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ABSTRACT 

The paoer presents an analysis of the 
stresses and strains in a fully clastic, rotating, 
annular disc that has initially uniform thickness 
and is inade of a strain-hardening material* This 
analysis is based on Tresca's yield condition and 
the associated flov; rule, and assumes that the 
elastic strains may be neglected in comparison to 
the finite plastic strains that are considered. 
The bursting speed of the disc is expressed in the 
form of a definite integral which involves the 
strain-hardening function of the material.  In 
general, this integral will have to be evaluated 
numerically, but analytical evaluation is possible 
for certain strain-hardening functions.  In par- 
ticular, it is shown that for linear strain-harden- 
ing instability can occur only at the onset of 
plastic flow, whereas for logarithmic strain-hard- 
ening considerable plastic deformation of a stable 
character may occur before the process of deforma- 
tion becomes unstable at the bursting speed. 

*The results presented in this paper were obtained in the course 
of research sponsored bv the Office of Naval Research under 
Contract N?onr-35d01, 

Assistant Professor of Applied Mathematics. 
2 
Professor of Ar-olied Mechanics. 
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NOTATIONS 

a0, bc initial inner and outer radii of disc, 

er,e ,e instantaneous (true) rates of strain in the radial, 
circumferential, and axial directions, 

hQ initial uniform thickness of disc, 

h thickness of disc during plastic flow, 

k, £, ra constants in logarithmic stress-strain relation 
Eq. (16), 

T» Initial radial ^M ct*anr*P of 3 pai^t^ c"l ©« 
O ** —   "*" ***,-* -*   * —• ~ — -*• i-—--*  •— j 

r radial distance of a particle initially at r , 

s ,s ,s^ nominal stress in the radial, circumferential, and 
w " axial directions, 

s* critical nominal stress (initial yield stress), 

u radial displacement of a particle, 

v radial velocity of a particle, 

a = Vao • 
e ,e ,e nominal strains in the radial, circumferential, and 

9    z axial directions, 

e* critical nominal strain, 

H = u/a0 , 

S = rVan> 
density of disc material, 

dr,d0,d     true stress in the radial, circumferential, and 
axial directions, 

c twice the critical value of the true shearing stress, 

w angular speed of the rotating disc. 
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(I)  Introduction 

The analysis of stresses and strains in elastic or 

partially plastic rotating discs has been discussed repeatedly 

[ 1 - 6 ] .  In these problems the strains are of the order of 

magnitude of elastic strains and may therefore be treated as in- 

finitesimal. As a consequence of this, the equations of equili- 

brium may be satisfied for the undeformed rather than the deformed 

disc.  Considerable simplification of the mathematical worv results 

from this approximation.  It would be unrealistic, however, to 

treat the strains as infinitesimal when the bursting speed of a 

strain-hardening plastic disc is to be determined.  In fact, as the 

angular speed of such a disc is gradually increased, considerable 

plastic deformation of a stable character may occur before the 

process of deforms ion finally becomes unstable at the bursting 

speed. 

Since the prediction of the bursting speei of a strain- 

hardening plastic disc requires the consideration of finite plastic 

strains, the analyst who has to forego the simplification resulting 

from infinitesimal strains will look for other possibilities of 

reducing the mathematical workc  Thus, Zaid [ 7 ]uses a deformation 

theory of plasticity rather than a flow theory, in spite of his 

realization of the questionable value of this typo of theory [8 ]• 

The alternative analysis offered in the present paper has recourse 

to other simplifying assumptions. Firstly, it is a^sunei that the 

elastic strains are negligible in comparison with the: plastic strains. 

•Numbers in square brackets refer to the bibliography at the end of 
the paner. 
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Secondly,   it  is assumed  thr.h  tho nfiat<?rial of the dire obeys Trosea's 

yield condition [9 ] and  the associated  flow rule [ 10 ]. 

(II)     TKSSCA'S  Yir.LD  CONDITION AND FLOW RULE 

In a rotationally symmetric stress field the principal 

stresses are the hoop stress d , the radial stress 0 , and the 

axial stress 0  . The principal shearing stresses therefore are 
z 

4 l<3g - dz I , 1 |d - 67 I, and *-|d - 0^,1 . According to Tresca* s 

yield condition, none of these principal shearing stresses can 

exceed a critical value that depends on the stage of strain-harden- 

ing of the material. Moreover, for plastic flow to occur, at least 

one of the principal shearing stresses must have the critical value. 

If only one of the principal shearing stresses has the 

critical value, the flow rule associated with Tresca's yield condi- 

tion stipulates that the instantaneous strain rate corresponds to 

pure shear in the plane of maximum shearing stress. The sense of 

this shear deformation must be "appropriate", i.e., it must corres- 

pond to the sense of the maximum shearing stress. 

If two principal shearing stresses attain the critical 

value, the flow rule admits any strain rate that can be considered 

as resulting from the superposition of appropriate states of pure 

shear in the two planes cf critical shearing stress.  It should be 

noted that in both cases the volume is preserved during plastic 

flow. 

To express this yield condition and flow rulo analyt- 

ically, denote by d/? the critical value of the shearing stress for 
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the considered state of strain-hardening, and by OQ, ••- , and e„, 

the instantaneous rates of extension in the circumferential, radial, 

and axial directions. For the state of generalized plane stress 

occurring in a thin, rotating disc, the axial stress or   is zero. 

Moreover, for an annular disc of initially uniform thickness, it 

may be tentatively assumed that the hoop stress o  and the radial 

stress 0 are tensile and that o~ everywhere exceeds o .  Under r w r 

these circumstances, Tresca' s yield condition and t.io associated 

flow rule lead to the folli wins relations: 

°0 = c  > dr > °»  dz = °» (1) 

er = 0,  ee = - oz > C. (2) 

Since <3    and e_ are thus known explicitly, the number of unknown 

functions is reduced and the analysis is thereby simplified. 

To complete the description of the assumed mechanical 

behavior of the disc material  It is necessary to formulate a lav/ 

of strain-hardening. For simple tension, Let the stress-strain 

diagram have the general shape of the line OAB in Fig. 1. The 

material remains rigid until the tensile stress s reaches th? value 

s*; during the ensuing plastic flow, the stress increases with the 

strain e according to 

s = fve). (3) 

The rate of strain-hardening ds/de has the initial value s*/e * 

(see Fig. 1) and decreases nonotonically with increasing strain. 

In ;^q. (3), s and e should be interpreted as the con- 

ventional stress and strain eoif.putc.-d with reference to the original 
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dimensions of the test specimen.  On the other hand, the quantities 

dS> °r> °z» d» °©» cr> cz ir'troducod above snoulc1 be interpreted as 

the '•rue stresses and strain rates; they are defined with respect 

to the dimensions in the considered state of deformation. 

It remains to discuss the application of the strain- 

hardening lav (3) to the states of stress and plastic flow occur- 

ring in a rotating disc. The state of plastic flow described by 

(2) is independent of the value of the intermediate principal stresj 

or. Moreover, this type of plastic flow is possible under Trcsca's 

flow rule when the state of stress is simple tension in the circum- 

ferential direction.  It is therefore reasonable to assume that 

Eq. (3) can be applied to the problem on hand, provided that s is 

interpreted as the conventional hoop stress s_ and e as the conven- 

tional hoop strain e^. 

(Ill)  FULLY PLASTIC DISC 

Consider a rotating annular disc of the uniform initial 

thickness hQ, the initial interior radius a0, and the initial ex- 

terior radius b0. From the elastic stress analysis it is known 

that, as the angular speed uof the disc is gradually increased, 

the yield limit is first reached at the interior surface.  At some- 

what higher speeds there will be an inner plastic region surrounded 

by an elastic region. Any flow that may occur in the plastic region 

would have to satisfy (?).  If v = v(r) is the distribution of the 

radial velocity at a generic instant during this plastic flow, the 

• 

radial strain rate is c„ = 3v/6r.  Since this must vanish according 

to (?), the radial velocity mu;;t be independent of r. Moreover, 
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sinco all clastic strains am neglected, th/5 ra^Hl displacement 

u at the elastic-plastic interface is zero.  This means that v and 

hence the circumferential strain rate e = v/r nust vanish through- 
0 

out the plastic region.  This region thus remains rigid until the 

elastic-plactic interface roaches th3 exterior surface of the dine. 

The angular speed UJ, at which this occurs is given by (see Ref. 6, 

p. 103, Eq. 9.53) 

J  = Jjs! bo ' a° 
Do       a0 

where p is the density of the disc material.  The fully plastic 

stress distrioution at the onset of plastic flow is readily analyzed 

(see Ref. 6, p. 10*+, Eq. 9.59 and Fig. 9.5).  It is found that, at 

this instant, the radial stress nowhere reaches the yield stress 

regardless of the values of b0 > a0 > 0. Thus, (1) and (2) apply, 

initially at least, during the ensuing plastic flow. 

Let rQ denote the initial radius of a particle that is 

found at the radius r when the speed is w. If the radial displace- 

ment is denoted by u, then 

r = rQ + u. (5) 

Here, r and u may be considered as functions of the independent 

variables rQ and ur.  (It is convenient to use w^ rather than u>, 

since the sense of the plastic flow is independent of the sense of 

rotation or the sign of the angular speed.) 

As has been shown above, the first Eq. (2) requires 

that all particles have the same radial velocity at zny  fjiven instant, 
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p 
This implies that the radial displacement depends only on w" but 

not on rQ.  Thus, the material bounded in the undefo^-.ed state by 

the coaxial cylinders of radii rr and r0 + drQ undergoes the radial 

displacement u and is then bounded by cylinders of radii r = r0 + u 

and r + dr = r + dr0 in the deformed state.  Simultaneously, the 

original thickness hQ decreases to h.  Because of the incomprcssi- 

bility of the material, hQr0dr0 = hrdr or, since dr = dr0 

h = h0 1° = h0 -la—  . (6) 0 r   ° r0 + u 

The true radial stress 3  is transmitted across a 

section that is proportional to hr.  Since hr = h0rc, by (6), the 

conventional and true radial stresses have the same value: dp - sp. 

The true circumferential stress d0 is transmitted across a section 

that is proportional to hdr; the corresponding value in the unde- 

formed state is h.dr = h^dr. 
o  c    u 

stress is therefore given by 

formed state is h„dr = h^dr.  The conventional circumferential 
o  c    u 

sG=dQh. (7) 

-Jo 

This stress is relate I to the conventional circumferential strain 

ea»JL (8) 
0  r0 

by an equation of the form (3). 

^he equation of equilibrium in the deforced state is 

- a 
r = hdQ - hpj^r

2. (9) 
or      w 

With reference to the undeformed state this equation may be written 

as follows; 

"1 
t 

i 
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-efr-= s© -pw ro(ro 4 u> 0 

= f(JJ-) - pu)2ro(r_ + u) 
TV 0  O 

(10) 

Since s vanishes at the interior and exterior surfaces of the disc, 
r ' 

i.e., for r0 = aQ and rQ = bQ, the integral of the right-hand side 

of (10) between the limits a and b must vanish. With a = bQ/n , 

r\   -  u/aQ, and 5 = rc/ao> this condition yields 

 r  =  > 5  . (11) 
2(aJ - 1) * 3n(a  - 1) 

Eor a known strain-hardening function f and given 

initial dimensions, the right-hand side of (11) must be evaluate!, 

analytically or numerically, for a set of values of q = u/a0. Each 

such evaluation furnishes one point of the plot 3  vs. u. For 

rj - 0, in particular, f(0) = s* and the integral in (11) equals 

(a - l)s*. Equation (11) therefore yields the correct value (U) 

for the angular speed at which plastic flow begins. 
o 

As long as an increase in W is required to produce an 

increase in u the considered plastic flow is stable. The bursting 

2 
speed u)p corresponds to the maximum of the curve u> vs. u. 

The preceding analysis is based on the assumption that 

the radial stress d  is smaller than the circumferential stress <?_.. r 9 

A formula for the maximum radial strops occurring at a given speed 

w can bn obtained by carrying out the differ ntiation on the left- 

hand side of (10) and equating 9sr/3r. to zero. Thus, 
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2 
max s  ss s- - o u\ r   (v    •*• u i. (12) 

where r0 is now the initial value cf the radius at which the maximum 

of sv  occurs. Equation (12) shows that oven this maximum of s is 
* r 

smaller than the corresponding value of s~.  Now, <J  = s and 
©     ' r   r 

OQ > SQ, by Eq. (7). The maximum of <*T  is therefore smaller than 

the corresponding value of <3ft. 

(IV)  LUCAS STRAIN-HARDENING 

As a rule, the integral in (11) must be evaluated 

numerically, but strain-hardening laws can be devised that mal'e 

analytical evaluation possible.  The simplest law of this V1r,d 1s 

represented by the line OAC of Fig. 1. With 

f(e) = s*(l + e/e*), (13) 

Eq. (11) yields 

2 9 
pa0w    a - 1 + (r,/e*) log a 
6S*  

=  3 2  • (14) 

2(aJ - l) + 3n(a  - 1) 

Differentiation of (l1*) with respect to r\  shows that d(w2)/dn = 0 

when 

e* = 2(a
2 4 a + 1) log a # (]?) 

3(a  - 1) 

Equation (15) establishes the critical rate of linear 

strain-hardening. For a given value of a = b0/a_, the strain-h.-.rd- 

ening parameter c* (see Fig. 1) must not exceed the value (15) if 

plastic Reformation is to be stable.  In Fig. 2, e* as given by 

(15) is plotted versus a.  As a—) 1, i.e., as the width of t'.c 

1 
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annulus tends towards zero, the critical value of e* tends towards 

1. This result is familiar from Laszlo1s paprcr fll ]. 

The sign of d(ur)/dT} as found from (lU) does not change 

with increasing q. This means that for linear strain-hardening in- 

stability can occur only at the onset of plastic flow.  A disc that 

starts to flow in a stable manner will continue to do so as the 
i 

;       angular speed is increased. 

(V)  LOGARITHMIC STRAIN-HARDENING 

Another strain-hardening law for which the integral in 

(11) can be evaluated analytically is given by 

f(e) = k log (£ + me), (16' 

where k, -t, and ra are constants. These may be chosen so as to fit 

an experimental stress-strain curve. With the function (16), Eq. 

(11) yields 

? 2 
pa0-t<j    (a-t + mT))log(a^ 4 mq) - (I + mq)log(-t 4 mq) - ot-t log a 

2(aJ - 1) 4 3n(a  - 1) (1?) 

Figure 3 shows the actual stress-strain curve* for 

A-t 2s-S-Tl+ in sinplc tension (full line) and the curve obtained from 

Eq, (16) with k = 9,780 psi, I  = 77, m = 8,060, Figure h  shows the 

left-hand side of (17) vs. r\   = u/a0 for a= b0/ac = 2. The bursting 

speed w9 is obtained from the maximum point of this curve.  As can 

be seen, the disc bursts for r\   = r\     •=  0.25.  Since f] = u/a0, and 

•The authors arc indebted to Professor E. D'Appolonia, Carnegie 
Institute of Technology, Pittsburgh, Fa., for the use of this curvo. 
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e = u/r , e = q a /r • and since the maximum nominal hoop strain 

occurs at r„ = a^, the disc v/ould burst at a hoop strain of 251. o   o' 

From Fig. 3» it can be seen however, that this hoop strain is be- 

yond the range of validity of the experimental stress-strain curve. 

A more realistic picture is obtained by integrating the right-hand 

side of (11) numerically, using the experimental stross-strain 

curve in Fig. 3 (full line) as s = f(e). Figure 5 shows a plot of 

? 2 
pa u /6s* (where s+ is as indicated in Fig. 3) vs. r\ , for a = 2. 

Again, the bursting speed, u_, is obtained from the maximum point 

of this curve, which occurs at r\  = r\     -  0.1*+, and thus at a maximum 

nominal hoop strain of lk%.    This maximum strain occurs before 

necking takes place in the tost specimen, and  thus is in tho range 

of validity of the experimental stress-strain curve. The results 

just obtained illustrate the fact that, for logaritlimic strain- 

hardening as well as actual strain-hardening of a similar type, 

there is a considerable range of stable plastic deformation before 

bursting occurs. 
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