.a( casy ;;,"_Z—__Q_ cezs;ﬂ,l-_Z’_fD."’ Cas.a%

*Zo 2% focasd yw -;’!’—_z;_n_aafca, YT _O.ZA;';//:;//

-ifi.JZEQ.J<2J22f; s W
Combining Eqs. (27) through (31) as specified in Eq. (26), the moment due

to inertia loads becomes equal to,

My =25 12260 » Zo L) . 70 224, +/~Z (&, 2L r2)
T S AT, B2 DS erZy 2
P jw;ﬂ Tl -2i, 2)-Z 5 (3
__z-,( __@ _z;_ga —_{,;//. -/-Zfﬂa']S”?P
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The moment due to alrloads has the_yalue,
(). = -F perch fisB + th it Jor (33)
o

This may be evaluated simply by use of Egs. (17) and (19) to yleld,
/ Vd 2 _(3_2/?3 & L~ 2
W\’ = TS PaLs, —5——-6@ > Sa (D 9"‘5‘&_(2- J,/C'Os‘;ﬁ

- , 3 ‘
G R e Ry c =)

=2 220 o g 7 e QIR (AR,
el 5 e — /2% ) _____C;_.fﬁ_'?
-/'__jf. , o2 £ = P /cos %7‘/ T, (34)
2 . V » ' .
- _?.?P % +A._.n./f"/\g/.swryy7

The moment due to the elasticity of the blade may be written as,
(ks = (% - & cos p— 45 swo ) (35)
where K is the effective torsional stiffness of the blade and root attach-

n;ent combined.

The blade torsion equation may now be determined by substituting
Egs. (32), (33), and (35) into Eq. (25). Similar to the case of the flapping
equation, the resulting torsion equation contains terms which are dependant
on sin ¥/, cos# , or which are independent of these harmonic functions.
Therefore, this equation also gives rise to three independent equations,

namely, constant terms (steady-state),

L y-X4
Frds + 25 %6, + 75 D)+ 7, 254, - £ Paﬁé/ LT (36)

S22 )s # LalPF)n o
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and since,
W= Pactn2rp e, +F Mo+ """"3"3:-5& %} (37)
Aty + Ty (22 Gt T 25 S+ (2 2, — .%’Z o (38)

cosine terms,
Al T (E ety 2 ) T f —2 T5 2 5 — 225 (2,

,AZ_Z‘;_Q_/;v‘-_Z‘;-/%/E— :ﬁf%%""é;‘

tBos — B T (39)
A .rz._%‘é:] <
where Cp = _l_ea.c .(2.2R3hl
sine temrms, 2
b by = (524, 0) - L5 -2 K, - T 22l
P " o /\} S .p
e - L B -CfEre r2 2 L
AR Sy VP ) Aa KXo
-3 £z —?_L_’:?—ﬁ-f- A“_n_/? =<

Equation of Horizontel Translation

The motion of the helicopier parallel to the X, axis, assuming thatex,
is small, may be described by the equation,
7 ( Ky =17 ) A e =©O . (51)
vhere,

on = the component of the left and drag forces, acting on the

blades, along the X, axis.
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2%}”/4(0&6({1/7-J:/0;// a./é L/DU‘r)

[2 2, —<2, cO3 Y = —L 577 ;’/co.s %—/— _:-//7;{_//;'04— (42)

In Ref. l (pg.192 ), the above expression has been evaluated for the case

of rigid flapping blades and ylelds,

() = £ pbe -7 fﬁ/f+aﬁ~aeaa9+ps’,‘,( felaal /
() a0
#a) 252 G v e fra )22l o, )] 0
_é[a.ﬂ. A’iyf
K

However, when considering the flexibility of the blades, this expression

mast be modified to account for blade twist. Specifically, this necessitates

adding to Eq. (hé) additional components of the 1ift, acting on the blades

 along the x, axis, due to blade twist. These components may be evaluated

from the expression,

»~ A '
’ ' o

. (L)
-2 :/ﬂ%/fa: 74 fgf:/ﬂy/jaé— .

vhere

Ae;éﬁ?/— I, Bo) s~ Ja HE)swr gt
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Eveluating the various terms of Eq. (44) there results,

S S )
zﬁ}ﬁ’}% (oS glag)ly o — -5 34 & (45)
i/i%fwz%}@éﬂfr{# ~-F5nk, & (46)
o .

L7 ~
‘5%%9/‘4 g =~Z 2 0, for A5 25K
o o .
FES A 2N Vo S A L227) (&7)

_All other terms equal zero. Consequently,

 (aEx) =& éc.n.ﬁ?‘?z. = 4 252 ok
(b 5x, blade 2C e —?’M e Pz 2 o=,
N fle*}bility

Bl BTt S ) g/ @

Since,

Bx, = (Hxo)
flexibility
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Adding Egs. (43) and (48) yields,

g,na‘,/"'*’(&f ‘ -a9a/\a.-a/)¢ A /-7‘-/’ 4.{15 ,4/
(B et @ 2R, /@ 0D,

(49)
L] . /"
—d,/iéi/— 4/a/ 2 . )/
‘2 /?h? dP://7*'6?2{4;i.111/47//2;5 "'~;21’)L§f£;7
+a/-a.5'a ./2,/]_.5/‘3—@ //2
2
vwhere a = lebc_QR
2
The eqnation for horizontel translation becomes,
*2, fa, & //4;-,‘4//5, +a;,4/,, -+ );,z/é =+ LM
Where,
' ,H/),,-——_n.ﬁffn‘
A ==fgh£2=ﬁ?€}3ﬁ £EE£fL4262”A ~ A =2 d/;)
My —smh (508)

= 2——_;’4&7‘7_
/gé% — - ‘Zﬁza-J?i:qaéﬁf
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A4 = — a.az,/? / L GO Sa
,é/); = Rp (2 _5‘}4,
- L2re
L = 2Cp e LL5, |
=i - _ _—
7 _ ——

2

Equation of Fuselage Pitch

The motion of the helicopter in pitch about the Yo axis may be described as,

Ty, Ao+ Thet, = O

By use of Eq. (49), the above equation may be written in the form,

(51)

e My + A, Moz, + 4, Mo, * 2, Mo, + 2 Mya,,

+é./;z%" fé'%",«-/;/l%d% .f/;%é - 5/”%‘” (52)
where )

/l@% = 4 Hlec,

Mpz, = Z o

M‘%// = TH + 4 K,

Aoz, =4 /4,

/W(yad/ = 4 Fa, (522)

Mﬂo‘é' =AA/4
My,s, = # He,
Mooy = 5 4y,
Mo~ H M
Mo = / He,
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The motion of the disturbed helicopter, under the assumptions mede, have

now been fully specified by eight equations, two steady-state and six disturbed

equations of motion. The latter consist of two blade flapping equations, two
blade. torsion equations, the equation of horizontal translation and the
equatién of fuselsge pitch. However it is immediately obvious that the
solution of the six equations would be extremely tedious and time consuming.
It would therefore be desirable to simplify these equations, if possible,
without any great loss in accuracy. Such a simplification can be accomplished

following the procedure presented in Ref. 2.

Simplified Equations of Motion
. [ ]

The quantitative determination of the response of a helicopter may be

greatly facilitated by simplifying the b‘lad.e equations.

In Ref. 9, it has been shown that the flapping blade motions consisdt of .
high-frequency heavily damped oscillations. The order of magnitude of these
oscillations was such as to suggest that their influence on the motion of the
helicopter would be small, i.e., the bla.d_e response following a disturba.nc_e
is rapid (within & couple of rotor revolutions) compared to the long-period

fuselage oscillation which is of principal concern. 1In fact, the disturbance
k0
a7y

of the flspping motion is reduced to & tenth of its initial value in

revolutions of the blade. Based on this, little error appears to be introduced

by neglecting all acceleration terms proportional to 5.1 and bl' It is also

realized that él is approximately equal to 0( , » since &, approximately
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equals o, , and both quantities oscillate at the same frequency. However,
since small differences in a.l and o<, introduce major contributions to the
response of & helicoptér it cannot be assumed that é‘l equals X, . The co-
efficients of b'l appear smsll and since ‘t;l itself would be small, its

contribution may be neglected.

From the characteristics of typical rotor blades it may be established -

that, IS<< Il ; 16<< Il ; 12<< Il 3 I_<«< Il; i,<< 12 ; and

18<< I2 .

3 7

Accepting the above simplifications appears not to affect the long-period
oscillations to any marked degree. ‘However, under these simplifications
the equations of motion of the blades about the flapping hinge will permit

direct solution for a, and b; in terms of the other degrees of freedom.

By extension of the above arguments to the case of the blade torsion
equations, the eontr;bution of the dynamic terms '8 JJ.’, s )”2 and 2’2
may be recognized as small. ‘Thus, the simplified blade flapping and

torsion equations are as follows.

Simplified Bladg Flapping Equations

constant term (steady-state),

o= Kl )er £35 1) (53)

cosine term,

b = sl Myt =l e +X, M= 8 My (W)
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where

sine term,

@, =t My, =, =, /ﬂ@;./_ /;,/14/’

.

N

where

M yoin =2 F S+ 23 45+ P)

= F

i - -5

Simplified Blade Torsion Equations

constant term (steady-state),

____W/ Zzn°
o= — == %

cosine term,

/;_— = Ll e o, L, P ’
/ g 7;, / 7;-7 2, 7_.._._./; .

where,

__5/

(5k4a)

(55)

(55a)

(56)

(57)

(572)

Q
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sine term
/ 7—' . 7—-/- 7"" — ¢

Io = ~ 44 _@_‘( - " L g L8 A Z__ I‘

2 o 7% 7; ' T /7} +*L, ; (58) i

vhere g
{

i

7},:,XT==—C4/9°+A¢_% ==y //

= -

7 ZZ

T, = S

CRRE G
7% = -S4

It is now possible to solve for the quantities Y l’ ); and Kg

terms of theé.two degrees of freedom, fuselage translation, and pitch.

This results in the following values,

d/-‘/axp""(,—o.(//‘_-“ﬁ
Ly = bl — il St T
= —pdn & —sly

/2 = =y N~ o, A~
vhere, letting / o /x L&z_ My, 4

D= (M aer — %‘Mé&%
Sl /s
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‘and, letting Ne= /-~ 7o, /1//

————————

RESTRICQ}EQ
7‘" / 7__/
il X 4 =
2.
7;:: / , 7—4{,)
P=/7J2 +/¢,7a, T
Z_,

7% /
Nt i
A = ___Az‘;:‘__
A = /”794*;1/77‘;“7/‘12'4/
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Substituting Eqs. (59) into Egs. (50) and (52), the simplified equations

of fuselage translation and pitch are thereby ocbtained.
Simplified Equation of Horizontal Translation
Ll At pelon Ml 74, Ay +, Ay, A= 5 Ay, (60)
wvhere
: zOAr“"ﬁéax "/%z'/4" /4%%’6:
' »
Fhix = foex g P, O— Ko o = Sy E— 4y, AT
3, = A
_ ‘ (60e)
sy == e, = e, e At T Ay P
Aoy = Aoy = Moy == 7™
/7& = //3, r ol /%._/ - 7
Simplified Equation of Fuselage Pitch
L Pt e P b S, P 4, T &
Ay P2 e T /’Z"% +, T, (61)
—
= 453 Myb .
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where

Mt == Mo A = Mgy ©

Mo = 4 fex
C Mps, = Mg,

Moes, =4 e,

My, =4 Az

&

Response of a Helicopter to a Control Step Input

The response of a h&¥licopter to a control input mey now be easily

determined by use of Egs. (60) and (61) and Operational Caleculus. The general

(612)

érocedure for the determination of the fuseluge pitch response is briefly

discussed below. For the response in translation (4L4r ), and a detailed

description of the use of operationai calculus for stability analyses, use of

Ref. 1 1s suggested.

Taking the Laplace transform of the above two equations there is

obtained,

’“A’//‘//z/ 7"(///\/‘-4/,, =z
A e //)/A‘?/ 7 o, //3/"/422 = Sz L5

37
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vhere,

s —

Ay = Hze A o bt

Az = Al A% o Ao N A,
Aor = Mss0 A * Mgy
Azz = Mgz X Moy D
Az = /73,-

Alag = /7//-;,_.

The transfer functions is given by,

A// A/?
9?4{22 = JAzs Aazi : (63)
&, A
IS, in which
AI/ AIZ
4 = N
/42/ /422 ‘ ) ( )
= G AP B ) b A by
where '
by = Hix Me ~ o e




ereapn.

ot Y

B s i A
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According to Routh's stability eriterion, dynamic stability only occurs

if the coefficients -‘5; By 5;- , and —"n-o are positive and if,

-

by by > Dby, (6ub)

T'or a typical helicopter, El is negative, and therefore is inherently
dynamically unstable. By inspection of the terms involved in the sbove
equations, it can be seen that the major effect of blade flexibility and

unbalance is shown in the factors Ev’ﬁ and, I-'G: , and

consequently —52. The values of"53, —:52 and 750 remain essentially un-
affected. For mass-overbalanced or aserodynamically under-balanced

blades ﬁ-y:;(l and ﬁz are increased and vice‘:\ versa. This is, therefore,
equivalent to increasing or decreasing the "heaviness" (coriolis effect)

of the blades, which is associated with damping in pitch of the rotor.

Expanding Eq. (63) there results

hd N ST LTt DT

(A o A
Z 83 A4y Nt b B (65)

where

a{f/ﬁ%‘%x/;g (65a)
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Setting 4 = O ylelds, for conventional type helicopters, one real root

anﬁ_one complex pair, say

Az =#7 2 L/,

(66)
/\J - ?/
Thus, the time history of the pitching motion is,
If m t ml e

:‘%@J=///e?"_/@e cosnt rhr e’ S t (67)

vhere /ﬁ - <
3és 92+25 9,25
By use of the boundary conditions, 5., = —.(, = O at t = 0, the
constents K, and K3 mey be evaluated and thereby :ﬂ‘z_@‘l
/
A similar approach may be used to determine '—4—‘“‘5&,@) « However,
/
since the characteristics of the motion can be seen by use of either i'-fgff_
or -'5"—;CéZ there 1is no need to presént, herein, the solution for :‘_éd:.(f'-/ R
o / . : /
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6. Procedure and Application of Method

To demonstrate the procedure and application of the method derived in
Section 5, a t'yfpica.l helicopter, equipped with aerodynamically underbalenced
blades, will be analyzed. The ajrcraft considered is the same as thet

snalyzed in Ref. 1, and has the following specifications,

W = 50004
R = 2k ft.(the serodynamic effective radiuvs)
b=3
c = 1.5ft. (the effective chord)
42 = 20.3 rad/sec
I, = 540 slug £t°
I,=0
wb = 102.2# (the weight of each blade)
Iy, = 5775 slug ftg (including blade mass et hub)
a = 5.75 per radian
€ = .00238 slugs-ft3
h = 6.25 ft.
§ = 0.018
7 - S€aRT = 12.65
-
)\4_=‘/mz = -0.0495
8y, = 62.7

hl = "00082 ft

K = 2300 ft.#/red

Co/k = -2.1,
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The step-by-step procedure is as follows:
a) Based on‘ the blade's mass and structural characteristics determine
@ (r). This may be epproximated by the first torsionsl mode shape of the
blade. For a uniform blade, @ (r) = sin 27¢ .
2R

b) Evaluate the mode shape integrals (pg.ra )

'8, = 0.63TR

2
§, = 0.MOSR
5, * 0.296R3
s =o.23mh

c) Determine the steady state values of © o? ,éa » and #6 from the

equations,
,4,-;—(9,,+-§/\4+ %/g} (53)

W =Frachb A"V&-f Fh~ 22 352 /) (37)

. : 2
i n (%) - B
thus,
o= 0.145
g, = 0.213
o= -0.06
\A RESTRICTED
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d) Evaluate the stebility derivatives Egs (50a) (52s), (sha), (55a),
(57a), and (58a).
Fae = 75,600 , g =-163
) Huy, = 1958 By, = -kals
, Hy = -970 . Hp = 3769
B, = -2175 Hy = -1761
Hél = -209.1 | HB]. = 2175
Ha, = 2825 ‘
Myo,, = 12,240 My,, = -26,530
Myo, = 5775 Mioy, = 23,559
Myod/ = 17,656 My, w °© -11,00k4
Myoy, = -1307 Myo, = -13,5%
Myo,, = 17,656
Myo,; = -101.9
Tay = -635.3 T, = 1008
Td, = 143.9 Ty, = -2921
Tb, = -292L T, -0
Ty, = -6761 T'a, = -2921
TYy, = -6761
: 'F',l = 2921
RESTRICTED
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My;, = -0.00765 My = 0.3272
My, = -0.1933 My, = -0.0623
My; = 0.0493 MYy, . -0.924

Myy = -0.924 -

e) Determine blade motion influence factors Eq. (59) .

L = 0.6008 N = 0.6008
D = 0.3154 A = -0.0127
F = -0.1037 H = -0.1772
M = -0.0128 J = 0.0493
P = -0.04k49 C = -0.0055

E = 0.0L7h

f) Evaluate staebility derivatives Eqs (60a) and (6la)

B, = 75,567 Wo,, = -208.2
o, = 2,009 Wy =12,554
By =-970 My, = 5775
B = 371.9. W, -
Hy, = -5000 Wy, = 31,250
Hy, = 5000

g) Determine characteristic equation coefficients Eq. (6k4)

=
3 ) p
5‘2 = 199.5 x 10
Fl = -l.Ol&l X 106
Fo = 62.77 % 106
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h) Determine roots of characteristic equation, 4 = 0.

A= 0.136

+ 0.422 1

Mg= -0.730

1) Evaluate K, Ka, and K3, Eq. (67)

K = 5.833

K, = "5 0833

2

K, = 11.969

3
J) Thus, the response is,

=, (t).
Bl '

«0.730t
- 5.833¢ 13

+ 11.969e
A graph of this response is

0.136%

-5.833e cos 0.422¢

0.136¢
sin 0.422%.

shown in Fig. 5.
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T. Effect of Blade Flexibillity on Automatic Control System Requirements

In generel, for the rapld subsldence of a disturbance of a helicopter,
periodic control displacements (which tilt the rotor tip-path plane
relative to the rotor shaft) in phase with fuselage.axtitude (=4, ) and
pitching velocity (demping) are required (Ref. 6). The first corresponds
to & kind of statlc stabillty and decresses the period of the motion.

The latter increases the period, and when spplied alone tends to prevent
8 further increase of the disturbance. Moreover, the latter has a
remarkable stabilizing effect when combined with the first. By proper

combination of the two any helicopter can be stabilized.

Since it has been shown that blade flexibility and unbalance
noticeably affects the damping in pitech of the helicopter, it is
reasonable to expect that these factors would also affect the automatic
control system requirements for stability. To demonstrate this fact,
consider a helicopter equipped with an attitude gyro system so as to
yield control displacements in phase with the fuselage attitude ('Z;Qb),

For this case, Eqs. (60) and (61.) are expanded to,

die Aie Fatn Pliay #3, HS3, +, A= T (0B ), =78, (60)

Lo My, + Lt /?ZA_*#-"?,/‘{%_;; + o, My, (69)

* 74 Lu = 755
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‘The coefficients of the characteristic equation become,

It is noticed that vhile pitch damping (My, = ) affects the coefficient by,
automatic attitude control (B,) affects the coefficient "B_l. The stability
condition Eq. (64b) may thereby be satisfied. It is interesting to notice
that without attitude control (Bq = O), stebility cannot be obtained. In other
words, incréa.sing the pitch damping of a helicopter can only lead to a

neutrally stable craft.

To quantitatively show how flexibility and unbalance affect the
auntomatic control system requirements, assume a system in which Ba = 0.09.

The coefficients (Eq. 70) for various values of mass unbalanced blades

becone,
I A2
2 L 5 _ — _—
T K 3 LA by LA

0 436 x 100 166 x 1;6 218 x 102 62.2 x 100
1.k 436 x 182 393 x 100 218 x 108 68.6 x 108
2.2 436 x 1 558 x 106 218 x 105 71.7 x 109
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The freguencies and demping factors of the fuselage oscillations are therefore,

2 .
:1-2 £ Damp. Tactor Frequency Time todhal(..f ) I(’eric)vcl
amplitude (sec sec
K Y ) et feeel
0 0.705 00 8.9
1.h =175 - 0.500 L 12.5
2.2 "0167 0.‘420 ll-.2 15.0

Thus, a neutrally stable machine of short period results when balanced or
rigid blades are assumed. The machine becomes more stable as the degree of
overbalance or flexibility lncreases. Finally a very satisfactory stable
oscillation of long period is obtained. In the case of underbalanced blades,
unstable oscillations would result. Thus, consideration of blade flexibility
aﬁd unbalance can often mean the difference between a satisfactory or

unsatisfactory automatic control system design.
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