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SURVEY 

In the advanced course which I have been giving this term, I have been treating 

the energy band theory.   I had hoped to get further; but it has taken the entire term to 

cover the material.   This includes just Chapter 1 of the proposed report on "Electronic 
Structure of Solids".   Under the circumstances, it has seemed best to include just this 

chapter on energy bands in the Technical Report No. 4, and this report, including also 

a bibliography of papers on energy bands, is being prepared for the printer, and should 
be sent out not long after this Progress Report.   I had hoped also to treat the use of 

Wannier functions in discussing lattice imperfections and excitons, and various applica- 

tions of configuration Interaction in solids,  including ferromagnetism.    Since this ma- 

terial was not covered, I shall propose to take it up in a continuation of the same course 

in the fall, and shall write the proposed additional chapters of the report on "Electronic 

Structure of Solids" at that time, bringing them out as a further Technical Report No.  5 

at a later date. 
This course on the theory of energy bands has furnished an occasion for exam- 

ining the relative merits of the various methods in current use for studying energy 

bands.   The conclusion to which we have been led is that the orthogonalized plane wave 

method, perhaps modified to Herman's "augmented orthogonalized plane wave method", 
is the most promising method at present for accurate numerical work.   Parmenter's 

attempt to apply the tight binding approximation accurately to chromium has shown the 
almost impossible complexity to which that method leads when we try to apply it accu- 

rately; the orthogonalized plane wave method seems clearly simpler.    Parmenter ac- 

cordingly is looking into ways of applying this method to chromium. 

The great drawback of the orthogonalized plane wave method is that it is not 

readily adaptable to values of the propagation constant other than a few special points 
in the unit cell, such as the center of the Brillouin zone and a few other points.   The 

reason is that at these symmetry points, a number of plane waves must have identical 
coefficients, so that the number of distinct coefficients is relatively small, even for a 

sum of a large number of plane waves, and we do not face a very difficult secular equa- 
tion.   A method of interpolation between these symmetry points is highly desirable. 

With this in mind, it occurred to me that the tight binding approximation might furnish 
a good interpolation method, If the various integrals which occur in it were regarded as 

disposable parameters, rather than quantities to be calculated from wave functions and 
potentials.   Or. Koster and I have been examining this possibility, and it seems very 
encouraging.   In particular, we have carried through a study of the diamond lattice, 

fitting the points determined by Herman by the orthogonalized plane wave method, and 
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our solution, which describes both the valence and conduction band,  seems very likely 

to be rather close to the truth.    We find that we can get this fit by using only nearest 

and second nearest neighbor interactions, and including no three-center or overlap in- 

tegrals; there are enough remaining integrals to use as disposable parameters.    For- 

tunately, the Integrals derived by fitting Herman's values have entirely reasonable 

values, having the correct signs and relative magnitudes, so that this procedure seems 

entirely reasonable.    We are carrying this method further, considering somewhat more 
complicated crystals.    This work is report partly in the present Progress Report, part- 

ly in Technical Report No. 4.    We are indebted to Dr.  F.  Herman, of R. C. A.,  for 

valuable help in this problem;  he has also been independently considering the tight bind- 
ing approximation for interpolation purposes. 

The work on a two-electron model of ferromagnetism, on which Drs. Statz and 

Koster and I have reported in the two preceding Progress Reports, has been written up 
for submission to the Physical Review.    Drs. Statz and Koster give in this Progress 

Report a two-dimensional model, coming a little closer to the truth than the one-dimen- 
sional model which I presented In the preceding Progress Report, and which is partly 

incorporated in the Physical Review paper.   As for future work on this theory, we feel 
that we want to get closer to the -actual structure of a ferromagnetic metal, such as 
nickel, and this demands knowing something about the Wannier functions and energy 

bands.    We a**e delaying work in this direction, on account of the feeling that the tight 

binding interpolation method, which I have just been describing, may well be adapted 

to such energy bands, and to the Wannier functions to be formed from them.    Dr. Ki- 
kuchi, meanwhile, is looking at a very simplified two-atom model, in the hope that he 

will find a ferromagnetic ground state which may well have analogies to the ground state 
in more complicated systems. 

Dr. Pratt continues to work on the problem of antiferromagnetism,  which is 

one of the most intricate problems which we face.    His two communications, and one of 

Dr. Koster on an extension of Hund's rule, all have a bearing on this problem, whose 
status is something of the following sort.    We have examined a number of models; and 

the difficulty which arises is that there is a great tendency for a ferromagnetic, rather 
than an antiferromagnetic, state to lie lower.    This is probably a result of the method 

of approximation, but It illustrates the extreme sensitivity of the problem, and the need 

of examining it very carefully before we really understand the validity of the various 
approximations.   In particular, Koster shows that Hund's rule, stating that the ferro- 

magnetic state will lie lower, holds for any case, molecular as well as atomic, in 
which our configuration interaction problem is an ordinary spin degeneracy problem 

between orthogonal orbitals.    Probably as a result of this, Pratt finds that the model 

which he has set up of a triatomic molecule (MnOMn)     has a ferromagnetic state as 

its ground state, though we had hoped that we should find an antiferromagnetic ground 
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state, and so an explanation of super exchange.    We pre not satisfied, however, that 

this result is correct, for very likely a much more extensive configuration interaction 

is needed to lead to a possible antlferromagnetic ground state. 

The writer suspects that the actual situation Is the following.    He has pointed 

out on several occasions that the effective potential energy in which an electron of + 

spin moves may be different from that for an electron of   - spin:   on account of exchange 

effects, the electron of + spin has a lower potential energy when It Is in a distribution 

of charge of other + electrons, and a higher potential energy when surrounded by elec- 

trons of - spin.    If we then have an antlferromagnetic configuration of (MnOMn)    , the 

spins on one of the Mn Ions (which will certainly all be parallel to each other in the 

ground state, by Hund's rule for the Mn ion) will point in one direction, say •, while 

those on the other Mn ion will point ir. the other direction, say -.    An electron of + 
spin, then,  will find a lower potential well in one Mn Ion than In the other.   This will 

hold for the electrons of oxygen, as well as for those of the manganese.   Thus the elec- 
trons of • spin in the oxygen will find themselves effectively in a strong field, pulling 

them toward the manganese ion with • spin, while the electrons of - spin in the oxygen 

will find themselves in an equal field In the opposite direction.    These electrons will be 

polarized by these fields, just as If the fields were ordinary electrostatic fields,  and 
this will reduce the energy of the molecule.   A corresponding polarization will not occur 

In the ferromagnetic case, for then the electrons of each spin, in the oxygen, will find 
themselves effectively In zero field.    The writer suspects that It Is the lowering energy 

on account of this polarization which stabilizes the antiferromagnetic state. 

This picture of the role of the oxygen atoms supplements the remarks made 

by the writer several years ago, regarding the alternating potential In which an elec- 
tron finds Itself, In an antlferromagnetic crystal.   It was pointed out that this alternat- 

ing potential would split the energy bands apart, the unit cell In the crystal being twice 
as great as ordinarily considered, and that in some cases we could well have the lower 

band filled, the upper one empty, thus explaining the non-conducting properties of cer- 

tain antlferromagnetic crystals which otherwise would be thought to be conductors. 
But this argument by itself does not show why the antiferromagnetic crystal has a lower 

energy than the ferromagnetic arrangement.   Dr. Pratt reported some time ago on hav- 

ing looked into a one-dimensional model of such a system, and he found the ferromag- 
netic state to have the lower energy.   It now seems likely that the presence of the oxy- 

gen is required to stabilize the antlferromagnetic state, In the way described above, 
though the splitting of the energy bands would take place just as described earlier by 

the writer. 
The problem Is then simply to find the correct way to describe this polariz? 

tlon of the oxygens.   This could be done by a configuration Interaction with excited 

states of the oxygen atom, but this Is a notoriously poor way to describe polarization, 
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from the point of view of convergence.    It is much better to modify the wave function, 

in the way which Mr. Allen is Investigating, using a single determinant made of orbit- 

als which are distorted as they would be in the presence of a field.    In our case, the 

oxygen orbitals corresponding to electrons of one spin would be distorted in one direc- 

tion, those corresponding to the other spin in the other direction, so that they would no 

longer be identical to each other.   All this is easier to describe in simple language, 
than it is to carry out In detail.    For one thing, we are dealing with a singlet state of 

the molecule,  and we cannot say in any proper way that the spin of one manganese ion 
is pointed in one direction, that of the other ion in the other direction; the true wave 

function is a combination of wave functions of the two manganese Ions, with a variety 
of orientations.   The process of building up the wave function out of determinants is 

extremely complicated, on account of the many electrons Involved; it is this part of 

the problem that Dr. Pratt is handling by his operator method.    Finally, if the sus- 

picions regarding polarization are correct, it may be necessary to use non-orthogonal 

orbitals,  and the technique for doing this properly,  without neglect of the overlap in- 

tegrals,  which may be the essential feature in the problei .,  is very complicated.    The 

problems which Dr.  Pratt is facing are not so much problems of visualizing the quali- 

tative nature of the solution, as those of formulating the solution in mathematical lan- 

guage in which we are sure that we are not throwing away the essential terms by mis- 

take.   A simplified model which he has been considering, since treating the cases 
described in this Progress Report, gives hope for thinking that we are on the right 

track In our thinking about the polarization of the oxygen. 

The various investigations Into molecular structure are progressing.   An im- 
portant result of our consideration of configuration interaction has been the conviction 

that there are very few cases simple enough to handle by a complete configuration in- 
teraction.   If we use only a partial configuration interaction, it then is very Important 

to have good molecular orbitals to start with.   There are very few cases in the litera- 
ture in which really good calculations of molecular orbitals, by a self-consistent 

method,  have been carried out.   Accordingly, Dr.  Meckler has considered the possi- 
bility of mechanizing the problem of determining self-consistent LCAO molecular or- 

bitals, and has found a way to do it on the Whirlwind Digital Computer, which he de- 
scribed in the present Progress Report.   If this procedure can be actually put into 

operation, it might mean an important advance in the problem of finding molecular 

orbitals. 
The mechanization of the calculation of the Integrals needed for the water 

problem, by Koster and Schweinler,  is proceeding.   This calculation,  Meckler's on 

ethane, Kaplan's on ammonia, Barrett's on fluorine, and Corbato's on HF, all tie in 
together in the calculations of integrals, and general procedure, and are all progress- 
ing, though slowly.   Unfortunately the calculation of HF by Mr. Merrifield, reported 
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on In preceding Progress Reports,  had to be discontinued at a point where it had not 

yielded ureful numerical results;  a continuation of this progi am is being studied by 

Mr. Corbato.    Various other somewhat disconnected pieces of work are under way, 

as will be evident from the Progress Report. 

There has been one change in the personnel of the group since the preceding 

Progress Report:   Dr.  Statz has left the group to join the staff of the Raytheon Manu- 

facturing Company.    Fortunately, he will still be in the neighborhood, so that he will 

be able to join in the general scientific activities of the group.    Various other changes 

in personnel are in prospect for the summer and the next academic year. 

J. C. Slater 
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I.  A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS 

Among all the methods which have been used for studying energy bands, the 

tight binding approximation,  or Bloch method,  has one outstanding advantage:   it gives 

simple analytical formulas for the energy as a function of the propagation constant.    It 

has compensating disadvantages,  however:   to carry it through really rigorously, tak- 

ing into account all three-center integrals,  overlap integrals,  and other complicating 

features,  is practically impossible,  as Dr.  Parmenter's attempt to apply it to the en- 

ergy bands of chromium has shown.    It has occurred to the writers,  however, that the 

method could be extremely useful as an interpolation method, for getting the energy as 

a function of propagation constant in a case where accurate values of the energy were 

known at certain symmetry points in the reciprocal space.    This method has been writ- 

ten up in fair detail in the Technical Report No.  4,  which will appear shortly,  and for 
that reason only a sketch of the work so far done will be given in this Progress Report. 

Of all methods which have been used up to the present for energy bands, the 

orthogonalized plane wave method seems to the writers to be probably the one best 

adapted to getting accurate values of the energies.    The study which Herman      has 
made of diamond and germanium gives one the feeling that the results are very reliable; 

particularly the indication that the method is converging rapidly as more and more 
terms are added to the series is very encouraging.    On the other hand, the orthogonal- 

ized plane wave method is not well adapted for calculations except at particular sym- 
metry points in the reciprocal space.    The reason for this is very simple:   at a sym- 

metry point, many plane waves must have identical coefficients,  so that the number of 
independent coefficients is far less than the number of plane waves which are being 

superposed to get an approximate solution of Schrddinger's equation.    Thus, for in- 
stance, the greatest number of independent coefficients which Herman used in his study 

of diamond was 16,  so that he had to solve a l6-by-l6 secular equation; but the wave 
function in this case was made of 146 plane waves.    For a propagation constant not 

having special symmetry, we should still need 146 plane waves to get comparable ac- 

curacy, but now there would be no special relations between their coefficients, and a 
146-by-146 secular equation would be required,  which of course would be beyond our 

present capabilities. 
We are then faced with a situation where we have very good energy values for 

certain values of the propagation constant, without an equally good way to interpolate 
between them.    For instance, in the cases of diamond and germanium mentioned above, 

we have values for the center of the central Brillouin zone, and for the boundaries of 
the zone along the 100 and 111 directions.   It has now occurred to Herman/ ' as well 

as to the writers, that it might be possible to use a very much simplified tight binding 

method, but to choose the parameters entering into this method, not by direct calcula- 
tion from atomic wave functions and potentials, but by regarding them as arbitrary 

parameters, to be chosen so as to fit the values which were accurately known.   We 
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might then hope that the solutions of the tight binding problem would give acceptable 

interpolation values for the energy.   Since we are using the method only for interpola- 

tion, we can afford to make simplifications which would be entirely inadmissible if we 

were using it for an original calculation:   we can disregard interaction integrals between 

distant neighbors,  we can neglect all integrals except two-center integrals,  and all over- 

lap integrals.   We still keep enough terms, however, to have enough disposable con- 

stants to fit the values which we assume known; and of course we must keep such terms 

that we have a good hope that the calculation will agree with the correct one to an ade- 

quate accuracy. 

To illustrate the method, we have made a fairly complete study of the diamond 

crystal, fitting our constants to Herman's values. We start with the two interpenetrat- 
ing face-centered cubic lattices which form the diamond crystal.    We form Bloch waves 

from s, p , p , p   orbitals on one of the lattices, and similar waves from the same x     y      z 
orbitals on the other lattice.    We have, then, eight Bloch waves, and we set up a secu- 

lar equation between these eight function for a given value of the propagation constant. 

In this secular equation,  we disregard all overlap integrals between atomic orbitals on 

different atoms.    The matrix components of energy involve integrals of the form 
1$ *(x) H $.(r  - R) dv,  where <j>   and +.  are two atomic orbitals, (for instance, an s 

and a p   orbital),  R is one of the displacement vectors from one atom to another, and 

H is the one-electron Hamiltonian operator of the periodic potential problem.   It is 

well known that this integral can be reduced to a sum of integrals of the form /* *< r) 

V(r - R') $.(r - R) dv,  where the potential H is expressed as a sum of terms V(r  - R*). 

spherically symmetrical potentials about the atoms located at positions R1, to an ap- 
proximation which is sufficient for the present purposes.   The integral above is a 
three-center integral, provided R and R' are different from each other and from zero. 

We disregard all such terms,  and consider only the two-center integrals where R' 

equals R or zero.   Then our integrals are like those found in a diatomic molecule.   We 
can simplify them by expanding the +'s in terms of functions quantized with respect to 

the axis R of the pair of atoms.   Thus if we are dealing with p orbitals, we have po- 

and pw components with respect to the axis.   We have non-vanishing integrals only if 
both +   and +. have the same component of angular momentum about the axis; that is, 

if both are a, or w, or 6 functions.    We have integrals, then, of types which can be 

symbolized by the azimuthal quantum numbers of both orbitals (denoted by s or p in 

this case), and by the component of angular momentum about the axis (a- or w in this 

case).   Such integrals can be denoted in an obvious way as (ssr), (spa), (ppr), (pp»), 
and depend of course on whether we are dealing with nearest neighbors, next nearest, 

and so on; this can be denoted by subscripts 1, 2, etc.   It is these various integrals 

which we regard as the disposable parameters of the problem. 

We have set up formulas for all matrix components of energy, diagonal and 
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non-diagonal,  between the various Bloch functions in terms of these integrals.    We 

then have,  in our case of diamond,  an eight-by-eight secular equation between the 

Bloch functions.    This equation can be easily solved analytically at the required sym- 

metry points,  and we can get solutions involving nothing worse than a biquadratic equa- 

tion along the 100 and 111 directions.    We can now try to fit all of Herman's values at 

the symmetry points.    We find that,  using nearest and second nearest neighbors,  we 

do not have quite enough disposable constants to fit all of these values.    However,  we 

can adjust the constants to fit them all with only small errors.    In other words, there 

are relations between Herman's values which almost, though not quite,  make tnem 

compatible with a solution involving only second nearest neighbors.    When we do this, 

the resulting constants are interesting,  in that the integrals for second nearest neigh- 

bors come out much smaller than those for nearest   neighbors,  suggesting that we 

really have a convergent process.    The integrals for nearest neighbors have the signs 

and general magnitudes which we should expect; for instance,  (ppw), the interaction 

between pw orbitals on the two atoms,  comes out considerably smaller numerically than 

(pp<r), the interaction of pa's on the two,  as we should expect since the p<r's overlap 

more. 

When we use these constants,  we then can get solutions for other points of the 

momentum space;  we have carried out solutions along the 100 and 111 directions (ex- 
cept that we have so far not solved for the states which require a biquadratic equation). 

The energies resemble the interpolations which have been used by Herman in his papers, 
but differ in some respects; these solutions are given in Technical Report No.  4.    The 

qualitative behavior of the solutions is as given by Herman.    Also the solutions in the 

neighborhood of the degeneracies,  as in the neighborhood of the three-fold degenerate 
states at k  =  0,  have the behavior which we must expect from symmetry,  and which 

has been described by Shockley.    ' 
The method which we have' described for diamond will be recognized as essen- 

(4) tially equivalent to that proposed by Morita.     '   His formulas for the matrix components 
of energy are essentially like ours,  except that he does not express his integrals in 

terms of our quantities such as (ss<r).  etc.    He finds his integrals from atomic orbitals 
and potentials.    We have worked backward from Morita's published values of his in- 

tegrals, to see the values which he must have found for the various integrals which we 
have determined by fitting Herman's values.    In doing so,  we have observed what ap- 

pears to have been an error of some sort in Morita's integrals.    Specifically,  he finds 

a numerically greater value for his integral which we denote by (ppw) than for (pp<r), 
contrary to our findings,  and contrary to what one would expect from straightforward 

calculation.    This apparent error in Morita's calculation seems to explain another fea- 
ture of his results.    He found that the lowest energy in the conduction band,  for k = 0, 

came from an s-like rather than from a p-like state,  contrary to Herman's result.    We, 
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however, have been able to find values of the integrals which not only put the levels in 
the same orJer as found by Herman, but agree quite well quantitatively with Herman's 

results.    We feel, therefore, that the doubts about the tight binding approximation ex- 
pressed by Herman in the reference quoted are not justified. 

A different sort of tight binding approach has been carried out by Hall,    ' 
though he does not like to adrrit that his method is really a tight binding calculation. 

He starts with what he calls equivalent orbitals.    We can describe these in the following 

fashion.   We start with tetrahedral directed orbitals on each of the atoms of the crystal, 
directed toward the neighboring atom.    We then make a symmetric combination of the 

two directed orbitals at the two ends of each bond, and call this symmetric combination 

an equivalent orbital.    We have four such equivalent orbitals per unit cell of the crystal, 

so that we can make four Bloch combinations of them.    We then can set up matrix com- 
ponents of the energy between these four Bloch functions, and can solve a four-by-four 

secular equation between them.   This secular equation will have four roots, which may 

be expected to describe the four levels in the valence band of diamond.   It is this secu- 

lar equation which Hall has considered. 
The results which he has found are not in good agreement with those of Her- 

man; in particular.  Hall, like Kimball and Hund and Mrowka      with the cellular approxi- 

mation, finds a doubly degenerate state whose energy is independent of the propagation 

vector,  whereas Herman finds that the energy of this state is a function of k, and it is 

split in certain directions; our tight binding calculation agrees entirely with Herman in 
these respects.    One way of describing this shortcoming of Hall's treatment is that he 

takes into account only interactions of nearest neighbors; if he considered more distant 
neighbors, he could get a suitable behavior.   In fact,  Herman   ' has found it possible 

to get a good fit with his values by making up equivalent orbitals like Hall's, and using 
sufficiently distant neighbor interactions.    The Interactions must be assumed significant 

out to considerably more than the second nearest neignbors,  however,  which are the 

only ones which we need use in our method of fori.iulation,  in which we get the conduc- 

tion band as well as the valence band from and eight-by-eight secular equation. 
One can easily convert Hall's calculation into one equivalent to ours, and it is 

instructive to see how this is to be done.    Just as Hall has set up four Bloch functions 

from the symmetrical equivalent orbitals,  we could makd antisymmetric equivalent or- 
bitals, and make four Bloch functions from them.    The four-by-four secular equation 
resulting from these would give a description of the conduction band.    But we should 

find that there were non-diagonal matrix components of energy between the four Bloch 

functions formed from the symmetric orbitals, and the four formed from the antisym- 
metric orbitals.    These non-diagonal matrix components vanish for k = 0, but become 

larger as we go out in the Brillouin zone.   If we now consider all eight of these Bloch 
functions,  and the eight-by-eight secular equation between them,  we can show that it is 
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(A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS) 

equivalent to the problem as we have set It up.    We can get satisfactory results in this 

case by considering only nearest and second nearest neighbors, while to get satisfactory 

results from Hall's procedure we need terms coming from more distant neighbors.    The 

easiest way to remove the zero-width bands, then,  is to consider interaction between 

the valence and conduction band.   The point is that except at k • 0, the wave functions 

of the valence band are not constructed entirely from the symmetric combinations of 
orbitals on the two lattices, and the conduction band entirely from the antisymmetric 

combination; closer examination of the wave functions shows that the phase difference 
between the waves on these two lattices changes from zero or 180° at k = 0 (for the 

symmetric and antisymmetric solutions) to 90   at the edges of the band, a situation 
which can be described by Hall's method only with difficulty. 

We are examining the tight binding approximation further,  and hope to come 

back to the relation between it and the Wannier functions for overlapping bands. 
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2.  ENERGY BANDS IN CHROMIUM 

The original plan of calculating electronic energy bands in chromium, reported 

in previous Progress Reports, involved expanding the valence-electronic wave functions 

as arbitrary linear combinations of orthogonalized plane waves plus 3d Bloch functions. 

Each 3d Bloch function was to be a so-called Bloch sum of 3d atomic orbitals associated 

with the isolated chromium atom.   In calculating matrix elements of the crystal poten- 

tial between two 3d Bloch waves, there arise terms involving three-center atomic in- 

tegrals (the one-electron integral of a product of an atomic potential centered on one 

lattice site and two 3d atomic wave functions centered on two different lattice sites). 

Because of the difficulty in accurately calculating three-center integrals, the above 

scheme is not feasible as it stands. 

Let us suppose,  however, that the 3d atomic orbitals are modified in such a 

way that they vanish at distances greater than one-half the nearest neighbor distance in 

chromium.   All three-center integrals will now vanish,  and there will be no difficulty 

in calculating matrix elements of the crystal potential.    Such a method should be general- 
ly useful among the transition elements.    It has been suggested by Herman   ' that the 

same method (which he calls the augmented orthogonalized plane wave method) should 

be more rapidly convergent than the orthogonalized plane wave method alone when deal- 
ing with valence crystals (such as diamond) or semiconductors (such as germanium). 

With regard to transition elements, the motivation of the AOPW method is to represent 

by orthogonalized plane waves that portion of the crystal wave function resulting from 
both 4s atomic orbitals and the overlapping portions of 3d atomic orbitals and to repre- 

sent by Bloch waves that portion of the crystal wave function resulting from the non- 
overlapping portions of the 3d atomic orbitals. 

The method to be used in modifying the 3d atomic orbitals is more or less ar- 

bitrary,  of course, but the following method,  which has been used on chromium, seems 

physically reasonable and probably can be used whenever the AOPW method is applica- 

ble.    Let us construct an atomic orbital by numerically integrating Schrodinger's equa- 

tion with a Hamiltonian containing the crystal potential, the numerical integration start- 

ing at any nucleus of the crystal.   Since we desire an orbital of definite angular momen- 
tum (I * 2), we must use the spherical average of the crystal potential in Schrodinger's 

equation.   This spherical average can be approximated by the isolated-atom potential 
V(r) for r < R and by the constant V(R) for r > R.    The radius R is chosen such that 

V(R) a   <V(r)>, where <V(r)>  is the average value of V(r), averaged over the unit 

cell of the crystal.   It seems reasonable to take the orbital equal to the isolated-atom 

3d orbital for r < R; i. e., we use the energy of the Isolated-atom 3d orbital as the 
energy used in numerically Integrating Schrodinger's equation.   For r > R, the numeri- 

cally integrated orbital will deviate sharply from the isolated-atom wave function since 

the spherical average of the crystal potential is lower than the isolated-atom potential. 

This will result in a radial node in the orbital at some value of r which is approximately 
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(ENERGY BANDS IN CHROMIUM) 

equal to one-half of the nearest neighbor distance In the crystal.    (For chromium R = 

1. 55 atomic units, the radial node in the numerically integrated orbital occurs at 2.80 

atomic units, while one-half of the nearest neighbor distance is 2. 36 atomic units.)   By 

cutting off the numerically integrated orbital beyond the radial node, we have formed 

a modified 3d orbital suitable for our purposes. 

Reference 
1.  F. Herman,  Ph. D Thesis,  Department of Physics,  Columbia University,  January, 

1953, p. 40. 

. R.  H.  Parmenter 
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3.  A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM 

In the previous two Progress Reports, J.  C. Slater/1'H.  Statz/2'and G.  F. 

Koster      have discussed a two-electron example of ferromagnetism.    In this Progress 

Report we apply the same methods to a simple two-dimensional case.    This case fur- 

ther confirms the necessity of degenerate bands for ferromagnetism and also illustrates 

some of the techniques which would be useful in a more detailed discussion of ferro- 
magnetism. 

A two-electron function in a crystal may be expanded in terms of products of 

Wannier functions associated with the various energy bands of the crystal. 

*(rV r2)  =        I       U   (R     R    ) ^(?   - RR) a (?2 - Rj (3. 1) 
i,j, m, n 

Here   i   refers to the band from which the Wannier function a. arises,  r. and r. are 

the coordinates of the two electrons,  and R   is one of the primitive translations of the 

crystal.    We know, however, that the symmetry properties of a wave function depend 

only on the invariances of the Hamiltonian and not on the number of electrons the wave 

function describes.    We expect therefore that all the discussion of the irreducible rep- 

resentations of the space groups by Seitz'  ' and others    ' will be applicable here.   In 

particular,  we are able to define a_K vector which expresses the fact that our two- 

electron wave function goes into c P limes Itself under translation through R* . 
This allows us to write our U . (R , R   ) in a simpler form ij    n      m 

Jtn4gm 

V^n-Rj'*      '~* F(Sn-3m) 0.2) 

More can be said since we know that our Wannier functions may have certain symmetry 

properties.    Let us see how this influences our F's.    We restrict our attention to K  = 0. 
(The following arguments could be easily carried out for other if values.)   We must 

first see what effect some operation a of our point group has on the wave function since 

we know that the wave functions for K  « 0 must form irreducible representations of the 

point group of the crystal.   It can easily be seen that 

«*(? . r2) =       I        F(a" 1 it   ) a*t(?   - K ) aa (?2 - it   • Rj (3. 3) 
i. j. Pi m f       i 

Here aa.(r) is the Wannier function which results from applying the operation a to 
i     ^ — l       ^ 

a,(r).    a" * R     is the primitive translation arrived at by applying o      to R    .    Since we 
know the transformation properties of our Wannier functions from Eq.  (3. 3) we are 

able to get relations between our F(R*   )*s.    This is most easily seen by a simple example. 
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 

Assume that our two-electron wave function is derived from the Wannier functions of a 

single non-degenerate band for which aa(r) = a(r) is true for all a.   Let us look for 

the two-electron wave function that forms a completely symmetric representation of 

our point group (a4»(r., r,) = (jKr., r,); for all a).    By applying these relations to Eq. 
(3. 3) we get 

2 F<irm)a(?j -rja(r2- * • ffj « l «.-1 *j^ -r>.<?2-*• »m) 
p. m p, m 

therefore F(R*m)  =  F(o" 1 R*m) 

(3.4) 

The additional symmetry property of our two-electron wave function concerns its value 

of total spin.   This is determined by the relation 

F(-am) = tF(itm) (3.5) 

The  - sign refers to the triplet and the +  sign refers to the singlet. 

Let us now apply the prece ing discussion to a two-dimensional square lattice. 
We wish to determine our F's by minimizing the expectation value of a two-electron 

Hamiltonian 

H * H.  • H, + g 12 
(3.6) 

I 

I 
where H. and H, are the one-electron Hamiltonians of our two electrons in a periodic 

potential and g. , is the Coulomb repulsion between two electrons or two holes.    We 
study first a non-d«>generate band for which aa(r) = a(r) for all a of the point group. 

This gives rise to the secular equation (Ref.   1,  Eq.  (1.6)) 

Here 

£  2/(3 ) F(R*n • It) +  6(ltn, 0) Vo = EF(ltn) 

*a(r* ) &(r.) a(r*2) a(r*.J 
V„ = 2/—! i = =-  - (aalaa) 
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 

Fig.   3-1 

Square lattice in Rj - R2 space.    The figure gives the notation 
for the g lattice points and the various "planes" of reflection. 

In this secular equation the assumption has been made that two electrons interact only 

when they are at the same lattice site.    We also assume   ^"(R\j  = 0 except for nearest 

neighbor interactions.    For boundary conditions in relative coordinate space we make 
the assumption that F(R ) vanishes on the sides of a square that contains nine lattice 

sites.    Fig.  3-1 contains a diagram of this region of relative coordinate space as well 
as labels for the various lattice points under consideration.   Table 3-1 gives the vari- 

ous irreducible representations of group C.    (the point group of a square lattice).    The 

<r's are reflections through the "planes" indicated in Fig.  3-1.    C. is a clockwise rota- 

tion through 90° and C2 = C4 . 

Table 3-1 
Character table for the group of the square lattice C^y 

(ration 

Representatio 

B, 

C..C 4* ^4       'vl''v      wdr"d2 

1 1 1 1 

1 1 1 -1 

1 1 -1 1 

1 1 -1 -1 

2 -2 0 0 

1 

1 

1 

1 

0 
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 

We will now discuss in detail one of the symmetries of two-electron wave 

functions for K  = 0 under the above assumptions.    Let us look at those wave functions 

with A. symmetry.    Using the relation (3. 4) we see at once that 

F(l, 1)  =  F(l, - 1)  =  F(- 1,-1)  =  F(- 1.1)   = * 

F(l, 0)   =  F(0, 1)   =   F(- 1, 0)   =  F(0, - 1)  = | (3. 8) 

F(0, 0)  = a 

Substituting these relations into secular equation (3. 7) we find 

a(VQ -E)  + |(8*)  • 1(0)  =  0 

a(2*) • |(-E)  • 1(4*) = 0 (3.9) 

a(0)  + |(4/)  +1(-E)  -  0 

therefore 

E3  -  V E2  -   32/2E +   16*2V    = 0 (3.10) o o 

Here 6 is the nearest neighbor interaction (that is, the matrix element of the one- 

electron Hamiitonian between a Wannier function at (0, 0) and one at (0, 1)).    The equa- 

tion (3. 10) can be solved for small  6 giving the result 

E  = V    +
16'2 

° V° 
E « 14/  . !£_ 

V o 

These states are clearly singlet states since F(R*) = + F(-R ).    A similar discussion 

can be carried out for the other symmetries.    First we write down the relations be- 
tween the F's which result from the Irreducible representation which we desire and the 

symmetry properties of the Wannier functions.    We then use these relations to simplify 
the secular equation (3. 7) and finally we find approximate eigenvalues of the secular 

equation if these equations are above    ie second order. 
For A, symmetry we find that all the F's must vanish and therefore we cannot 

find a state of this symmetrv. 
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 

For B. symmetry we find 

P(l.l)  =  F(-l.l)  =  F(l,-1)  =  F(-I.-l)  =  0 

F(0, 1)  =   F(0. 1)  =   F(J, 0)   =   - F(-l, 0)  = ^ (3. 12) 

F(0,0)  =  0 

which leads to the secular equation 

|(-E)  = 0;   E  =  0 (3.13) 

This is a singlet. 

For B, symnetry we find 

a F(l.l)  =  F(-l.-l)  =   -F(-l.l)  =   -F(l.-l)  = | 

F(0, 1)   =   F(1.0)   =   F(-1.0)   =   F(0. -1)   =  0 (3.14) 

F(0, 0)  =  0 

This gives rise to the secular equation 

|(-E)  =  0;   E   =  0 (3. 15) 
2 

J 

once again this is a singlet. 
For E symmetry we have a doubly degenerate wave function.    In this case we 

set up two wave functions 

+x=    E^m^l-V^-V^n) 
(3. 16) 

+y - !•*<*„) .<?, - *J atr2 - a • nm) ry        - m'       i        p'       L       p 

Here 4»   and <C   transform as x and y do under the operations of the group of the x Ty 
square.   Once again this gives us relations between the F's 

Fx(l,l) = Fx(-l,l) =  -FX(-1,-1)  =  -F*U.-1)  = f 
2 (3.17) 

F^l,!)  =  -F^-l.l) =   -F^-l.-l)  =  F^d.-l)  - | 
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 

FX(0, 1)  =  -1^(0,-1)  =  ^(1.0) =   -F^-l.O)  = -*= Ji 
FX(1.0)  * FX{-1,0) =  F^O, 1)  = Fy(0,-1)  = 0 

Fx(0. 0)  =  F^O, 0) = 0 

(3. 17) con'd. 

The secular equation 'or the x-like functions is 

-5»(- E)  +  &(4*)  =  0 
Jl 2 

*   (2/)  •   P(-E)   =  0 
«/2 2 

(3.18) 

with roots 

E = t zjlg I 
Thus we get two doubly degenerate eigenvalues (a total of four wave functions).   These 

states are all triplets (F(R* ) •=  - F(-R* )).    Fig.  3-2 contains a graph of energy as a 

•141 

Fig.   3-2 
Energy as a function of nearest neighbor inter- 
action £ tor the case of non-degenerate bands. 

function of / for the two-electron states arising from a non-degenerate band. We no- 

tice that the singlet state of A. symmetry is the lowest state. The fact that the singlet 
lies lower than the triplet we interpret as an absence of ferromagnetism. 

We now consider the case of two degenerate bands which we describe in terms 

of Wannier functions with x- and y-like symmetry. *  ' We will call them a(r) and b(r) 
and their symmetry properties are given in Table 3-2. 

-18- 
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 

Table 3-2 
Symmetry properties of Wannier functions a and b 

Operation b a 

E b a 

C4 - a b 

C2 - b - a 

C  3 
^4 a - b 

'dl a b 

'dZ - a - b 

vl b - a 

%2 - b a 

We write our two-electron function as 

«?1' ?2>  =   Z*J*J a^l " fy a(?2 - ^P 
+ *J 

+ 5:Fbb^m) **i - *P> **z - *P 
+ K») 

+   IFab<*m> a^l - V b^2 - *P 
+ R«) 

+   £Fba(ltm> b^l " V -<?2 - *p * *J 

If we assume that there is only interaction between electrons when they are at the same 
lattice site, these functions give rise to the secular equations    ' 

(3.19) 

I 2'a(fy Faa(*n + V + *<*„• °> [Faa(0)(aa,aa) + Fbb<°K«bH = EFaa(ltn> 

£ ^b
(V Fbb(Kn + V + «(^n. 0) [Fbb(0)(bblbb) • Faa(0)(ab|ab)] . EF^fy 

£   ['a(fy +   'b<fy] Fab<W +  6(Kn. 0) [Fab(0)(aalbb) •  Fba<0)<ab|*b)]   = EF^) 

*   ['a(fy +   "W]  Fba(ltn + fy +  6(ffn' °> [Fba(0)(aa|bb) • Fab(0)(ablab)]   = EFbB(Itn) 
P (3.20) 

The secular equations break into two parts,  one connecting the F     and Fbb type two- 
electron wave functions and the other connecting the F .  and F.    types.    This splitting 
is due to our approximation in considering interactions of electrons only when they are 
on the same lattice site.    In what follows we make use of these abbreviations 
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 

VQ = (aalaa) = (bblbb)  =   /a^) aff^) gu afr^) a^) dxj dr. 

J   =  (ablab)  =   /a^) b(?2) gu a^) b(r*2) dTj dr. 

K  = (aalbb)  =   /a(f*j) a(f*2) g^ at^) b(f*2) dTj di 

2 

lT2 

We also make the assumptions that only those Fourier coefficients of the one-electron 
energy that represent nearest neighbor interactions are non zero.    We call   6  the in- 

teraction between an x-like Wannier function and one displaced a unit translation in the 
x direction.    We call  &y the interaction between an x-like Wannier function and one 

displaced a unit displacement in the y direction.    A new feature comes into this calcu- 

lation of the energies of the two-electron functions associated with the degenerate bands. 

In this case it sometimes occurs that the symmetry of the wave function is not sufficien. 
to determine whether the wave function is a singlet or a triplet.    When this is the case 

there can be both a singlet and a triplet of the same symmetry.    Instead of presenting a 

detailed discussion of the many symmetries and multiplicites we present the results in 

Table 3-3.    The arguments that go into deriving the tabulated results are exactly analo- 

gous to those already presented for the non-degenerate band.    The first column (I) rep- 

resents the multiplicity of the state.   The second column (II) gives the symmetry.   The 

third column (III) tells whether the wave function comes from the F     type secular 
equations or the F .  type secular equations (see Eq.  (3. 20)).    In the fourth column (IV), 

there is listed the secular deternr nant and in the final column (V) is listed the approxi- 

mate eigenvalues for   &. and  &~ small.    In this column we have used the abbreviation 
that   ^j   = c /^. 

For the case of a two-electron wave function drawn from two degenerate bands 

it is not possible to draw an unambiguous conclusion as to whether the triplet or the 
singlet lies lower as one can see from Table 3-3.    Of those states in which one electron 
is in each band (F .  type),  it is clear that the lowest state of A, symmetry is a triplet 

lower than any other state of the F .  type.    Of the wave functions in which both electrons 
are in the same band (F     type), the lowest state is a singlet of B   symmetry.    As to 

the competition between these two, the lowest one will be determined by the actual 
values of the parameters involved.    Either one of these two could lie lower.    Thus we 

see that in the case of non-degenerate bands the singlet lies lower whereas in the case 
of degenerate bands it is possible that the triplet may lie lower. 

References 
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(A TWO-ELECTKON EXAMPLE OF FEHROMAGNETISM) 

Energies for two-electron states arising from 
degenerate bands in a square lattice 

1 II III IV V 

singlet A. F 
aa E4-(VoO)EJ-l*( <*•,*• <J,

i
2)E2.«(VoO)(<f/.  g^E E-V   »J... 

o 

• J.'lI.eV 
E -                  . 

(Vo«J)(.«c*)" 

1          *          '   (Vo*J)(|.c2) 

singlet 
*t 

F 
•a E»0 E'O 

singlet B. F 
aa E4-(V<i.J)EJ.|*(<5"1

i.  ^V.«(Vo.j){gx
l, <**)E E-V   -J... 

o 

• <?'(. -cV 
E. ! j-... 

(V   - ffll.c'l 
o 

'           *           '   lVo.J)(l«ci) 

jinglet B* F 
aa 

E«0 E-0 

triplet E F 
aa E.iiyi<J", 

E.l^yi<J•^ 

singlet A, F.b E«0 E«0 

singlet A* F.b E«0 E-0 

triplet *, F.b 
E J - E*(K - J) - 8( <?, • g£)E • 4< «f, • <T^)Z(K - J) • 0 E-K - J*. 

E • I ^(<J  • gt\ - -p- (<? • gj1«... 

singlet Bl F.b 
E = 0 E<0 

triplet Bi F.b 
E-0 E'O 

singlet Bi F.b 
EJ - E2(K • J) - •( g, • g2)E • 4( <f, . (f ^(K • J) « 0 E*K« J»... 

E • t « (f, • <f j) -jj4jt a?, • ^/ • . .. 

singlet E F.b E.iyil<f,^i) ••«</*<#,•*»> 

triplet E F.b 
E « ! JT( Sx * gj) E>tyZ(/,» <?^) 
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM) 
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4.  A SYSTEM OF TWO   p   ELECTRONS 

In connection with the work on the two-electron example of ferromagnetism 

developed by other members of the Group, * ' there occurred a question regarding the 

energy levels of a system of two Ni atoms as a function of the internuclear distance; 

the reason is that the properties of the pair of atoms might be supposed to give infor- 

mation about the ferromagnetic substance in bulk. 

In order to obtain qualitati /e information about this system, particularly 

about the multiplicity of the lowest lying state, the problem was simplified several 

steps as follows.   A Ni atom which has one hole is 3d orbits is first reduced to an atom 

with a hole in  p  orbits, because both  d  and  p  levels give rise to degenerate bands. 

A hole in  p  orbits behaves qualitatively similar to an electron in  p  orbits.    Further- 

more, the Gaussian type of wave functions may be enough to give the qualitative infor- 

mation. 
After these considerations, now the energy levels of a system of two atoms 

each having one p electron is being calculated using Gaussian wave functions, as a 
function of internuclear distance, and taking into account the configuration interaction. 

Reference 

1. H. Statz, Quarterly Progress Report, Solid-State and Molecular Theory Group, 
M.I.T., January 15,   1953, p.  23; G.  F. Koster, ibid. p.  31; J. C. Slater, 
April 15,   1953,  p. 6. 
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5.  SPIN OPERATOR METHOD -- APPLICATION TO CONFIGURATION INTERACTION 

A detailed account of an operator method of constructing elgenfunctions of S 

was presented in the last Progress Report. The application of this technique to con- 

figuration interaction has proved rather successful and some of the details of its use 

will be given here.    The following remarks will be largely confined to the treatment of 

the Mn O^—Mn      model of antiferromagnetism discussed elsewhere in the present 

Progress Report. 

It was shown in the April 15 Quarterly Progress Report that there exists an 

operator   O   when operating on a 2N electron determinant whose M    value is zero, 

produces a linear combination of 2N electron determinants such that the resulting state 
is a singlet.    The only condition imposed was that all the one-electron spatial orbitals 

be distinct, but not necessarily orthonormal.    It was also pointed out in that Report 

that this operator method could be used to set up the matrix components of the Hamil- 

tonian between singlets corresponding to different configurations.    Suppose p. is a 

product function of space-spin orbitals 

Pl   =  Ul(l)o(l) u2(2) o(2) ...   uN(N)a(N) uN + j(N + 1) p(N+l) ...   u2N(2N) p(2N)     (5.1) 

of total M    =  0.    Then one of the singlet states that can be formed from this collection 

of spatial orbitals is 

* = AOpj (5.2) 

where O is the spin operator and A is the antisymmetrizing operator. The matrix 

component of the energy between two configurations for this particular type of singlet 

is 

<+j H+2>= -CAOpj H AOp2> (5.3) 

We now make use of the following properties of the spin operator O:   (1) O commutes 
with a spin-free Hamiltonian.    (2) O commutes with the antisymmetrizing operator A. 

(3) The square of  O   is equal to a constant times O.    These properties allow one to 

write Eq.  (5. 3) as 

<VHI*2>= (N* l)l/2<A(2N)0UN)
PllHlp2> (5.4) 

where pj and p^ are spin product functions corresponding to different configurations 
and A'^**) an(j o^**) signify that these operators are functions of the coordinates of all 

of the electrons. 
In the ground configuration of the Mn O^—Mn      system the orbitals con- 
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(SPIN OPERATOR METHOD -- APPLICATION TO CONFIGURATION INTERACTION) 

sidered are the five Mn 3d orbitals each singly occupied and the oxygen 2p orbitais 
which arc assumed to hold six electrons.   Thus we have a sixteen-electrcn system but 

only thirteen distinct orbitals.    The object of these remarks is to generalize the spin 

operator  O  in order to handle systems composed of spatial orbitals all of which are 

not distinct.    By doing this we will be able to cast matrix elements in the convenient 
form given in Eq. (5. 4). 

In the investigation of the Mn O^—Mn     system the singlet considered for 

the ground configuration was formed by combining two S = 5/2 states made up from the 

Mn 3d orbitals to give a resultant ten-electron singlet.    The remaining six electrons 

were assigned to the three 2p oxygen orbitals.   In terms of the spin operator this six- 
teen-electron singlet is written 

$ = A(l6) [ujO) a(l) UjU) p(2) . . .  u3(5) o(5) u3(6) 0(6)  •   O(l0) {u4(7) a(?) u&(8) a(8) 

u6(9) a(9) ...  u8(ll)o(ll)u9(l2) p(l2) u1Q(l3) p(l3) ...  un(l6) p(l6)}] 
(5.5) 

where u., u~, and u, represent the 2p functions and u. through u„ are the 3d functions 
++ on one Mn" ion and u„ through u,, are the ZA orbitals on the other Mn     ion.    An es 

(10) does not com- sential point appears here; that is the ten-electron spin operator O 

mute with the sixteen-election antisymmetrizing operator A       .    Therefore,  unless 

this singlet can be set up using the full sixteen-electron spin operator O       . the ma- 
trix components cannot be ha idled as in (5. 4). 

Consider a 2N electron system with 2(N - n) distinct orbitals which will be 

kept singly occupied and n distinct orbitals which will be doubly occupied. The or- 

buals may be catalogued in the following manner 

u.     u,    ... u 
lA    2A nA 

Group I. 

u,     u,    ...  u 
*B    ZB    "B 

Group I„ 

 A A 
Group II. 

(5.6) 

*n+l B "N B 
Group n„ 

If all of the functions were distinct, the 2N electron singlet under discussion would be 

written 

* = A(2N)Q(2N) f       (!),(!)...„      (N)o(N)u,   (N + 1) p(N • 1) . .. uN   (2N) p(2N)}(5. 7) 
1   lA NA lB NB J 

t 
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(SPIN OPERATOR METHOD — APPLICATION TO CONFIGURATION INTERACTION) 

Suppose now we set UJ    equal to Uj    for j going from 1 to n in the singlet 

given in (5. 7).   Such a change cannot affect the multiplicity of the total wave function. 

However,  many of the determinants which comprise (5. 7) will vanish as a result of 

assigning the same spin to orbitals whose spatial parts are now assumed identical.    Of 

the non-vanishing determinants, many will differ from others merely by interchanges 
of rows and hence these determinants can be combined.   The net result of this change 

of spatial orbitals is that the normalization of the resultant singlet is destroyed.   O      ' 
must be modified so that the normalization can be preserved under such a change. 

It can be shown that the necessary modification of O is to multiply it by a 
constant factor which depends only on the total number of electrons,  2N,  and the num- 

be of identical orbitals,  n.    This factor is 

V    "' (N - k).' 
tr0(n -k)' N! k = 0 

-1/2 
(5.8) 

Once the matrix elements have been reduced to the form of Eq.  (5.4),  O 

can be replaced by an equivalent operator for the purpose of taking the matrix com- 

ponent.    The equivalent operator is obtained by omitting entirely the one-electron op- 

erators S.  , S." where   i   and   j   refer to electrons occupying an orbital which is doubly 
filled.     More precisely, this operator is O *    ~n' and it operates only on the spin co- 

ordinates of the electrons in groups II. and Hg.    This is a valuable result as it ma- 

terially reduces the amount of work necessary to find the matrix components.    There- 

fore,  in the case of Mn—O—Mn the matrix component of the energy between the singlets 

corresponding to the i     and j     configurations can be expressed as 

<4'ilHl^j>= (N -n+ l)1/2<A(l6)O(10)pllH|pj> (5.9) 

where   N   is   8   and   n  is equal to the number of doubly filled orbitals which is three. 

G.  W.  Pratt,  Jr. 
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6. ANTIFERROMAGNETISM 

At the present time attempts to give a quantum mechanical description of antl- 

ferromagnetism have been largely restricted to the treatment of simple models which 
supposedly would show a preference for spins to be oriented antiferromagnetically.   A 

configuration interaction treatment of the Mn O^—Mn     system is reported here. 

The Mn—Mn distance as determined by x-ray scattering is 4. 426 A°* ' and it seems 

unlikely that the Mn 3d orbitals located about centers this distance apart would overlap 
appreciably.   This overlap was neglected in this investigation.   By considering excited 

configurations in which there is an unpaired spin on the oxygen, a spin dependent coupl- 

ing will appear which causes the non-overlapping charge distributions associated with 

the Mn tons to interact through the oxygen.   This Is commonly referred to as super- 

exchange interaction.    '  The object of this work was to examine the nature of this 

coupling to determine whether it would tend to orient the spins of the Mn electrons 

ferromagnetically or non-magnetically. 

The ground configuration was taken to be two Mn     ions and an 0~ ion.   The 

Mn     Ion has five 3d electrons outside closed shells and the 0~ Ion was taken to have a 

rare gas configuration.    The excited configurations considered were those obtained by 

allowing an electron in an orbital associated with the 0~ ton to occupy one of the Mn 3d 
orbitals.   The only symmetry considered In the work was of the T   type as the ground 

"g 
state has this symmetry. 

I The one-electron functions used were assumed to be localized   and orthonormal 

although the results obtained are Independent of their exact nature.   Table 6-1 shows 
the assignment of electrons for the various configurations.    The Mn 3d orbitals are de- 

noted by:   m.   = 2(6+),  m.   =  1 (»+), m.   = 0 (v), m    =  - 1 (w_),  and m.  * - 2 (6_). 
I The oxygen orbitals are ml =  1 (P+), m1 = 0 (Po), nij  = - 1 (P_). 

The states of maximum multiplicity, S = 5,  for each configuration and the 

corresponding secular equation was set up.    The energy of the lowest S   =  5 state was 
compared with the energy of the lowest singlet found by constructing one particular 

singlet for each configuration and examining the resulting secular equation.    Let us con- 

sider the choice of this singlet state. 
j For each configuration there are ten singly occupied orbitals and, therefore, 

42 orthogonal singlets.   From neutron diffraction studies of MnO, It Is thought that the 

Mn     Ions can be divided into two sublattlces each sublat+lce being ferromagnetically 
(1) coupled:      the singlet state most closely resembling this situation Is that formed by 

combining the two sublattlces which are separately In a state of maximum spin to give a 

resultant singlet for the entire system.   The analogue of this picture In the model being 

considered here is for the two Mn ions to be each in a state of maximum multiplicity 

and for these two S =  5/2 systems to combine to give a singlet fir the ground configura- 

tion.    The singlet for each excited configuration was formed by the combination of two 

S = 5/2 systems.   As it is only possible to form one independent singlet in this manner, 
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(ANTIFERROMAGNETISM) 

+5 

+6 

+7 

+8 

10 

11 

Table 6-1 

6        IT       w_ Po    P+    P- *_'    w+'    6_'    6+' 

1 

2 

2 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

1 

2 

2 

2 

2 

2 

1 

1 

1 

1 

2 

2 

2 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

for each configuration one S =  5 and one S = 0 state was considered. 

The states which are even with respect to a reflection in a plane perpendicular 

to the symmetry axis and passing through the oxygen are: 

\ 

£ . = *, 

g _ = 4s • *, 

g - = ** • +« 

g . 
+6 + +7 

+8 * +9 

+10 + +11 

(6.1) 

From these six states the states which have the +  symmetry with respect to reflection 

in a plane containing the symmetry axis of the model can be formed.    These four states 

are: 

g 
•i = V = +i 

*2      *lg +  #4g  = +2 + +3 + +8  +   +9 

(6.2) 
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*3  = #2g *  *3g = +4 + +5 * +6  +  +7 
(6. 2) con'd. 

U =»5g  "+10 + +11 

The S =  5 and S = 0 states corresponding to these four  T   states were set up 

and the corresponding secular equations written down.    The S = 5 states were handled 

by conventional methods in that the states +.(S  =  5) are just a single determinant. 
The singlet states 4i,(S = 0) are,  however,  much more complicated as these singlets 

are each expressed as a linear combination of 252 determinants.    It would be an enor- 

mous task to compute the matrix components of the energy for these states by the cus- 

tomary procedures.    These matrix components were found by the spin operator method 

reported in the preceding Quarterly Progress Report.    The essence of this method is 

that one can construct a state of definite multiplicity by operating on a single determi- 

nant of one-electron space-spin orbitals with an operator which is essentially a poly- 

nomial the elements of which are step-up and step-down spin operators taken to vari- 

ous powers.    This operator has the properties that it is hermetian,  it commutes with 
a spin free Hamiltonian,  it commutes with the S   operator,  it commutes with the anti- 

symmetrizing operator,  and its square is equal to a constant times itself.    These prop- 

erties allow one to use the operator to take matrix components of the Hamiltonain be- 
(3) tween singlets corresponding to all configurations. Some of the details involved are 

given in another section of the current Progress Report. 
In terms of the spin operator   O  and the antisymmetrizing operator A,  we 

can write the four    Y    states as 

• ,(S » 0) = AOpj 

•2(S = 0)  = ACXp2 + p3 + pg + p9) 
(6.3) 

•3(S = 0)  = AO(p4 + p5 + p6 + p7) 

•4(S = 0)  = ACHp10 • pn) 

where the pi are spin product functions referring to the various configurations. 

Pl =6+(l)a(l)6_(2)a(2)w+(3)a(3)w_(4)Q(4)a(5)o(5)Po(6)o(6)Po(7)p(7)P+(8)o(8)P+(9)p(9) 

P_(10)Q(10)P_(11)P(11)O-'(12)P(12)W_'(13)P(13)W+'(14)P(14)6_,(15)P(15)6+'(16)P(16) 

(6.4) 
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p2 = 6+(l) a(l) . . .  <r<5) a(5) PQ(6) a(6) PQ(7) p(7) P+(8) a(8) P+(9) p(9) P_(lO) a(10) 6_( 11) (J( 11) 

<r'(l2)p(l2) ...  6+'(l6)p(l6) (6.5) 

p3 = 6+(l)a(l)...  <r(5)a(5)Po(6)a(6)Po(7)p(7)P+(8)a(8)P+(9)p(9)6_,(l0)a(l0)P_(ll)p(ll) 

.'(12)P(12) ...   6+'(l6)p(l6) (6.6) 

P4 = 6+(l) a(l) . ..  <r<5) Q(5) PQ(6) a(6) PQ(7) p(7) P+(8) a(8) P+(9) p(9) P_(lO) o(l0) w_(l 1) p(l 1) 

a'(l2)p(l2) ...   6/(l6)p(l6) (6.7) 

P5 = 6+(l)a(l) .. .  «r<5) o(5) PQ(6) o(6) PQ(7) p(7) P+(8) a(8) P+(9) p(9) ir_'(lO) o(l0) P_(l 1) p(l 1) 

a'(l2)p(l2) ...  6+'(l6)p(l6) (6.8) 

P6 = 6+(l)a(l) ...  «r<5)o(5)Po(6)a(6)Po(7)p(7)P+(8)o(8)w+(9)p(9)P_(l0)o(l0)P_(ll)p(ll) 

<r'(12)p(l2)...  6+'(l6)p(l6) (6.9) 

p7 = 6+(l)a(l) ...   «r(5)o(5)Po(6)o(6)Po(7)p(7)w+
I(8)a(8)P+(9)p(9)P (lO)a(lO)P (ll)p(ll) 

<r'(l2)p(l2) ...  6+«(l6)p(l6) (6.10) 

p8 = *+(l)a(l) ...  «r(5)a(5)Po(6)o(6)Po(7)p(7)P+(8)o(8)6+(9)p(9)P_(i0)Q(l0)P_(ll)p(ll) 

*'(12)P(12) ...  6+'(l6)p(l6) (6.11) 

p9 =  6+(D a(l) . . .   a(5) a(5) PQ(6) o(6) PQ(7) p(7) 6+'(8) a(8) P+(9) p(9) P_(l0) a(l0) P_(l 1) p(l 1) 

<r'(l2)p(12)...   6+'(l6)p(l6) (6.12) 

p1Q=  6+(l)o(l)...   «r(5)o(5)Po(6)o(6)<r<7)p(7)P+(8)a(8)P+(9)p(9)P_(10)Q(l0)P_(ll)p(ll) 

«r'(l2)p<12) ...  6+'(l6)p(l6) (6.13) 

Pu = «+0)a(l) ...   «K5)o(5)<F'(6)a(6)Po(7)p(7)P+(8)a(8)P+(9)p(9)P (10)O(10)P_(11)P(11) 

„«(12)P<12) ...  6/(16) p(l6) (6.14) 
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(ANTIFERROMAGNETISM) 

The matrix elements of the energy for the S - 0 case are given as: 

H 

H 

H 

H 

11 

12 

13 

14 

YUOpjIHIPj) 

YUOpjIH^ + p3 + p8 + p9) 

vCAOpjlH^ + p5 + p6 + p?) 

Y(AOpjlH|p10 • pu) 

H22  =  *AO {*Z + P3 
+ P8 + P9} 

H 23 

H 24 

H 33 

H 34 

H 44 

Y(AO {P2 + p3 + pg • p9j 

v(AO |p2 + p, + pg + p9j 

Y(AO |p4 + p5 t p6 + p7j 

Y(AO |p4 + p5 + p6 + p7j 

^AO{PIO + PII}IHI{PIO + PII}) 

IHI {p2 • p3 • pg • p9} ) 

IHI {p4 + p5 * p6 + P?} ) 

lHl{p10 + pu}) 

IHI {p4 + p5 + p6 + p7} ) 

IHl{p10 + Pu}) 

(6. 15) 

(6. 16) 

(6.17) 

(6. 18) 

(6.19) 

(6. 20) 

(6.21) 

(6. 22) 

(6. 23) 

(6.24) 

I 

As an illustration of how the spin operator method works the element 

y(AOp2/H/p5) will be worked out in detail.    All of the one-electron orbitals are ortho- 
normal and it has been assumed that there is no overlap between the orbitals localized 

about the two Mn ions.    The spin operator used can be expressed as 

O ;{»*ci.l«r.<J + c 
N 
I 

N 
I (s; 

JAKB 
2  •    f, ^T       v"j»    KA    rr, 

•>A>kAmB>nB      A     A 
S1B^,+ •} (6.25) 

where 

cM = (- 1) M (N - M).' 
NJ  M! 

Since   O  is to operate on a spin product function,  we may speak of the electrons as 

being distinguishable.    Electrons 1,  3,  4,   5,  and 10 comprise set A.    Electrons 12, 
13,   14,   15,  and 16 make up set B.    N   is the number of electrons in set  A   or   B   and 

M is the number of   p   spins assigned to the electrons in set   A   or the number of  a 

spins assigned to set B.   Therefore, the term 
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N 
c    I   s: s+ 

lJAkB    JA    kB 

in  O   means that j.  runs over the electrons in set   A   and   k„   is to run over the elec- 

trons in set   B.    (AOp2/H/p,) written out is 

AO {6+( 1) a( 1) 6(2) a(2) w+(3) o(3) w_(4) Q(4) a(5) a(5) PQ(6) 0(6) PQ(7) p(7) P+(8) a(8) 

P+(9)6(9)P_(lO)o(lO)6_(ll)p(ll)(r'(l2)p(l2)w_'(l3)p(l3)w+'(l4)p(l4)6_'(l5) 

P(l5)6+'(l6)p(l6)} IHI  {6+(l)a(l)6_(2)a(2)w+(3)a(3)w_(4)a(4M5)a(5)Po(6)     (6.26) 

a(6)Po(7)p(7)P+(8)Q(8)P+(9)p(9)w_'(lO)Q(lO)P_(ll)p(ll)a'(l2)p(l2)ir_'(l3) 

P(l3)w+'(14)P(14)6_'(15)P(15)6+'(16)P(16)} 

where the orbitals which do not match are underlined. 

The   1   from   0   combined with the   1   from   A   gives for a contribution 

(P_(10) 6(11) I ir'(lO) P_(ll)) 

Due to the spatial orthogonality of the orbitals and due to spin orthogonality, the only 
contributing permutation from  A   that can be combined with the    1   from   0   is the 

identity permutation. 

The term 
N 

ci  £ s: s+ 

combined with the   1   from A  makes no contribution due to spin orthogonality.    The 

only term to give a non-zero result is C. 
P'0   ..from A, the combination yielding 
only term to give a non-zero result is C. S._ S., which must be combined with P?Q   ., 

-C1(6_(11)P.(13)IP_(11) w_'(l3)) 

There will be no other terms entering into this matrix element.    Therefore, 

(AOp2)IHIp5)  = (1 - CjJUJl) P_(2)|P_(1) w_'(2) (6. 27) 
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and C. is - 1/5.    By proceeding in exactly the same manner,  all of the matrix elements 

of  H   for the S  =  0 case can be set up. 

Let the Hamiltonian matrix for the singlet states be denoted by H_ and the 

Hamiltonian for the S =  5 states be H,.    Then we can set 

HQ = H5 +  D(4) (6. 28) 

The matrix   D   has the following form 

O 

O 

O 

O 

O O 

D22      D23      ° 

D23      D33      ° 

'44 

(6.29) 

Now suppose 4»0 is the eigenvector of H. corresponding to the lowest eigen- 

value of H_ which we shall call En.    Then 

<+0IHl*0> = l+O^W + %iD%] (6. 30) I 
or 

E0  -   *0.5 + D 

If 4<5 is the eigenvector of H, corresponding to the lowest eigenvalue E,, then by the 

variational principle 

(+5IH5I*5) * (VH5l+0) (6.31) 

or 

Therefore, 

E5    ^0,5 

En > EK + D (6.32) 
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• -^ t ^ •"^•.vrp. ;.~- 

*.** 

ft:..  l*V   .«.'.•' 

•s. '- 

$js iiiZgii Wi  f\ fttK k   s   h :?<   ^ *•   5; $.,   a _,   n(,   «... »  resjreeUvt^y. and feir k - 12, 

':£§;."i-ii--•/§•;•   !|"#  #H-ff-?. •-*  {>   b   !i   *MW| 6.' respectively.    i>3} is obtaiae4 t»y replacing: ." 
h    j>y -n    gi;4 &   ' h\  a. ' y very *hv r« in U-, . except when £>, and  6, ' occur as the result 

7M iM #*«»>• 

#|J ~ffc_0)p_U)|P .{l)"*.'*2)) + "(6_(l)"P0(2)|P0(l)ir_'(2)) * (6_(l)P+(2)|P+(l)7r '(2)) 

fl(6 J(1)P (2)|P fl)»(i))t(i '(1)P (2)|P.(0n (2)) Hfi '(i)P.U)|P,(l)ir (2)) 

v+|(6r(f)PtU)|Pf(l)^'(2)) t(6..(lJPo(2)|Hl)*.'(i)j  i  (6.(l)P.(2)|P_(l)1T+'(2)) 

* |(6+
,(l)P+(2)!Pf(l)Tr+(2)) +(6+'U)P0U)|P0U)7r+t2)) f (6+-'(l)P_(2)|P- (l)ir+(2)) 

(6.34) 

,    -46    • .5. 

D44 = ?k^2(*k,"(l)p'-'(k)|p"(1)^,(k) •lk?lfV
I)po<k!|po^>*k<!iM 

+ i|-(Hl)Po(2)|PoVl)a'(2))'+   2(c(l)"P+(2)|P+(lJtf>(2})   *  2(uU)P_(2)|P_(l)«r'U)) 

(6. 35) 

The'principal parts of D? . and D,.> are exchange integrals between the oxygen 

orbitals  ;nd the Mn orbitals;   these integrals are .all positive.    The other integrals en- 

tering t.)      and D .., are three-center integrals which cannot be of major import as they 

involve the orbitals of both Mn ions-    Although these three-center integrals are by-no 
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.16 5 
D22       5     £   (V(l)P_(k).'P_(l)V(k)) *   |    ^ (•k(DP»|P.(l)*k(k)) 

16 5 
• |    I   (•k

,(DP+(k)lP+(l)«k'(k)) • |   I (•k(l)P+(k)|P+(l)^k(k)) 

+ -^(P.(l)6.(2)|6_'(l)P_(2)) + 2(6_(l)P0(2)lPo(l)5.'(2)) + 2(6.(D P+(2)|P+(l) 6_'U)) 

+ -£(P+(i)6+(2)|6+'(l)P+(2))* 2(6+(l)P0(2)|Po(l)6+»(2)) + 2(6t(l)P.(2)|P_(l)6+'(2)) 

(6.33) 

We mean by $.   for k  =   1,  2,   3,  4,   5; 6.,   6 ,   w.,   w_, <r respectively,  and for k  =   12, 

13,   14,   15,   16;   cr',  W  *,  w *,   6  \  and &  • respectively.    D,, is obtained by replacing 

6   by w   and 6  ' by w ' everywhere in D,, except when 6. and 6,* occur as the result 

of a summation. 

D23 = |(Ml)P_(2)|P_(l)»_'(2)) • (6_(l)Po(2)|Po(l)w,'(2)) + (6.(1) P+(2)|P+(l) w_'(2)) 

+ 1(6 '(DP (2)|P (l)w(2)) • (6 '(1)P (2)|P (l)ir (2)) + (6 '(l) P. (2)|P. (l) TT (2)) 

+ |(6+(l)P+(2)|P+(l)»+'(2)) +(6+(l)P0(2)|Po(l)%'(2)) • (6+(1)P.(2)|P_(1)TT+'(2)) 

+ 6
r(6+'(l)P+(2)|P+(l)%(2)) +(6+'(l)P0(2)|Po(l)n+(2)) + (6+'(l) P_(2)|P_(l) W+(2)) 

(6. 34) 

16 5 
D«=K^Z(**'il)P<>(k)lP<>(l)**(k)  + I J1

(^(l,Po(k,IPo(I,*k(k,) 

+  -^(o(l)P0(2)|Po(l)a'(2))  +   2(<r(l) P+(2)|P+(l) <r'(2))   +   2(<r(l) P_(2)|P_(l) <r'(2)) 

(6. 35) 

The principal parts of D,2 and D,, are exchange integrals between the oxygen 

orbitals and the Mn orbitals; these integrals are all positive. The other integrals en- 

tering Dp, and D,, are three-center integrals which cannot be of major import as they 

involve the orbitals of both Mn ions.   Although these three-center integrals are by no 
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means zvto,  they pre overshadowed by the exchange integrals.    Therefore D„ and 

DJ3 as well as D44 are positive.    Since D44 is positive,  If  D   is to have a negative 
eigenvalue it must come from the 2x2 secular equatior 

The secular polynomial coming from this part of  D   is 
eigenvalue it must come from the 2 x 2 secular equation Involving D,,,  D,,,  and D2r 

I 

X*  *  (D22 + D33> X *  D22D33  "  ^23^  =  ° <6" 36> 

We can only have a negative root if D^DJJ < (D23)2 since the sum of the roots is 

positive.    By means of the same arguments which established the positive character 
of D22 and DJ3 we can see that D£3 is less than either D,, or D    .    Therefore, the  D 

matrix has no negative roots and consequently the energy of the lowest lying singlet 

state as found by this configuraticr. interaction cannot lie below the lowest S =  5 state. 

Up to this point configurations in which an electron on the oxygen ion goes into 

a 4s orbital on one of the Mn ions have not been included.    The 4s orbitals are more 

extended than the 3d's and now we would have to admit exchange integrals between a 

4s orbital localized about one Mn ion and the 3d orbitals localized about the other Mn. 

By examining the character of D,, and D,, it appears that the inclusion of these con- 

figurations could not lead to a lower lying singlet energy than that of the S =  5 states. 

There is one quite definite conclusion which can be drawn from this investiga- . 

tion.    Within the framework of the approximations made here it seems clear that when I 
an electron is removed from the O" ion,  leaving an unpaired spin on the oxygen, that 

this unpaired spin couples the non-overlapping charge densities on the Mn ions ferro- 

magnetically.    In view of this result, it appears likely that some other apprcacn would . 

be more profitable as an explanation of antiferromagnetism.    Of course, it may well 
be that the singlet state considered here in no way resembles the antiferromagnetic 

state. 
Before abandoning this simplified model there is one feature of the configura- j 

tion interaction treatment that bears examination.    That is the fact that this approach I 

has placed all of the emphasis on the probability amplitudes of the various configura- 

tions, the energy being stationary with respect to the variation of these parameters. 

It is quite possible that the one-electron wave functions are really quite different for I 
the singlet and S =  5 states.    Furthermore, the use of orthogonal orbitals may force 

one to carry out a rather extensive configuration interaction to accurately describe the 

correct state of affairs.    An investigation is being carried out at present using a mix- j 

ture of orthogonal and non-orthogonal orbitals but considering only the ground configura- j 
tion.    The energy will be stationary with respect to variations of parameters in the one- 

electron functions and these functions will be determined separately for the states of 
different multiplicity.    Preliminary results obtained for this approach have been en- j 
couraging. 
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7.  AN EXTENSION OF WIND 'S RULE 

In the course of configuration interaction calculations with orthogonal orbitals 
it is sometimes interesting to know what the multiplicity is of the lowest state of some 

given class of states.    In general it is impossible to answer this question without cal- 

culations.    Under one set of circumstances it is possible to answer this question with- 
out any calculation.    We know of Hund's rule of atomic spectra.    Part of this rule states 

that of all the levels arising from a given spacial configuration the state of highest mul- 
tiplicity lies lowest.    A rule similar to this can be proved in general. 

We imagine   n  distinct orthogonal orbitals u.,  u,,  ...  u .    We put one elec- 

tron in each of these orbitals with either spin up or spin down.    This gives rise to 2 
states.    These states can be formed into states of definite multiplicity ranging from 

singlets (for n even) to states of multiplicity n + 1.  (The presence of other orbitals 

which are doubly filled does not influence the validity of the following arguments and 

can be dropped from considet ition. )   We shall now show that there is no state that lies 

lower than the state of highest multiplicity.    We lose no generality by restricting our- 

selves to all those states with the same   z   component of total spin.    Of these only one 

corresponds to the state of highest multiplicity whereas for any other multiplicity 

there is in general more than one state of this multiplicity.    Since states of different 

multiplicities cannot interact we are confronted with the problem of diagonalizing for 

each multiplicity the matrix of the Hamiltonian 

a        2 
H = i - v+ f(i) + £ «ii i > j     J 

(7.1) 

Here f(i) is the one-electron potential and g.. is the interelectronic Coulomb interac- 
(i\ lJ 

tion.    From the Dirac vector model      we know that for a given multiplicity the matrix 

of the Hamiltonian can be written down very simply. 

JTW- const.   •    I    - VPiA» (7'2) 

Here Jf.     represents the Hamiltonian matrix and (P..).     are unitary matrices which 

represent the permutation of the spatial coordinates of electron  i   with those of elec- 
tron j.    J,. is the customary exchange Interaction J,,  =     /u.*(l) u *(1) g.^ u.(2) u.(2) 
d-r. d-r, which is greater than zero since it represents the interaction of a charge den- 

sity with Itself.    We first consider the state of highest multiplicity.    This has a Ham- 

iltonian matrix which has only one row and one column.    The matrices representing 

the permutations P.. are matrices which have one row and one column.    The matrix 
element in all these matrices is unity.    Therefore the energy of the state of highest 

multiplicity is (apart from the constant in (7. 2) which is the same for all states) 
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E n+1   =   "   IJij 

For any other multiplicity the matrices (Pnh    are of larger size.    Let us consider the 

diagonal energies of all the states of a given multiplicity.    These energies are the di- 

agonal elements of (7. 2) 

From the unitary nature of the matrices (P..).     we know that 

<PijU «  1 

Therefore it is clear from this fact and the fact that J.. > 0 that 

En+i = - £jij «•*;<, = i- w- 

We have therefore proved that there is no state lower in energy than the state of highest 

multiplicity.    One might ask if going through the process of diagonalizing the Hamilton- 
ian matrix (7. 2) will push some state lower than the state of highest multiplicity.    This 

is not the case since in diagonalizing the matrix (7. 2) we use a unitary transformation 
which does not destroy the unitary property of (P. ).   .    This unitary property was all 

lj \<r 
that was necessary to prove the theorem.    In general,  in order to get some state other 
than the state of highest multiplicity lying lowest it is necessary to take states into ac- 

count which occupy the orbitals in a different manner possibly filling some of our   n   or- 

bitals twice and leaving others empty. 

Reference 
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and a complete discussion of this method,  see E.  M. Corson,  Perturbation 
Methods in the Quantum Mechanics of n Electron Systems (Hafner Publishing 
Company,  New York.   lVSoj. 
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3.  ON THE Oz GROUND ELECTRONIC WAVE FUNCTION 

Microwave absorption measurements on O     O     gas       exhibit a hyperfine 

structure.    The observed spectrum agrees with that predicted on the basis of a perturb- 

ing Hamiltonian of the form bl  • S   +  cl S •  S is the electron spin angular momentum 
l "7 

of the molecule,   and T is the O     nuclear spin (I  =  5/2).    According to a theory by 

Frosch and Foley,      '   a' experimental values of 

<P2/r
3> = fCC°fri

X"1) ?(r) 6r (8. 1) 

and p(0) can be deduced from those of the parameters b and c.    The angle between the 

internuclear axis (the z-axis) and the radius vector  r from the O      nucleus to an elec- 

tron is denoted by x.  and  P,(x)  =  (l/2)(3x    - 1).    <P,/r > is the value of P,/r    aver- 

aged with respect to the number density p(r) of electrons of unpaired spin of the mole- 

cule,  and p(0) is the value of p at the O      nucleus.    In the following we compare the 

experimental values - 1. 32 and 0. 187 (in atomic units) of <P,/r > and p(0),  respectively. 

obtained by Miller and Townes    '   a' with values determined by Meckler's O, normal 
(3) electronic wave function.     ' 

<P2/r >may be defined more precisely as 

, .       .    P,(cos x). 
<P2/r >   * /> (X    Z J )zs        $dr (8.2) 

* j       r. i 

where s. is the spin angular momentum of the j     electron measure    in units of fi.   The 

summation is over the N electrons of the molecule,  and the integration is ever the co- 
ordinates of all electrons (and is to include summation over spin coordinates).  $ is a 

normalized electronic wave function,  the solution of SchrSdinger's equation for O, with 
a spin independent Hamiltonian and with fixed nuclei.    $ is an eigenfunction of S    and 
S   with eigenvalues S(S + 1) and MG = S; S - £.is..    Upon integration over the coordinates 

* ° J   J 
of all electrons but one,  and summation over all spin coordinates,  (8. 2) reduces to (8. 1) 
in which p(r) is defined by 

p(?)  = N JV(X, X2 XN) 2sz $(X. X2 XN) d«r dX2 . . .  dXN       (8. 3) 

and satisfies   / p(r) dr   =  /$* 2S2 J dT  = 2S.    In case f is expressed as a linear com- 

bination of determinants of orthonormal orbitals,  p(r) is a quadratic form in the orbitals, 

the cross-terms (overlap terms) arising from products of determinants differing by one 

orbital. 

-39- 



• 

(ON THE Oz GROUND ELECTRONIC WAVE FUNCTION) 

Quite generally p(r) can he employed to find the expectation value of F: 

/j* F £ dT  = J t(T) p(r*) dx\  where   F   is ai. operator of the type F  =   £. f(r.) 2s.  . 
(4) '       J       J£ 

E. g..  in the theory of neutron-electron magnetic scattering      such an operator occurs 

with f(r )  = - elK '   r  where K  is the neutron scattering vector. 4: 

3     - (3) The normal O, electronic level is a    Y~.    Meckler       approximates $ for 
g 3     - 

this level by a linear combination of nine symmetry states of    V    symmetry,   each a 
8 linear combination of determinants of orthonormal orbitals,  these orbitals being sym- 

metry orbitals (LCAO molecular orbitals) from one configuration.    We write Meckler's 

$ as 

*M 
a i % v (8-4) 

ji=a 

where,  in terms of the determinants specified in Table 8-1,  the symmetry states $    are 

given by 

6    = i(A + B - C - D) 
a       2 

<.b  = i(B • C - A - D) 

<*>    = 2~ 3/2(E + G-F-H + J + K-I-L) (8.5) 

4>h = 2" 3/2(F + G-E-H + I + K-J-L) 

4>.   = 2~ 3/2 (E + F - G - H + I + J - K - L) 

and the one-determinant symmetry states $r,  $ .,  6 ,  and $-.    The coefficients c as a 

function of   R   are given by Meckler.  '    The result of inserting (8. 4) into (8. 3) is, in 

terms of Meckler:s symmetry orbitals (see Table 8-1), 

p(r) = C^l2 • C2|xo|
2 • C3|X+|

2 • C4|*+|
2 (8.6) 

where 

Cj=   a + p   +  y -  6 

C2=   o + p   -Y+
6 

C3 =    |ca + cb|Z +  2lcc|2 + 2|ce'2 * ° •  P +  Y +  6 
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Table 8-1 

Determinants of the symmetry states* 

2p<r 
g 

2p<r, 2pw 
g 

2pw 
g 

2pir 2pw 

A + - + - + - + + 

B • - + - + + + - 

C + - + - - + + + 

D • - + - + + - + 

E •f + ^ + - + - - 

F i + - + - + - + 

G + - + + - + - + 

H - + + + - + - + 

I + + • - - + • - 

J + + • - + - + - 

K • - • - + + + - 

L - + + - + + + - 

•c + - + + + - + - 

•d + - • - + - + + 

•• + - + + + - + - 

•f + - + - + - + + 

The normalized determinants A,   ..., fy viih Me = 1 are defined by the symmetry or- 
bitals on the principal diagonal; these consist of filled ls<r and 2s<r orbitals accounting 
for eight of the sixteen electrons,  the remaining orbitals being specified by the above 
table,  a + or - entry indicating that the space orbital is occupied by an electron with 
+ or - spin.    The space orbitals are labeled both in standard notation and in Meckler's 

notation.    Meckler lists the nine    £ " symmetry states as eigenfunctions of Sz with 

eigenvalue Ms = 0; these yield the $    when operated on by (S   + iS )//!. 
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f 

C4  = |c    - cbl2 +  2|cd|2 +  2|cfi2  -a + p+v + 6 
\ 

a = i^g • Ch + ci«*       P  = l'-cg + ch+ci|2 

>. .2 
v = — te    + c.   - c. 

4   8       h       i' 
6  = i|c     •  c.   +   c.|2 

4    g h i' 

) 

No overlap terms appear in p since all determinants involved differ by at least two or- 

bitals.    This follows from the fact that no two space orbitals available for occupation 

outside the lsa and 2s<r filled shells are of the same symmetry.    Values of the C's and 

their component parts are given in Table 8-2.    At normal internuclear distance R = 2. 28 

Table 8-2 

Values of the C's of Eq.  (8. 6) and their component parts for Meckler'r 

O, normal     Y    electronic wave function.    Note that   Y,  C,   = 2. 00. 
g 

R 2.0 2.5 4.0 

cl - 0.0018 - 0.0036 0.4424 1/2 

C2 0.0024 0.0066 0.4425 1/2 

C3 1.9632 1.9183 0.5960 1/2 

C4 0.0361 0.0788 0. 5181 1/2 

a 0.0003 0.0013 0.2226 1/4 

P 0.00002 0.0002 0.2202 1/4 

Y 0. 0060 0.0113 0.00004 0 

6 0.0081 0.0164 0.00008 0 

21c  I2 

c 1.9400 1.8694 0.3804 1/4 

2lcd|2 0.0216 0.0479 0.3208 1/4 

2|cel2 0.0084 0.0183 0.2129 1/4 

v,Al 
0.0007 0.0041 0. 1998 1/4 

I 
•ca * cb' 0.00000 0.00004 0.00001 0 

'ca + cb'2 0.0005 0. 0018 
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the symmetry state $ ,  which corresponds to the molecular orbital solution for the 
2 normal O, molecule,  predominates (l - |c  I    « 1).    The   p for $  ,  which involves only 

2pw   orbitals   x+.  is not much different from the   p for   $M. 

The value of <P-/r > calculated from p of  $M at equilibrium internuclear 
separation is only about 27 percent of the experimental value - 1. 32.    When Meckler's 

orbitals in p are replaced by Hartree-Fock orbitals, the value of <P,/r > is about 90 
3 percent of the experimental value.    These values of <P2/r > are discussed in more 

detail in the next paragraph.    It seems unlikely that if Hartree-Fock or other reasonable 

types of atomic orbitals were used in Meckler's calculation in place of his Gaussian- 
type orbitals, the C's of (8.6) would be significantly different.    The value of <P,/r > 

will then depend largely on the types of orbitals.    One expects that calculated values of 

the molecular energy and <P,/r > as a function of the atomic orbitals employed are 

not very well correlated,  since <P,/r^ , but not the energy,  is sensitive to values of 
17 the orbitals primarily in the vicinity of the O     nucleus. 

Let us consider first <P,/r^ calculated for <$> .    We then have,  in terms 
17 c 16 of the atomic orbitals p+ about the O      nucleus and p+' about the O      nucleus 

P 2 
<P2/r3>   =  2j*-i |Xt|

2 dr * (2 • !L) A [l   -   t2(R) •   t3(R)] (8.7) 
P 

where 

A = /(P2/r
3) |pt!2 dr 

e2(R)  = zf (Pz/r
3) pt* P+«dr7A (8. 7') 

«3(R)  =/(P2/r
3)|pt'|

2dr7A 

and K(R) is a normalization constant.    A,  which is - <P./r > for an isolated   O   atom 
4  3 in its ground level 2p      P,  is independent of R;  it is negative,  since the angular part of 

the integral is negative.    For Meckler's Gaussian type p orbitals,  A is - . 304 and,  if 
we ignore the other factors in (8. 7),  yields a theoretical value of <P,/r >   only 23 per- 

cent of the experimental value.    The theoretical value is increased somewhat by the 
remaining factors in (8. 7).    The contributions c2 and c. involving the O     orbital are 

small,  and should decrease as R increases;  in fact,  for Meckler's orbitals and R = 2, 

e- * - 0. 03 and l£3/£2|   « 0. 04,  so that the factor (l  - i~ + cj increases* the theoretical 

Actually t? is the algebraic sum of three terms whose magnitudes for R   • 2 are of the 
order ten limes U2I,  and it is not obvious that  |c2| decreases monotonically with in- 
creasing R. 
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value by about 3 percent.    K   for Mecl.lci *s orbitals has the values 1. 25,   1. 09.  and 

1. 00 at R  = 2. 0,  2. 5 and 4. 0,  respectively,  so that the normalization of x   increases 

the theoretical  <P,/r > by about 15 percent at normal internuclear separation.    The 
3 net result is ths-.t   <P,/r > for the molecular orbital ground state of O, computed us- 

ing Meckler's Gaussian type orbitals is still only 27 percent of the experimental value. 

A for a Hartree-Fock   O   orbital is 71 percent of the experimental <P,/r >.    If, 

however,  one includes the other factors of (8. 7),  assuming these are unchanged in value, 

the discrepancy can be reduced to about 10 -   15 percent,  perhaps even less when these 

factors are properly computed.    The value of <P,/r > for $M is in slightly poorer 

agreement with experiment than that for $  .    Now   p   involves integrals like (8. 7) with 

the 2pw ,  2pc ,  and 2p<r   orbitals.    Since the latter integrals contribute to   <P,/r> u g u c 
with small coefficients,  they need not be investigated with great precision.    For 2pw 

/ 2 2 u 

the integral differs from (8. 7) in that K    is replaced by Meckler's L    <.  1 and c. — - t_, 

and so is smaller in magnitude than (8. 7).    For 2p<r orbitals the sign of the integral is 

reversed,  A being replaced by - 2A.    It is clear that  <P,/r >,     does not differ appre- 

ciably from   <P?/r^* " 
Let us next compare the experimental and calculated values of p(0).    For $.., 

p(0) is ve.-y much less than the experimental value-    This is not surprising,   since only 
17 symmetry orbitals containing s orbitals have an appreciable density at the O     nucleus. 

and $„ involves s orbitals outside the filled Is a- and 2s a shells only in the 2p<r orbitals, 
and then only in virtue of the orthogonalization of the 2p» to the ls<r and 2s<r orbitals. 

Table 8-3 shows values of p(0) for some atomic orbitals.    Values of   ty    (0)|2 and 

Table 8-3 
Values of p(0) for some atomic orbitals 

° (5) °2    (3) Hydrogen-Like       Hartree-Fock    '    Meckler* ' 

Is 0. 318 Z2 148.2 45.4 

2s 0. 318 (Z/2)2 7.604 0. 363 

|4<?  (0)1    for Meckler's orbitals are smaller by factors 0. 306 and 0.048,  respectively, 

than the corresponding values for the Hartree-Fock   O  orbitals of Hartree,  Hartree 
(5) and Swirles.    '   Even when the latter replace Meckler's atomic orbitals in his symmetry 

orbitals,   p(0)    is less than 0. 001 for $M,  smaller by a factor of about 100 than the ex- 

perimental value 0. 187.    (We have neglected the reorthogonalization and renormaliza- 
tion that should be performed for these substituted atomic orbitals. ) 

Apparently the normal electronic state contains small admixtures of other 

symmetry states than those considered by Meckler,   and these additional symmetry 
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states have large effects on p(0). The situation can be clarified qualitatively to some 

degree. A rough criterion for the magnitude of the amplitude c of a symmetry state 

is the sum of the energies of the component orbitals. the higher the energy,  the smaller 

|c  |.    Only the a orbitals of a symmetry state contribute appreciably to the density of 
17 unpaired spin in the vicinity of the O     nucleus,  since only these contain s orbitals. 

Thus,  only symmetry states with unpaired o- orbitals can contribute effectively to p(0). 

We can get some idea of the relative effects on p(0) of various nsv orbitals by noting 
2 - 3 

that for hydrogen-like atomic orbitals +  -, 1+ o^/'Kot0)'     = n 

On the basis of these ideas we may expect that only symmetry states with low 

energy containing unpaired ns<r orbitals with small n give important contributions to 

p(0).    Examples of such are symmetry states which differ from one of the 4>   in that a 
ls<r or 2s<r orbital is replaced by an nf<r of low n £ 2 and I f   0.  or in that a 2p<r is re- 

placed by an nstr with small n > 3.   (Note that if the excited symmetry state is to have 
the same symmetry as a •   and involve determinants which differ by only one orbital 

from thos of the 4> , the excited orbital must have the same symmetry as the unexcited. 
Also,  a cross term in p(r) vanishes at r = 0,  unless the orbitals which overlap are 

both so-. ) 

Approximate wave functions in molecular theory are commonly determined 

by a variational procedure which makes the energy stationary.    The result is that al- 

though the energy is insensitive to small variations in the wave function,  other quanti- 
ties,  such as   <P,/r  > and p(0),  may be relatively quite sensitive.    One should then 

not expect amounts of mixing of symmetry states which yield energies in satisfactory 

agreement with experiment to necessarily yield other molecular quantities in such satis- 

factory agreement;  p(0) is an example of such a quantity.    On the same basis,  types of 

atomic orbitals which lead to reasonable energies may lead to poor values of other mo- 
lecular quantities: both <P,/r  > and p(0) are examples of such quantities. 
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9.  THE ETHANE MOLECULE 

As indicated in the last Report, the severe restriction on the amount of con- 

figuration interaction to be considered necessitates an optimization of the molecular 

orbitals,  a best choice of linear combinations of atomic orbitals.   This problem is faced 

also by Dr. Kaplan in his treatment of the NH, molecule where even though quite a bit 

of configuration interaction is handled,  the amount is still not enough to permit complete 

equivalence of all linear combinations of atomic orbitals.    Roothaan   ' has given a pro- 

cedure for determining best LCAO's for the case of a closed shell state,  a single de- 
terminant many-electron wave function.    His equations are the algebraic equivalent of 

the Hartree-Fock differential equations and are similarly characterized by the dis- 

couraging prospect of a self-consistent calculation.    However,  there is Whirlwind -- 

the high speed computer now of large capacity -- and Roothaan's procedure can be mech- 

anized and performed by the machine so that it becomes a fast,  repeatable routine.    We 

wish to present ••> flow chart of the machine program now being developed but first we 

will re-express Roothaan's equations in a slightly modified form: 

To begin with, there are the one-electron functions which are to be combined 

in the best possible ways.    Let them be orthonormalized.    Here we differ with Roothaan 

who did not require orthogonality.    The lack of orthogonality leads to a more compli- 

cated type of determinantal equation to be solved and we see no point in adding this diffi- 

culty to the non-escapable one of self-consistency.    We begin with a well-considered 
first guess to the molecule/ orbitals,  an orthonormalized set.    A general linear com- 

bination of these functions is still a general linear combination of the original atomic 
functions. 

This original set of functions is denoted as v    and the number in the set by N. 

If there are 2n electrons in the system,  we are to find   n  linear combinations of the v 's 

4>. =   y c.   v 

such that an antisymmetrized many-electron wave function formed with each   $. doubly 
occupied will be associated with a minimum value of the energy.    The expression for 
the energy is 

where 

E  = 2   y  p      H      +     yP     G?vp. 
t*v u.v\<r 

vc /v(i) [* vi2 + v(1)] vv(i)d3xi 
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G**   =  2(uvl\<r)   -  (»i«rlXv) 

(Kvl\<r)  =   fv  *(1) v  (1) J_   v *(2) v (2) d3x. d3x. 
j    \L 12 

ruv       f'   i|i 
* 

civ 
1 

or in matrix notation 

p  = C C (+  = Hermitian adjoint) 

and the orthonormalization of the 4^'s is implied by 

CC+   =   1 

C is an n x N rectangular matrix,    p is a square N x N.    The n rows of C, 

which are the complex conjugates of the n columns of C,  arc the n lowest eigenvectors 

of the matrix 

That is 

K.     = H.     +   V   p      G^v 

KIT Xff       L,      jiv     X<r 

KC+  = AC* A diagonal 

We are to pick a p,  form K, diagonalize it,  selects its n lowest eigenvectors, form 

p,  re-cycle.    The thing to realize is that   H   and  G   do not change from cycle to cycle. 
They are the input to the machine,  the data to be used over and over again.    The flow 

chart is illustrated on p.  48. 

The machine is to do matrix-vector multiplication (symbolized as pG),  matrix 

addition,  matrix diagonalization,  magnitude selection and comparison,  and many cycles. 

Even with the type of factorization by symmetry discussed by Roothaan there is a lot to 

be stored in the machine,  but the addition of more electrostatic storage tubes and a 
magnetic drum to Whirlwind has made for the pleasant atmosphere of a buyer's market 

in storage space. 

The matrix diagonalization procedure,  which is just a sub-routine in the whole 
self-consistent process,  has been programmed and will exist as a separate routine in 

the Whirlwind library.    The present program can handle up to a 31  x  31 real symmetric 
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matrix and a 15 x  15 complex Hermitian matrix.    The rest of the L.C. A.O. determina- 

tion is now being programmed and will be first applied to the NH, molecule. 

Alvin Meckler 
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10.  LIMITED CONFIGURATION INTERACTION TREATMENT OF THE NH3 MOLECULE 

The calculation of matrix elements indicated in the last Progress Report is 

still underway.    The matrix elements have been expressed in terms of "directed" mo- 

lecular orbitals.    Due to the symmetry properties of these one-electron functions, 
there are only thirty-five independent two-electron integrals and five independent one- 

electron integrals.    Each of these integrals,  however,  is a combination of many similar 
type integrals involving atomic wave functions.    At present the component atomic in- 

tegrals are being expressed in a form necessary for the evaluation of their radial sub- 

integrals by I. B. M.  machine methods. 

H.  Kaplan 

I 
\ 

I 

I 

' 
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11. THE WATER MOLECULE 

The tabulation of the   a  's mentioned in the last Quarterly Progress Report 

is nearly complete.    We now have the following ro 'sj 

r = 0(. 1) 1.2(. 2) 4. 0(. 5) 7(1) 12 

a » 14,   1.5,   1.6,   1.8,   2.0,  2.2,  2.6,   3.0,  4.0 and 5.0 

k  = 1,  2 

n = 0,   1.  2,  3,  4,  5 (for k =  1) 

n = 0,   1.2.   3 (for k = 2). 

The interelectronic interaction integrals involves terms of the form 

00 r 
/pab<rl>|-7n     '     >cd(r2,r*< 

o L  1 o 
dr2 •  rf   j i     ?    >cd<r2> Or, 

',   '2 

- VIA   >% 1+ 1        2 dr, (ii.l) 

These can be written as 

r 

/pab<ri> -rn J  pcd
(r2)r2idr2 dri +/pcd(ri) -yn / p^i*zl*rz drl 

o L  l o J » Lrl o J 

(11.2) 
We shall call the quantity in square brackets in (11.2) the inner potential. 

We have written and tested a program for computing the inner potential, 
where p .   is the product of two radial probability amplitudes,  for the I. B. M. Card 
Programmed Calculation.    Our mesh is 

r « 0(. 0125) . 05(. 025) . 2(. 05) . 6(. 1) 1. 2(. 2) 4(. 4) 10 . 

The program takes three minutes of machine time per integration. The results of this 
indefinite integral are printed and punched on cards ready for use in definite integrals. 

This program is now in use. 

G.  F. Koster 
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12.  CONFIGURATION INTERACTION APPLIED TO THE HYDROGEN MOLECULE 

Calculation of the several matrix elements discussed in the previous Progress 

Report is continuing.    The odd one-electron function obtained from the Hartree equa- 

tion containing an "average field" due to an electron in the even orbital has been deter- 

mined.    The kinetic energy and nuclear framework integrals appearing in the main di- 

agonal element in which the electrons are in the- odd orbital -have-bess.computed and . 

there remains only the electron-electron interaction integrals to be found. 

E. Cailen 

52- 



13.  CONFIGURATION INTERACTION FOR THE FLUORINE MOLECULE (1) 

In order to shorten the computation in the problem mentioned in the last 

Progress Report,  it has been decided to use Slater-type atomic orbitals* ' instead oi 

Hartree-Fock atomic orbitals.    Work on the problem is proceeding along these lines 

References 
1. The author is the holder of a Lilly Postdoctoral Fellowship from the National Re- 

search Council 
2. J.  C. Slater,  Phys.  Rev.  36,  57 (1930). 

J.  H.  Barrett 
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14.  NUCLEAR ELECTRIC QUADRUPOLE INTERACTION IN THE KC1 MOLECULE 

The introduction of a polarization effect by appropriate distortion of atomic 

orbitals has been studied along lines indicated in the previous Progress Report. * '    A 

special case of the proposed form: 

has been investigated quantitatively.    In particular,  we have chosen n=l,l=0,  m = 
0,  V =  l,  m' = 0,  and in addition we have provided for normalization and a "mixing 

coefficient", C.    Thus our wave function is: 

<J< * Ne"r(l  + Crv cos 9) (14.2) 

where N = normalization constant and C,  v  * variation parameters.    (Unless otherwise 
-8 stated,  atomic units,   a. u. ,  are used throughout;  a    = unit of length =  . 529 x   10      cm, 

2 e /2a    • unit of energy  =   13. 53 e. v.) 
Using (14. 2) we have considered two types of perturbing fields:   (l) a weak 

uniform field and (2) the field of a point charge a distance R  =   1. 4 a. u.  away from the 

center of the unperturbed function. 

Case (1) 

The Hamiltonian is: 

H « Ho(r") + H'(r\ * ) =  - V2  - | +    * r cos 8 

and H'(r,^ ) is considered to be small compared to H .    We form: 

U* H * dr . , 
E  = J-.    - E     - i«Hf     +  ... (14.3) 

J +* I)I dr °       z 

Our problem is really that of the second order Stark effect for the normal hydrogen 
Iz) 3 atom -- which has been solved exactly   ' yielding a polarizability:   a » 2. 25 a. u. (4. 50 a 

in any other system of units).     Using (14. 2) and varying C and v we obtain a minimum 
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(NUCLEAR ELECTRIC QUADRUPOLE INTERACTION IN THE KC1 MOLECULE) 

of (14. 3) for C  =  - . 724,  v  =  1. 50,  giving   a = 2.25 a. u.  — the correct value.    For 
comparison we have used: 

+1. B 
1        -r    e 

*2pz 
. r cos      • *   e -r/2 

(14.4) 

3 
Minimizing (14. 3) with respect to C. we obtain o =  1. 48 a. u.  (2. 96 aQ ) — a value in 
error by 35 percent.    The resulting expressions for ift and 4* are given below for Case 
(l).    (We have separately normalized the angular dependent term of (14. 2) so that the 
coefficient of the distortion terms are directly comparable): 

+l=Nl[+ls  "  -995'+2pz] M,  -  I   -  .495*2 

4-   - Nfe"r  -   1.4sWrl*   °^i_ee"r)l N = .564 - .369*2 
L V </2. 50 yJ 

It should be noted that for Case (l) (14. 2) is just of the form: 

+. = +°(1  + AH' +  . . .) 

which was suggested by Lennard-Jones    ' on the basis of an approximate treatment of 
second order perturbation theory.    Also Slater and Kirk wood   ' have treated the normal 
hydrogen atom in a weak uniform field using a function of the form: 

4» • 4»°(1  + H'R(r)) 

They obtained a differential equation for R(r) ard their resulting wave function was: 

•J» * N [e"r  -   1/ {(r • y) cos 9 e"rj] N -  .564 -  . 282/ 2 

and a « 2. 25 (4. 50 a *)  - the exact value. o 
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Case (2) 

The Hamiltonian is: 

H = H (?) • H'(?\ R) •  - V2  - | - |, • 4 
r      r        R        L I       1    r. ,B,k { 

^ i « I   V £)* P (cos e) r > R 
ri     r    t-   r K 

Here we have a strong field case with H'(r, R) the same order of magnitude as H (r). 

Again using (14. 2) and minimizing the energy with respect to C  and v for R =   1. 40 we 

find C  • . 385,  v =  .65.    For (14.4) we find C.   =  . 109 and the respective functions are: 

. 508 .,. - N[e-r,    ,0fl/r-65cos8e-r\| N L yrioo   /J . 

+ 1 =Nl[+ls+    109+2pz] Nl =-989 

The exact solution of Schrodinger's equation for this potential is the hydrogen molecule 

ion with an energy at R =  1. 40 of - 1. 15 a. u.    4* gives an energy - . 916 while *fi gives 
+ 

- . 809, the first representing a 20 percent greater value than the exact value for H, 
and the second a 30 percent greater value.    However we are trying to solve a polariza- 

tion problem and not the H,   problem and thus we have not brought in the symmetry of | 

the positive charges.    Our calculation only shows that the wave function of (14. 2) is 

more satisfactory than the case of (14.4) where we admix some 2p   function with the Is. 

The method of Slater and Kirdwood depends for the separability of their differential 

equation on linearity of H' in rectangular coordinates and spherical symmetry of  + 

and appears not to be readily manageable for complicated cases. 

As a further test of the function (14. 2) the determinantal wave function for F~ 
is being set up using one-electron functions of the form (14. 2) and determining  C   and 

v  by minimizing the total energy. 

References 

1.  L. C. Allen,  Quarterly progress Keport,  Solid-State and Molecular Theory Group, 
M.I.T., April 15,   1953, p.  51. 
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15.  INTERSTITIAL DIFFUSION IN THE DIAMOND STRUCTURE 

We wish to derive the diffusion coefficient for interstitial diffusion ir the dia- 

mond structure by considering the elementary process of a transition of 'IT interstitial 

ion from its original site to a neighboring one.    We here consider only inters, tial diffu- 

sion,  for the case of infinite dilution of the diffusing substance,  constant temperature, 

and absence of electric fields. 
The diamond structure can be viewed as two interpenetrating face-centered 

cubic lattices, one having a parallel displacement of (a/4, a/4,  a/4) with respect to the 

other, a being the length of the side of the unit cube     The interstitial positions are 

found to have the diamond structure also, displaced by a body-centering translation 

from the original lattice.    That is,  if the carbon atoms arc found at (000),  F. C..  and 

(a/4, a/4,  a/4),  F. C., then the interstitial sites are located at (a/2, a/2,  a/2),  F.  C., 

and (3a/4,   3a/4,   3a/4),  F.  C.   The interstitial positions located with respect to it as 
as origin at rTj  =  (a/4,  a/4,  a/4), n^ = (a/4.   - a/4,  - a/4),  n3 = (- a/4,  a/4,   - a/4), 

n.  = (- a/4,   - a/4, a/4),  and ihe interstitial position (3a/4,  3a/4,  3a/4) has nearest- 

neighbor sites located with respect to it by the negatives of these displacements. 
We assume that the transition probability is   \ for a jump from one site to a 

nearest-neighbor site and   O for any other jump.    Then,  if P(r., t) be the probability 

that site r. is occupied by an interstitial ion at time t,  we have 

4 
P{T   t) =  - 4\P(r.. t) +    £    XP(r  t n    t) 

J J i=i J 

where the upper sign holds if r. is on the lattice containing (a/2,  a/2,  a/2) and the lower 

sign holds for the other case.    A Taylor's series expansion provides immediately the 

diffusion equation 

£?<?. t) = ^ vz ptf t) . 
at 8 

The diffusion constant is thus D = X.a /8. 

The neglected terms in the equation for either lattice of ions are the third- 

derivative terms, but after averaging over both lattices the only terms which survive 
are the fourth and higher derivatives. 

The assumption of infinite dilution of the diffusing substance can be relaxed 
somewhat,  for it is found that if the probability of occupancy of target sites is considered 

the same diffusion equation results.    The jumping probability   X.   will be a function of 
local concentration of diffusing substance,  however,  so the requirement of fairly high 
dilution would still hold. 

H.  C. Schweinler 
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16. A STLDY OF  2Z   IN ATOMS 

The results of calculations of the effective nuclear charge for potential in 
an atom have been submitted to the Physical Review for publication. 

A.  J.  Freeman 
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17.  ATOMIC MULTIPLET SEPARATIONS 

Atomic multiplet separations have been computed for atoms with uncompleted 

3p and 3d shells.    Simple analytic radial parts of the one-electron wave functions were 
assumed*. 

V 2   "Z3r 
R3p = C8re + CV  e 

2   "Z4r 

R3d  =  C10r  e 

R,    was obtained by taking a linear combination of single term expressions for the 2p 

and 3p radial functions.    The single term expressions are given by Professor Slater    ' 

as: 

.n* - 1 e-  [z - S)/n*] 

where   Z   is the atomic number and n* and S are given by simple rules.    C« and C„ are 
determined from orthogonality conditions with the 2p radial function and by normaliza- 

tion.    If one assumes the radial parts of the one-electron functions do not vary from 

multiplet to multiplet for a given configuration,  a multiplet separation is given by a 

sum of Coulomb and exchange integrals.    This sum may be expressed in terms of the 

Fk(n, ft n\  V) and Gk(n\ I;  n\  !•) integrals. *2) 

If orthonormal functions of the form, 

R  , •   I C. r      e     * nj      f*    k 
k 

are used,  the integrals may be written: 

F*{nti  n'l-j  =  2   £    CsCtCuCy   kL <ZS
+Zr Zu+ Zv} 

stuv 

wherf 

•   -    „. r(.)k     r,")e-br'rZr,idrdr, 

o   o 
nn.  _ni + n» nn 

da l8b J     * 
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(ATOMIC MULTIPLET SEPARATIONS) 

Silicon I 

Op)2 

Phosphorus I 

Op)3 

Potassium V 

Op)3 

Titanium I 

(3d)2 (4s)2 

Vanadium IV 

(3d)2 

Chromium V 

(3d)2 

Manganese VI 

(3d)2 

Iron VII 

(3d)2 

Vanadium I 

(3d)3  (4s)2 

Table 17-1 

Multiplet 
Separation 

Calculated 
Separation 

3P-lD 10. 285. 5 cm 

b^s 15,428.2 

4S  -2D 17. 179.0 

2D-2P 11.452.6 

4S  -2D 20. 914.6 

4S  -2D 34.857.8 

3F - 1D 6. 131.02 

3F - 3P 7,099.02 

3F - lG 9,443.88 

3F - *D 7,810.79 

3F - 3P 9, 044. 00 

3F - lG 12,031.3 

3F - *D 9,490.51 

3F - 3P 10, 988.9 

3F - lG 14,618.7 

3F - lD 11, 170. 3 

3F - 3P 12,933.9 

3F - lQ 17,206. 1 

3F - lD 12,850.0 

3F-3P 14,878.8 

3F - lG 19, 793. 5 

-1 

4F-4P 8, 363.25 

Observed 
Separation 

6, 198. 66 cm 

9. 095. 43 

11. 369. t 

7. 366. 1 

24. 118. 5 

39, 904. 5 

7. 069. 62 

8. 324. 8 

11. 932. 79 

10. 611. 0 

12. 930. 4 

18. 040. 0 

12. 647. 0 

15. 190. 0 

21. 510. 0 

14. 531. 

17. 350. 7 

24, 706. 

16, 350. 

19, 455 

27, ,790. 

9, ,415, 24 

-1 
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Table 17-1 (con'd) 

Multiplet 
Separation 

Calculated 
Separation 

Observed 
Separation 

Chromium 

(3d)3 

IV 4F -4P 10. 308.2 cm" ! 13,816.  cm" l 

Manganese 

(3d)3 

V 4F -4P 12,253.2 16,004. 

Iron VI 

(3d)3 

4F -4P 14. 198. 1 18, 169. 

Cobalt VII 

(3d)3 

4F -4P 16, 143. 1 20.271. 

Cobalt I 

(3d)7(4s)2 

4F -4P 13,420. 1 13,068.98 

Nickel I 

(3d)8(4s)2 

3F -3P 14,684.4 14,604. 17 

The "observed separations" were obtained in all cases by averaging the fine structure 
splittings in the levels concerned.    The experimental data were taken from Atomic 
Energy Levels, Charlotte E.  Moore, Circular of the National Bureau of Standards 467, 
1949.  

k 
By definition,  r(a) is the smaller,  r(b) the larger of r and r'.     The G    integral is ex- 

pressed as a similar sum.    A table of  L  functions was made for n.,  n. and k values 

from zero to four,  which is adequate to evaluate integrals involving electrons up to the 

3d shell. 
The ground state multiplet separations have been worked out for a number of 

elements.    These results are given in Table 17-1.    The multiplet separations for the 
(3d)    configurations reduce to linear functions of atomic number and are given by: 

3F  -  3P «  5, 834. 8 Z4 

3F  -   'G  =  7, 762. 1 Z4 

3F  -   *D =  5,039.2 Z4 

3F  -   lS   =  19. 387.   Z4 

7    _  Z - S z4 = -T_ 
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There is good agreement between the slopes of the observed and theoretical 

separations as a function of Z.    The (3d)  ,     F -   P separation exhibits the same linear- 
7 8 ity in atomic number.    The apparent accuracy in calculating the (3d)    and (3d)   multiplet 

separations is somewhat accidental- 

J 

i 

1. J. C. Slater,  Phys.  Rev.  36,   57(1930). 

2. J. C. Slater,  Phys.  Rev.  34,   1293 (1929). 
3. J. C. Slater,  Phys.  Rev. 42.   33 (1932) 

References I 

J.  R. Schrieffer 
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18.  AN ANALYTIC DETERMINATION OF ATOMIC ENERGY LEVELS IN MAGNESIUM 

Atomic energy levels for magnesium in various states of ionization and ex- 

citation were calculated using the determinantal method.     '   The experimental and cal- 

culated values for the configurations;   Is ,   Is 2s 2p ,   Is 2s 2p 3s ,   Is 2s 2p 3s3p 

(  P and    P) are given in Table 18-1.    For the closed shell configurations a single de- 

terminant was used.    For the 3s3p energy level a secular equation corresponding to the 

spin-orbital degeneracy was solved. 

Table 18-1 

Experimental Calculated Error 

Configuration value (cm- ') value (cm" l) percentage 

is2 - 3.0011 x 107 - 2.9963 x 107 . 15 

Is 2s 2p - 4.3759 x 107 - 4.3437 x 10? .74 

2,  2,  6,   , s 2s  2p  3s3p 

3P - 4.3931 x 107 - 4.3589 x 107 .78 

lP - 4.3944 x 107 - 4.3614 x 107 .78 

The one-eiectron wave functions used in the determinants were an orthonor- 

mal set formed from linear combinations of simple analytic shielding constant wave 

functions. The normalized radial wave functions used are given in Table 18-2. 

Table 18-2 

1 

2 

2 

3 

3 

0 

0 

1 

0 

1 

R nl 

80. 0403 e 11.7 r 

11.7 r 23.7035 e *   -  36.7556 e 

- 3. 925 r 

3. 925 r 

35. 2426 r e 

2. 57834 e - li. 7 r 4.25902 r e" 3> 925 r • 

3. 93672 r e" 3' 925 r  -  . 354539 r2 e" ' 95 r 

354533 r2 e"'95 r 

References 

1. J.  C.  Slater,  Technical Report No.  3,  Solid-State and Molecular Theory Group, 
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19.   THERMAL VIBRATIONS OF CU-ZN SYSTEM CRYSTALS 

The determination of the various branches of the normal vibration frequency 

versus reciprocal lattice vector contour map and the associated frequency spectra (num- 

ber of normal frequency modes per unit frequency range) of the nuclear framework of 

crystals Is of direct interest in the thermal diffuse scattering of x-rays,  in restrahlen 

and Raman spectra interpretation,  and in the calculation of such thermodynamic quan- 

tities o.s specific heats and coefficients of thermal expansion.    There are three main 
aspects of the problem as treated on the Born-von Karman model:   (1) the determina- 

tion of the generalized force constants between nuclei  ("dynamical matrix" elements 

of Born   '),   which appear in the Taylor expansion of the nuclear potential energy (about 

the equilibrium cohesive energy value at which all first derivative or force terms are 

zero) as coefficients of the terms quadratic in the displacements of the nuclei from 
equilibrium;  (2) the transformation of the coupled equations of motion of the nuclei into 

the normal coordinate form of linear,  homogeneous,  algebraic equations in the ampli- 

tudes of the normal coordinates;  (3) the solution for the normal frequencies of the re- 
sulting consistency determinants of order three times the number of atoms per unit 
cell,  and the calculation of the frequency spectrum either from this frequency plot or 

directly from these secular determinants. 

Inherent in the method in the standard form,  of course,  is a neglect of quar- 

tic and higher order displacement terms in the potential energy,  which would lead to 
anharmonic effects. Step (2) above is equivalent to the well-known problem of diag- 

onalization of quadratic forms    ' (here the simultaneous diagonalization of the kinetic 

energy quadratic terms in the velocities and the potential energy quadratic terms in the 

coordinates),  and if the unit cell is simple this step presents little formal difficulty. 
Much attention has been focused on step (3),  in which the sampling procedure of Black- 

man,       the moment method of Montroll,       and various graphical and mechanical 

methods for obtaining the frequency spectrum have all been used.    The recent work of 

von Hove      on the topology of the frequency contour map has provided a basic under- 

standing of the general features of the frequency spectrum.    Quite often step (l) is not 
handled with as much care is the other two.    Where real crystals are treated the force 

constants are usually determined from experimental values of the elastic constants. 
In order to reduce the number of independent parameters to the number of independent 
elastic constants and for general simplification,  a number of assumptions are often 

made; namely, those of crystal isotropy; central forces; the potential being a sum of 
interaction energy terms between atoms taken only two at a time;  and the vanishing of 
force constants for neighbors further away than second or third nearest (save for ionic 

crystals*7*). <8> 
In the present treatment of Cu-Zn system crystals particular attention is 

being paid to the problem of determining the force constants in as general and rigorous 

a way as possible.   The symmetry properties of the crystals, as formulated in terms 
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(9) of the well-known theory of the representations of space groups.       are of great help in 

simplifying this problem. * ' In obtaining the remaining independent force constants 

considerable use is to be made of the experimental results being obtained on the fre- 
quency contour maps of these crystals in the work of the x-ray group of Professor B. 

E. Warren at M. I. T. en the temperature diffuse scattering of x-rays.   '     ' 
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