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SURVEY

In the advanced course which ! have been giving this term, I have been treating
the energy band theory. I had hoped to get further; but it has taken the entire term to
cover the material. This includes just Chapter 1 of the proposed report on "Electronic
Structure of Solids'. Under the circumstances, it has seemed best to include just this
chapter on energy bands in the Technical Report No. 4, and this report, including also
a bibliography of papers on energy bands, is being prepared for the printer, and should
be sent out not long after this Progress Report. I had hoped also to treat the use of
Wannier functions in discussing lattice imperfections and excitons, and various applica-
tions of configuration interaction in solids, including ferromagnetism. Since this ma-
terial was not covered, I shall propose to take it up in a continuation of the same course
in the fall, and shall write the proposed additional chapters of the report on '"Electronic
Structure of Solids' at that time, bringing them out as a further Technical Report No. 5
at a later date.

This course on the theory of energy bands has furnished an occasion for exam-
ining the relative merits of the various methods in current use for studying ene:gy
bands. The conclusion to which we have been led is that the orthogonalized plane wave
method, perhaps modified to Herman's "augmented orthogonalized plane wave method',
is the most promising method at present for accurate numerical work. Parmenter's
attempt to apply the tight binding approximation accurately to chromium has shown the
almost impossible complexity to which that method leads when we try to apply it accu-
rately; the orthogonalized plane wave method seems clearly simpler. Parmenter ac-
cordingly is looking into ways of applying this method to chromium. =

The great drawback of the orthogonalized plane wave method is that it is not
readily adaptable to values of the propagation constant other than a few special points
in the unit cell, such as the center of the Brillouin zone and a few other points. The
reason is that at these symmetry points, a number of plane waves must have identical
coefficients, so that the number of distinct coefficients is relatively small, even for a
sum of a large number of plane waves, and we do not face a very difficult secular equa-
tion. A method of interpolation between these symmetry points is highly desirable.

With this in mind, it occurred to me that the tight binding approximation might furnish
a good interpolation method, if the various integrals which occur in it were regarded as
disposable parameters, rather than quantities to be calculated from wave functions and
potentials. Dr. Koster and I have been examining this possibility, and it seems very
encouraging. In particular, we have carried through a study of the diamond lattice,
fitting the points determined by Herman by the orthogonalized plane wave method, and
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(SURVEY)

our solution, which describes both the valence and conduction band, seems very likely
to be rather close to the truth. We find that we can get this fit by using only nearest \
and second nearest neighbor interactions, and including no three-center or overlap in-
tegrals; there are enough rernaining integrals to use as disposable parameters. For-
tunately, the integrals derived by fitting Herman's values have entirely reasonable
values, having the correct signs and relative magnitudes, so that this procedure seems )
entirely reasonable. We are carrying this method further, considering somewhat more
complicated crystals. This work is report partly in the present Progress Report, part-
ly in Technical Report No. 4. We are indebted to Dr. F. Herman, of R.C.A., for
valuable help in this problem; he has also been independently considering the tight bind- '
ing approximation for interpolation purposes.

The work on a two-electron model of ferromagnetism, on which Drs. Statz and
Koster and I have reported in the two preceding Progress Reports, has been written up
for submission to the Physical Review. Drs. Statz and Koster give in this Progress
Report a two-dimensional model, coming a little closer to the truth than the one-dimen- '
sional model which I presented in the preceding Progress Report, and which is partly
incorporated in the Physical Review paper. As for future work on this theory, we feel
that we want to get closer to the actual structure of a ferromagnetic metal, such as
nickel, and this demands knowing something about the Wannier functions and energy
bands. We are delaying work in this direction, on account of the feeling that the tight l
binding interpolation method, which I have just been describing, may well be adapted
to such energy bands, and to the Wannier functions to be formed from them. Dr. Ki-
kuchi, meanwhile, is looking at a very simplified two-atom model, in the hope that he
will find a ferromagnetic ground state which may well have analogies to the ground state ‘
in more complicated systems.

Dr. Pratt continues to work on the problem of antiferromagnetism, which is
one of the most intricate problems which we face. His two communications, anc one of ;
Dr. Koster on an extension of Hund's rule, all have a bearing on this problem, whose ‘
status is something of the following sort. We have examined a number of models; and
the difficulty which arises i{s that there {s a great tendency for a ferromagnetic, rather
than an antiferromagnetic, state to lie lower. This is probably a result of the method 'l
of approximation, but It Lliustrates thc extreme sensitivity of the problem, and the need
of examining it very carefully before we really understand the validity of the various
approximations. In particular, Koster shows that Hund's rule, stating thet the ferro- ‘
magnetic state will lie lower, holds for any case, molecular as well as atomic, in
which our configuration interaction problem is an ordinary spin degeneracy problem
between orthogonai orbitals. i’robably as a result of this, Pratt finds that the model
which he has set up of a triatomic molecule (MnOMn)M has a ferromagnetic state as
its ground state, though we had hoped that we should find an antiferromagnetic ground ]




(SURVEY)

state, and so an explanation of superexchange. We are not satisfied, however, that
this result {s correct, for very likely a much more extensive configuration interaction
is needed to lead to a possible antiferromagnetic ground state.

The writer suspects that the actual situation is the following. He has pointed
out on several occasions that the effective potential energy in which an electron of +
spin moves may be different from that for an electron of - spin: on account of exchange
effects, the electron of + spin has a lower potential energy when it is in a distribution
of charge of other + electrons, and a higher potential energy when surrounded by elec-
trons of - spin. If we then have an antiferromagnetic configuration of (MnOMn)’ *, the
spins on one of the Mn ions (which will certainly all be parallel to each other in the
ground state, by Hund's rule for the Mn ion) will point in one direction, say +, while
those on the other Mn ion will point ir. the other direction, say -. An electronof +
spin, then, will find a lower potential well in one Mn ion than in the other. This will
hold for the electrons of oxygen, as well as for those of the manganese. Thus the elec-
trons of + spin in the oxygen will find themselves effectively in a strong field, pulling
them toward the manganese ion with + spin, while the electrons of - spin in the oxygen
will find themselves in an equal field in the opposite direction. These electrons will be
polarized by these fields, just as if the fields were ordinary electrostatic fields, and
this will reduce the energy of the molecule. A corresponding polarization will not occur
in the ferromagnetic case, for then the electrons of each spin, in the oxygen, will find
themselves etfectively in zero field. The writer suspects that it is the lowering energy
on accolunt of this polarization which stabilizes the antiferromagnetic state.

This picture of the role of the oxygen atoms supplements the remarks made
by the writer several years ago, regarding the alternating potential in which an elec-
tron finds itself, in an antiferromagnetic crystal. It was pointed out that this alternat-
ing potential would split the energy bands apart, the unit cell in the crystal being twice
as great as ordinarily considered, and that in some cases we could well have the lower
band filled, the upper one empty, thus explaining the non-conducting properiies of cer-
tain antiferromagnetic crystals which otherwise would be thought to be conductors.
But this argument by itself does not show why the antiferromagnetic crystal has a lower
energy than the ferromagnetic arrangement. Dr. Pratt reported some time ago on hav-
ing looked into a one-dimensional model of such a system, and he found the ferromag-
netic state to have the lower energy. It now seems likely that the presence of the oxy-
gen is required to stabilize the antiferromagnetic state, in the way described above,
though the splitting of the energy bands would take place just as described earlier by
the writer.

The problem is then simply to find the correct way to describe this polarize
tion of the oxygens. This could be done by a configuration interaction with excited
states of the oxygen atom, but this i{s a notoriously poor way to describe polarization,
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(SURVEY)

from the point of view of convergence. It is much better to modify the wave function,
in the way which Mr. Allen is investigating, using a single determinant made of orbit-
als which are distorted as they would be in the presence of a field. In our case, the
oxygen orbitals corresponding to electrons of one spin would be distorted in one direc-
tion, those corresponding to the other spin in the other direction, so that they would no
lecnger be identical to each other. All this is easier to describe in simple language,
than it is to carry out in detall. For one thing, we are dealing with a singlet state of
the molecule, and we cannot say in any proper way that the spin of one manganese ion
is pointed in one direction, that of the other ion in the other direction; the true wave
function is a combination of wave functions of the two manganese ions, with a variety
of orientations. The process of building up the wave function out of determinants is
extremely complicated, on account of the many electrons involved; it is this part of
the problem that Dr. Pratt is handling by his operator method. Finally, if the sus-
piclons regarding polarization are correct, it may be necessary to use non-orthogonal
orbitals, and the technique for doing this properly, without neglect of the overlap in-
tegrals, which may be the essential feature in the problen., is very complicated. The
problems which Dr. Pratt i{s facing are not so much problems of visualizing the quali-
tative nature of the solution, as those of formulating the solution in mathematical lan-
guage in which we are sure that we are not throwing away the essential terms by mis-
take. A simplified model which he has been considering, sir.ce treating the cases
described in this Progress Report, gives hope for thinking that we are on the right
track in our thinking about the polarization of the oxygen.

The various investigations into molecular structure are progressing. An im-
portant result of our consideration of configuration interaction has been the conviction
that there are very few cases simple enough to handle by a complete configuration in-
teraction. If we use only a partial configuration interaction, it then is very important
to have good molecular orbitals to start with. There are very few cases in the litera-
ture in which really good calculations of molecular orbitals, by a self-consistent
method, have been carried out. Accordingly, Dr. Meckler has considered the possi-
bility of mechanizing the problem of determining self-consistent LCAO molecular or-
bitals, and has found a way to do it on the Whirlwind Digital Computer, which he de-
scribed in the present Progress Report. If this procedure can be actually put into
operation, it might mean an important advance in the problem of finding molecular
orbitals.

The mechanization of the calculation of the integrals needed for the water
problem, by Koster and Schweinler, is proceeding. This calculation, Meckler's on
ethane, Kaplan's on ammonia, Barrett's on fluorine, and Corbato's on HF, all tie in
together in the calculations of integrals, and general procedure, and are all progress-
ing, though slowly. Unfortunately the calculation of HF by Mr. Merrifield, reported
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on in preceding Progress Reports, had to be discontinued at a point where it had not
yielded uceful numerical results; a continuation of this progiam is being studied by
Mr. Corbato. Various other somewhat disconnected pieces of work are under way,
as will be evident from the Progress Report.

There has been one change in the personnel of the group since the preceding
Progress Report: Dr. Statz has left the group to join the staff of the Raytheon Manu-
facturing Company. Fortunately, he will still be in the neighborhood, so that he will
be able to join in the general scientific activities of the group. Various other changes
in personnel are in prospect for the summer and the next academic year.

J. C. Slater
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1. A SIMPLIFIED TIGHT BINDING ME1THUD FOR ENERGY BANDS

Among all the methods which have been used for studying energy bands, the
tight binding approximation, or Bloch method, has nne outstanding advantage: it gives
simple analytical formulas for the energy as a function of the propagation constant. It
has compensating disadvantages, however: to carry it through really rigorously, tak-
ing into account all three-center integrals, overlap integrals, and other complicating
features, is practically impossible, as Dr. Parmenter's attempt to apply it to the en-
ergy bands of chromium has shown. It has occurred to the writers, however, that the
method could be extremely useful as an interpolation method, for getting the energy as
a function of propagation constant in a case where accurate values of the energy were
known at certain symmetry points in the reciprocal space. This method has been writ-
ten up in fair detail in the Technical Report No. 4, which will appear shortly, and for
that reason only a sketch of the work so far done will be given in this Progress Report.

Of all methods which have been used up to the present for energy bands, the
orthogonalized plane wave method seems to the writers to be probably the one best
adapted to getting accurate values of the energies. The study which Herman(l) has
made of diamond and germanium gives one the feeling that the results are very reliable;
particularly the indication that the method is converging rapidly as more and more
terms are added to the series {s very encouraging. On the other hand, the orthogonal-
ized plane wave method is not well adapted for calculations except at particular sym-
metry points in the reciprocal space. The reason for this is very simple: at a sym-
metry point, many plane waves must have iaentical coefficients, so that the number of
independent coefficients is far less than the number of plane waves which are being
superposed to get an approximate solution of Schrddinger's equation. Thus, for in-
stance, the greatest number of independent coefficients which Herman used in his study
of diamond was 16, so that he had to solve a 16-by-16 secular equation; but the wave
function in this case was made of 146 plane waves. For a propagation constant not
having special symmetry, we should still need 146 plane waves to get comparable ac-
curacy, but now there would be no special relations between their coefficients, and a
146-by-146 secular equation would be required, which of course would be beyond our
present capabllities.

We are then faced with a situation where we have very good energy values for
certain values of the prcpagation constant, without an equally good way to interpolate
between them. For instance, in the cases of dlamond and germanium mentioned above,
we have values for the center of the central Brillouin zone, and for the boundaries of
the zone along the 100 and 111 Jdirections. It has now occurred to Herman, (2) as well
as to the writers, that it might be possible to use a very much simplified tight binding
method, but to choose the parameters entering into this method, not by direct calcula-
tion from atomic wave functions and potentials, but by regarding them as arbitrary
parameters, to be chosen so as to fit the values which were accurately known. We
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(A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS)

might then hope that the solutions of the tight binding problem would give acceptable
interpolation values for the energy. Since we are using the method only for interpola-
tion, we can afford to make simplifications which would be entirely inadmissible if we
were using it for an original calculation: we can disregard interaction integrals between

distant neighbors, we can neglect all integrals except two-center integrals, and all over-

lap integrals. We still keep enough terms, however, to have enough disposable con-
stants to fit the values which we assume known; and of course we must keep such terms
that we have a good hope that the calculation will agree with the correct one to an ade-
quate accuracy.

To illustrate the method, we have made a fairly complete study of the diamond
crystal, fitting our constants to Herman's values. We start with the two interpenetrat-
ing face-centered cubic lattices which form the diamond crystal. We form Bloch waves
from s, Py py. P, orbitals on one of the lattices, and similar waves from the same
orbitals on the other lattice. We have, then, eight Bloch waves, and we set up a secu-
lar equation between these eight function for a given value of the propagation constant.
In this secular equation, we disregard all overlap integrals between atomic orbitals on
different atoms. The matrix components of energy involve integrals of the form

"(r) H ¢b(r - R) dv, where ¢_ and ¢, are two atomic orbitals, (for instance, an s
and a py orbital), Ris one of the displacement vectors from one atom to another, and
H is the one-electron Hamiltonian operator of the periodic potential problem. It is
well known that this integral can be reduced to a sum of integrals of the form [¢_*i t-'.)
V(r - R') ¢b(r - R) dv, where the potential H is expressed as a sum of terms V(r - R')
spherically symmetrical potentials about the atoms located at positions R' to an ap-
proximation which is sufficient for the present purposes. The integral above is a
three-center integral, provided R and R' are different from each other and from zero.
We disregard all such terms, and consider only the two-center integrals where R
equals R or zero. Then our integrals are like those found in a diatomic molecule. We
can simplify them by expanding the ¢'s in terins of functions quantized with respect to
the axis R of the pair of atoms. Thus {f we are dealing with p orbitals, we have po
and pr compnanents with respect to the axis. We have non-vanishing integrals only if
both ¢ - and ’b have the same component of angular momentum about the axis; that is,
if both are ¢, or w, or 6 functions. We have integrals, then, of types which can be
symbolized by the azimuthal quantum numbers of both orbitals (denoted by s or p in
this case), and by the component of angular momentum about the axis (¢ or w in this
case). Such integrals can be denoted in an cbvious way as (ss¢), (spe), (ppe), (pp=),
and depend of course on whether we are dealing with nearest neighbors, next nearest,
and so on; this can be denoted by subscripts 1, 2, etc. It is these various integrals
which we regard as the disposable parameters of the problem.

We have set up formulas for all matrix components of energy, diagonal and

-7~




(A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS)

non-diagonal, between the various Bloch functions in terms of these integrals. We
then have, in our case of diamond, an eight-by-eight secular equation between the
Bloch functions. This equation can be easily solved analytically at the required sym-
metry points, and we can get solutions involving nothing worse than a biquadratic equa-
tion along the 100 and 111 directions. We can now try to fit all of Herman's values at
the symmetry points. We find that, using nearest and second nearest neighbors, we
do not have quite enough disposable constants to fit all of these values. However, we
can adjust the constants to fit them all with only small errors. In other words, there
are relations between Herman's values which almost, though not quite, make tnem
compatible with a solution involving only second nearest neighbors. When we do this,
the resulting constants are interesting, in that the integrals for second nearest neigh-
bors come out much smaller than those for nearest neighbors, suggesting that we
really have a convergent process. The integrals for nearest neighbors have the signs
and general magnitudes which we should expect; for instance, (ppw), the interaction
between prw orbitals on the two atoms, comes out considerably smaller numerically than
(ppe), the interaction of po's on the two, as we should expect since the pe's overlap
more.

When we use these constants, we then can get solutions for other points of the
momentum space; we have carried out solutions along the 100 and 111 directions (ex-
cept that we have so far not solved for the states which require a biquadratic equation).
The energies resemble the interpolations which have been used by Herman in his papers,
but differ in some respects; these solutions are given in Technical Report No. 4. The
qualitative behavior of the solutions is as given by Herman. Also the solutions in the
neighborhood of the degeneracies, as in the neighborhood of the three-fold degenerate
states at Kk = 0, have the behavior which we must expect from symmetry, and which
has been described by Shockley. (3)

The method which we have described for diamond will be recognized as essen-
tially equivalent to that proposed by Morita. (4) His formulas for the matrix components
of energy are essentially like ours, except that he does not express his integrals in
terms of our quantities such as (sse¢), etc. He finds his integrals from atomic orbitals
and potentials. We have worked backward from Morita's published values of his in-
tegrals, to see the values which he must have found for the various integrals which we
have determined by fitting Herman's values. In doing so, we have observed what ap-
pears to have been an error of some sort in Morita's integrals. Specifically, he finds
a numerically greater value for his integral which we denote by (ppr) than for (ppe),
contrary to our findings, and contrary to what one would expect from straightforward
calculation. This apparent error in Morita's calculation seems to explain another fea-
ture of his results. He found that the lowest energy in the conduction band, for Kk = 0,
came from an s-like rather than from a p-iike state, contrary to Herman's result. We,

-8-




(A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS)

however, have been able to find values of the integrals which not only put the levels in
the same orler as found by Herman, but agree quite well quantitatively with Herman's
results. We feel, therefore, that the doubts about the tight binding approximaticn ex-
pressed by Herman in the reference quoted are not justified.

A different sort of tight binding approach has been carried out by Hall, (5)
though he does not like to adrit that his method is really a tight binding calculation.
He starts with what he calls equivalent orbitals. We can describe these in the following
fashion. We start with tetrahedral directed orbitals on each of the atoms of the crystal,
directed toward the neighboring atom. We then make a symmetric combination of the
two directed orbitals at the two ends of each bond, and call this symmetric combination
an equivalent orbital. We have four such equivalent orbitals per unit cell of the crystal,
so that we can make four Bloch combinations of them. We then can set up matrix com-
ponents of the energy between these four Bloch functions, and can solve a four-by-four
secular equation between them. This secular equation will have four roots, which may
be expected to describe the four levels in the valence band of diamond. It is this secu-
lar equation which Hall has considered.

The results which he has found are not in good agreement with those of Her-

man; in particular, Hall, like Kimball and Hund and Mrowka(b) with the cellular approxi-

mation, finds a doubly degenerate state whose energy is independent of the propagation
vector, whereas Herman finds that the energy of this state is a function of i-x., and it is
split in certain directions; our tight binding calculation agrees entirely with Herman in
these respects. One way of describing this shartcoming of Hall's treatment is that he
takes into account only interactions of nearest neighbors; if he considered more distant
neighbors, he could get a suitable behavior. In fact, Herman‘” has found it possible
to get a good fit with his values by making up equivalent orbitals like Hall's, and using
sufficiently distant neighbor interactions. The interactions must be assumed significant
out to considerably more than the second nearest neighbors, however, which are the
only ones which we need use in our method of fori.ulation, in which we get the conduc-
tion band as well as the valence band from and eight-by-eight secular equation.

One can easily convert Hall's calculation into one equivalent to ours, and it is
tnstructive to see how this is to be done. Just as Hall has set up four Bloch functions
from the symmetrical equivalent orbitals, we could make antisymmetric equivalent or-
bitals, and make four Bloch functions from them. The four-by-four secular equation
resulting from these would give a description of the conduction band. But we should
find that there were non-diagonal matrix components of energy between the four Bloch
lunctions formed from the symmetric orbitals, and the four formed from the antisym-
metric orbitals. These non-diagonal matrix components vanish for Kk = 0, but become
larger as we go out in the Brillouin zone. 1f we now consider all eight of these Bloch
functions, and the eight-by-eight secular equation between them, we can show that it is
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(A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS)

equivalent to the problem as we have set it up. We can get satisfactory results in this
case by considering only nearest and second nearest neighbors, while to get satisfactory
results from Hall's procedure we need terms coming from more distant neighbors. The
easiest way to remove the zero-width bands, then, is to consider interaction between
the valence and conduction band. The point is that except at l-c.z 0, the wave functio.'s
of the valence band are not constructed entirely from the syminetric combinations of
orbitals on the two lattices, and the conduction band entirely from the antisymmetric
combination; closer examination of the wave functions shows that the phase difference
between the waves on these two lattices changes from zero or 180°%at k = 0 (for the
symmetric and antisymmetric solutions) to 90° at the edges of the band, a situation
which can be described by Hall's method only with difficulty.

We are examining the tight binding approximation further, and hope to come
back to the relation between it and the Wannier functions for overlapping bands.
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2. ENERGY BANDS IN CHROMIUM

The original plan of calculating electronic energy bands {n chromium, reported
in previous Progress Reports, involved expanding the valence-electronic wave functions
as arbitrary linear combinations of orthogonalized plane waves plus 3d Bloch functions.
Each 3d Bloch function was to be a so-called Bloch sum of 3d atomic orbitals associated
with the isolated chromium atom. In calculating matrix elements of the crystal poten-
tial between two 3d Bloch waves, there arise terms involving three-center atomic in-
tegrals (the one-electron integral of a product of an atomic potential centered on one
lattice site and two 3d atomic wave functiors centered on two different lattice sites).
Because of the difficulty in accurately calculating three-center integrals, the above
scheme is not feasible as it stands.

Let us snppose, however, that the 3d atomic orbitals are modified in such a
way that they vanish at distances greater than one-half the nearest neighbor distance in
chromium. All three-center integrals wil! now vanish, and there will be no difficulty
in calculating matrix elements of the crystal potential. Such a method should be general-
ly useful among the transition elements. It has been suggested by Herman(l) that the
same method (which he calls the augmented orthogonalized plane wave method) should
be more rapidly convergent than the orthogonalized plane wave method alone when deal -
ing with valence crystals (such as diamond) or semiconductors (such as germanium).
With regard to transition elements, the motivation of the AOPW method is to represent
by orthogonalized plane waves that portion of the crystal wave function resulting from
both 4s atomic orbitals and the overlapping portions of 3d atomic orbitals and to repre-
sent by Bloch waves that portion of the crystal wave function resulting from the non-
overlapping portions of the 3d atomic orbitals.

The method to be used in mcdifying the 3d atomic orbitals is more or less ar-
bitrary, of course, but the following method, which has been used on chromium, seems
physically reasonable and probably can be used whenever the AOPW method is applica-
ble. Let us construct an atomic orbital by numerically integrating Schrddinger's equa-
tion with a Hamiltonian containing the crystal potential, the numerical integration start-
ing at any nucleus of the crystal. Since we desire an orbital of definite angular momen-
tum (2 = 2), we must use the spherical average of the crystal potential in Schrodinger's
equation. This spherical average can be approximated by the isolated-atom potential
V(r) for r < R and by the constant V{R) for r > R. The radius R is chosen such that
V(R) = <V(r)>, where <V(r)> is the average value of V(r), averaged over the unit
cell of the crystal. It seems reasonable to take the orbital equal to the isolated-atom
3d orbital for r < R; i.e., we use the energy of the isolated-atom 3d orbital as the
energy used in numerically integrating Schrddinger's equation. For r > R, the numeri-
cally integrated orbital will deviate sharply from the isolated-atom wave function since
the spherical average of the crystal potential is lower than the isolated-atom potential.
This will result in a radial node in the orbital at some value of r which is approximately
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(ENERGY BANDS IN CHROMIUM)

equal to one-half of the nearest neighbor distance in the crystal. (For chromium R =
1. 55 atomic units, the radial node in the numerically integrated orbital occurs at 2. 80
atomic units, while one-half of the nearest neighbor distance is 2. 36 atomic units.) By

cutting off the numerically integrated orbital beyond the radial node, we have formed
a modified 34 orbital suitable for our purposes.

Reference

1. F. Herman, Ph.D Thesis, Department of Physics, Columbia University, January,
1953, p. 40,

R. H. Parmenter
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3. A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM

In the previous two Progress Reports, J. C. Slater.( ) H. Statz, (2) and G. F.
Koster( ) have discussed a two-electron example of ferromagnetism. In this Progress
Report we apply the same methods to a simple two-dimensional case. This case fur-
ther confirms the necessity of degenerate bands for ferromagnetism and also illustrates
some of the techniques which would be useful in a more detailed discussion of ferro-
magnetism.

A two-electron function in a crystal may be expanded in terms of products of
Wannier functions associated with the various energy bands of the crystal.

WELT) = L URL R ) e - Ry, - R ) (3.1)
,),m,n

Here i refers to the band from which the Wannier function ay arises, r, and r are

the coordinates of the two electrons, and R is one of the primitive translylations of the
crystal. We know, however, that the symmetry properties of a wave function depend
only on the invariances of the Hamiltonian and not on the number of electrons the wave
function describes. We expect therefore that all the discussion of the irreducible rep-
(4) (s) will be applicable here. In

particular, we are able to define aLg( &ctor which expresses the fact that our two-

resentations of the space groups by Seitz and others

electron wave function goes into ¢ P times {tself under translation through ﬁ
This allows us to write our U (ﬁ R ) in a simpler form
T & ﬁn * ﬁm
= 2 =
Uij(ﬁn. R)=e FR_-R ) (3.2)

More can be said since we know that our Wannier functions may have certain symmetry
properties. Let us see how this influences our F's. We restrict our attention to l-(. = 0.
(The following arguments could be easily carried out for other K values.) We must
first see what effect some operation a of our point group has on the wave function since
we know that the wave functions for l-(‘ = 0 must form irreducible representations of the
point group of the crystal. It can easliiy be seen that

- - - -l - -
ag(r,, rp) = 1.j§> - Fla™ R )aa(F) - R ) aay(r, - R+ R) (3.3)

Here aat(;) is the Wannier functior. which results from applying the operation a to
ai(;)' a-1 ﬁm is the primitive translation arrived at by applying a”~ o ﬁm. Since we
know the transformation properties of our Wannier functions from Eq. (3. 3) we are

able to get relations between our F(ﬁm)’s. This is most easily seen by a simple example.
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

Assume that our two-electron wave function is derived from the Wannier functions of a
single non-degenerate band for which ua(x?) = a(r) is true for all a. Let us look for
the twc-electron wave function that forms a completely symmetric representation of
our point group (“'(:l’ ;z) = q;(}’l, :2): for all a). By applying these relations to Eq.
(3.3) we get

- - -1 - -
p,zm F(ﬁm) a(x‘l - -R’p) a(rz - -R’p + Km) = p'zx:n F(a Km) a(x‘l - ﬁp) a(x‘z - Kp + Km)
(3. 4)

therefore F(ﬁm) = F(a~ 1 Km)

The additional symmetry property of our two-electron wave function concerns its value
of total spin. This is determined by the relation

F(-iz’m) =t F(itm) (3.5)

The - sign refers to the triplet and the + sign refers to the singlet.

Let us now apply the prece :ing discussion to a two-dimensional square lattice.
We wish to determine our F's by minimizing the expectation value of a two-electron
Hamiltonian

H=H +H+g, (3.6)

where Hl and Hz are the one-electron Hamiltonians of our two electrons in a periodic
potential and g, is the Coulomb repulsion between two electrons or two holes. We

study first a non-degenerate band for which aa(r) = a(r) for all a of the point group.
This gives rise to the secular equation (Ref. 1, Eq. (1.6))

% ze(itp) F(§n+ iz’p) + a(itn, 0V, = EF(Kn) (3.7)

Here

ER) = [l n, o, -R)

= (aalaa)

v -2 fa(?,) a(r)) a(r) a(r))

o r

12
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

%42 Tv2 %d1

Fig. 3-1

Square lattice in R - R, space. The figure gives the notation
for the g lattice points and the various ''planes' of reflection.

In this secular equation the assumption has been made that two electrons interact only
when they are at the same lattice site. We zlso assume J(ﬁp) z 0 except for nearest
neighbor interactions. For boundary conditions in relative coordinate space we make
the assumption that F(ﬁn) vanishes on the sides of a square that contains nine lattice
sites. Fig. 3-1 contains a diagram of this region of relative coordinate space as well
as labels for the various iattice points under consideration. Table 3-1 gives the vari-
ous irreducible representations of group C av (the point group of a square lattice). The
o's are reflections through the '"planes' indicated in Fig. 3-1. C 4 s a clockwise rota-
tion through 90° and C, = C,2.

Table 3-1
Character table for the group of the square lattice C

ration 3
E C, CeCy oy %410 %42
Representatio
1
Al 1 1 1 1
-1 -1
Az 1 1 1
= 1 -1
Bl 1 1 1
=} -1 1
Bz 1 1
E 2 -2 0 0 0
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

We will now discuss in detail one of the symmetries of twc-electron wave
-
functions for K = 0 under the above assumptions. Let us look at those wave functions
with Al symmetry. Using the relation (3. 4) we see at once that

F(1,1)

F(1,-1) = F(-1,-1) = F(-1,1) =.}

F(1,0) = F(0,1) = F(-1,0) = F(0, -1) = g. (3. 8)

F(0, 0)

"
(-]

Substituting these relations into secular equation (3. 7) we find
B -
a(V_ - E)+ -2-(86) + Yi(o) =0
o(28) + g-(-E) +L(48) = 0 (3.9)
a(0) + %(4() + Yi(-f;) -0

therefore

ES - VOEZ - 328% + 163"'vo =0 (3. 10)

Here & is the nearest neighbor interaction (that is, the ma‘rix element of the one-
electron Hamiitonian between a Wannier function at (0, 0) and one at (0, 1)). The equa-
tion (3. 10) can be solved for small & giving the result

2
E =vo+“’$
(o]
.2 (3.11)
E=t4g -8
v
(o]

These states are clearly singlct statcs since F(ﬁn) = + F(- ﬁn). A similar discussion
can be carried out for the other symmetries. First we write down the relations be-
tween the F's which result from the irreducibie representation which we desire and the
symmetry properties of the Wannier functions. We then use these relaticns to simplify
the secular equation (3. 7) and finally we find approximate eigenvalues of the secular
equation if these equations are above ..i1e second order.

For AZ symmetry we find that all the F's must vanish and therefore we cannot
find a state of this symmetrv,
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

For Bl symmetry we find

F(1,1)

F(-1,1) = F(1,-1) = F(-1,-1) = 0

F(0, 1)

F(0,1) = F(1,0) = -F(-1,0) =% (3.12)

F(0, 0)

0

which leads to the secular equation
a .
E(’El =0 E=0 (3.13)

This is a singlet.
For BZ symnietry we find

F(1,1) = F(-1,-1) = -F(-1,1) = -F(1,-1) = %
F(0,1) = F(1,0) = F(-1,0) = F(0,-1) =0 (3.14)
F(o,0) = 0
This gives rise to the secular equation
a
E('E) =0; E=0 (3.15)

once again this is a singlet.
For E symmetry we have a doubly degenerate wave function. In this case we

set up two wave functions

Y = ZFx(Rm) a(x-'.l - Kp) a(x-"z - ﬁp + Km)

b= LR DalF -R)al, - R+ R
Here ¢x and »py transform as x and y do under the operations of the group of the
square. Once again this gives us relations between the F's
FX(1,1) = F¥(-1,1) = -FX(-1,-1) = -F*(1,-1) = g-
(3.17)
)= P = -FL -0 = Pa,- = £
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