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Sumroary 

A theoretical investigation is carried out on the buckling of 

sandwich cylinders under combined compression, torsion, and bending 

loads. The governing differential equation is solved by using 

Galerkin's method. The interrelationship obtained between the criti- 

cal loads is plotted in the form of non-dimensional interaction curves. 

In the limiting cases of axial compression alone, torsion alone, band- 

ing alone, and combined bending and axial compression, the results agree 
1-3 

with those obtained previously. 
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Syrnbols end Units 

a • radius of cylinder to mid-plane,  in. 

C « hG„  lbs,,  per in. 

D •* flexural stiffness of isotropic sandwich cylinder-, in. lbs. 

D « Eth2/2(L - v2) 

E • Young's modulus for the face material lbss per sq.  in. 

F - 2tE/a2 

G • shear modulus of the core material,lbs. per sq. in. 

h * depth of isotropic sandwich plate measured between middle planes 

of faces, in0 

I • moment of inertia of the sandwich cylinder about its diameter 

i c length of cylinder,  in0 

M * bending moment,  in0  lbs. 

m « number of half waves longitudinally 

N ,H    • resultant normal forces in x- and y-directions, lbs. per in. x   y " r 

N      • resultant shearing force, lbs.  per in. 

N, « applied normal force in axial direction, lbs. per in. 

n • number of full waves circumferentially 

T * torsional moment,  in. lbs0 

t • thickness of the faces, in. 

u,v,w • displacements in x-, y-, z-direction3, respectively,  of a point in 

middle surface of cylinder,  in. 

x,y,2 • rectangular coordinates (Fig* 1) 

v - Poissonrs ratio for the face material 

0 • circumferential coordinate 
1 *2 A2        2 ^ ^ t/> A2 A2     2 

v* - operator,, <$-« • ^ ) - $-r • 2 —^ • *) « (°  • -$--) 
V 3x2   3y2     dxA 6x2dy2  */   Ox2  a28©2 

»2 U        ft2    ft2   U 
y * uptrator, v,—5 + —s > - (—r * —-—- ) 

8x   6y*     dx*   a^WT 
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Introduction 

1-5 
In previous papers   , the senior author and his associates have 

investigated the buckling behavior of sandwich cylinders under axial 

compressions, torsion, bending and combined bending and axial coapressioa. 

The investigation is now extended to the buckling of sandwich cylinders 

mder combined compression, torsion and bending loads. By solving 

Donnell's equation modified to include the effects of transverse shear 

for sandwich curved plates and shells using Galerkin's msthod, the buck- 

ling loads are calculated and are plotted in the form of interaction 

curves. In the limiting cases of bending alone, axial compression alone, 

torsion alone, and combined bending and axial compression, the results 

agree with those obtained previously. 
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Formulation of The Problem 

By assuming isotropic core material and neglecting the bending 

rigidity of the faces about their own middle surfaces,   the equilibri- 

um equations for *n element of a sandwich cylinder have been derived in 

reference 4..    By neglecting terms that were regarded 8J small by Donne 11 , 

these equations can be reduced to a single equation in terms of the lateral 

deflection w only •• 

DV
8v • (1 - £ V2) 

C 

2tE   e^w 
a2   a** 

»2 

(NX 4 A2 

v    H 7 »7 
• 2N e2v 

xy 
) 

8x8y 
(1) 

This is the so-called Donne11's equation modified to include  the effects 

of transverse shear for sandwich curved plates and  shells first obtained 
7 

by Stein and Mayers • 

In  the case of sandwich cylinders under combined compression,   torsion 

and bending loads, we have 

Nx " " \ + (2Mat/l) C03 °» 

*xy " T/2ira •    Ny " ° 
(2) 

where N-  is the force per unit length due to axial compression, M is the 

bending moment,  I is the moment of inertia of the cylinder, and T is the 

torsional moment.    With such a loading, equation (l)   thus becomes 

D V
8v • (1 - B V2) 

r. 

2tS   e^w 
2    A * a      6x V 

„     .   2Mat ^na nx   82w N,   + —•"" cos 0) —p + 
I 8x 

i \ 

II 
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vhere y la taken as aO. 

Galerkin'a Method 

Equation (3) may be solved by means of Galerkin's method as follows? 

we first assume the deflection w of the cylinder after buckling in the 

form of a series that satisfies the boundary conditions but with unde- 

termined parameters. For long cylinders, however, the boundary condi- 

tions at the two ends become unimportant and we may assume the deflection 

series withou; any regard for the end conditions. For a cylinder under 

combined axial compression and bending, w may be assumed in th* following 

form , 

w - sin 2p    Z  A cos nO U) 
1 n-0  n 

and for a cylinder under torsion only, the deflection after buckling 

is of the following form , 

w - ? Bn sin (Sp - nO) 
n»l 

- E  Bn (sin ^ cos nO - cos y* sin nfl), (5) 
n»l 

Guided by these expressions, we shall assume the deflection of the cy- 

linder in the case of combined loading as follows: 

nl nl 
w • siii —j— 2  A cos nQ *  cos —j—      Z  B sin nO.     (6) 

n»0 '   n«l 

With v expressed in a proper series, we shall next substitute this series 

into (3). If the expression (6) happens to be the exact solution of 

equation (3), after substitution equation (3) will be identically equal. 

to zero. In general, this will not be so and the resulting expression        < 

will be a function of x and 0 which we shall denote by Q. Galerkin's 

i ; 

ij: 



equation* for the determination of the coefficients A and B are 

/ 

I 
rarx I Q ein ~       coa nC adO dx «= 0 (7) 

i 

J Q cos S3S      8iD aQ adO dx - 0 (8) 

which, when written out, become 

Jf(DV8v + P^   - 2E   v2 & ) sin 2E2   c08 n0 ^Q dx 
J dxA C dx* l 

0 0 

• I.     /        /   (V^ 2^   . £    v
6 2-i ) sin SS     C08 n0 rit to 

X   J       J 8x^       C 8x* * 
0       0 

2* l 

- ***    / /   (V* *4   - S    V* 6 )  sin SP   cos n© cos 0 adO dx 
I      / / Ox*       C Ox"1 * 

^ } 
T 

ira3 

/ 
/           8x80 

1) 

_ D 

C 

v6 8?w_ 
8x80 

) sin **   cos n0 ad0 <jx « 08 
« * 
* 1 

(9) 

in which F - 2*&/£t and 

i 
i - 

1   g 
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(D ^W + F^ .ac v24) cos 
6x* C 8xA 

oirx sin nO adO dx 

* 7 h d 
t)    -6 

- £   V6 H ) oos ^   sin nO adO dx 
C 8x* •* 

2ir / 

Ox' 
( V

A M - -   V6 4 ) C08 T*   sin nO cos 0 ad© dx 

0        0 

2ir 7 

ma' 

2 2 
( */ "=•  - -  V6 *-*- ) co» ^   3ir rC ada J* " ° 

3x60       C 8x60 I 

Substituting the assumed function v into these equations and 

carrying oat the integration, we obtain 

P(   *2S°¥   , Ijt   4 DF   X* (X2 • n2) 
1 Ca 

Hl    X*<    A2**2)2 V   A2(   A2^n2)3] 
5     -"* ~T ~ !   \ a Ca J 

•[ Tn X ( X2 • n2)2      ^ TPn "X 
T Ta 

2, A2  .     2*2 

\(X2,nVl 
irCs10 J 

B 

2/ l2 J^t^XSat   + Msto fr*(l 
la ICa r ^]<Vx 

<1> 

w • °» 
! 

(11) » • 
1   i 
1. 
j; 

/ 
% 



and 
2U $oi^&!£ + *L£ 4 DF x*( ^ * o L.  ,2 

Ca 

Nx  X2( X2 • n2)2       HXD X2( X2 • n2)3 

\2  .     2x2 Thxc xy nV +mAL2: 
1 •ma vCa° 10 

±£L\ 
** 

"Mat >2(  X2 + B2)2    4 MatD j\2(  £ * P
2)3 1   (B 

la^ ^0? J    ^ • w • °- 
(12) 

Instead of working with theaa two aquations, It 1B found conven- 

ient to combine them into the following ones* Thua, by aubtraotlng 

equation (12) from (11)t  we obtain 

°(\21 »¥ ,t£ , T A ^ * »2) 
a a Ca 

HX X 2( X2 • B2)2     MJ X2( A2 • B2)3 

Ca 8 

T4A(A2tn2)2     ___ TDB X( A2 + n2)3 

T •ra «Ca 10 

t2/ ^2  .    2v2 2/ i2 ^ 2v3 Hat AZ( Az • B^)Z , MatD X*( A* • n2) 

la6 Ka8 (*a-l * W ' °' 

(13) 
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in which A • mrra/7   . K    • A    - B .  and In which 2K_ Is to be substi- *    n        n        n' o 

tuted for KQ at n • lj K    • 0 whan n > TU.    When equations  (11)  and  (12) 

are added„ we have 

2   .   _2,* - ,   yU, )2   ,   _ 

Ca 8 4 n o 

^ A2( A2 • n2)2        NXD >2( X2 * n2)3 

 5  TS  
a Ca 

,  ThX( X2*°V ,   TDnX(X2.n2)3]    Rf 

ir? *Ca10 J       n 

[Mat   A2( f • °¥    ,  MatD A2( X2 • n2)3] , 
L I? ICa8J *    n-X 

+ KW " °. 
(U) 

In which K'n « A^ + B .    Again at n • 1, 2K'    ia to be atibatituted for 

K*0 and K»    • 0 when n > n,» 

The aubatitution of n from 0 to n. in equations (13) and (1U)  re- 

sulta in 2n, • 1 simultaneous algebraic equations for 2n, • 1 unknowns. 

One solution to these equations is of course, the trivial one, namely, 

Kn ' K'n " ° (n ' °»1'2»3' • • • » ni)* 

The non-trivial aolution is carried out in the following section, 

t 

i 

H 
i 

} 

I1 



-10- 

Determinatlon of the Buckling Loads 

To find  the non-trivial solutions of equations  (13) and  (L+)  in 

their present forms is a very difficult problem.    However, from the 
12 3 previous investigations    '  *    it was found that the minimum buckling 

8 
loads occur at \ *  °o   .    Dividing equations  (13) and (L4) by V ,  and 

remembering that n.  may also be very large, we shall drop all terms con- 

taining   A to a power greater than zero in the denominator but keep 

terms containing the ratio n./A   •    Equations  (13) and (14)  thus become 

^r^-^r^'^w-        (15) 

«f^illr>1,,'-'',,«',,°       (16) 

After dividing these equations through by Mat/lC, we have 

*»•! * LnKn + Kn-1 " °- <17> 

*•»•! + KK + K'n-1 ' ° <18>     I 
I 

in which 

L   s_ (1.B! _!I . J_  »>, (X9) f 
Mat X c ** c    A 

L,
n-— <1 + 4 -- •-£- V <20> Mat X C       TTaTZ     A 

Following the examples worked out in Reference 3f one may attempt to 

solve equations (17) and  (18) as finite-difference equations.    This, how- 

ever, was not found possible.    The reason is that equations (17) and (18) 

are now finite-difference equations with variable coefficients and the ' J 

solutions of such equations are difficult mathematical problems.     In- 

stead we shall solve the problem in the following manner. 
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Let us first Investigate the magnitude of n, •    If n,  is small com- 

pared to   X then ru./ X~~^" 0 as \—>-  oo     and equations  (17)  and  (18) 

reduce to the governing equations in the case of combined compression 

and bending. In order that the torsioiial load may have any effect on 

the buckling phenomena,  n,  must be also a large number so that the ratio 

n,/X      may remain finite.    For any n close to n,,  say, n • n,-l, ru-2, 

• .   e  * ni-^J«   (q <T < n-i),  it is obvious that such terms as l/A   >  2/A   t 

• •   •  » q/A    vanish aa      A->-©0 .    Thus,  for the equations in which n • n-t 

Bj-1, *,-?$   •  «   *  $ n-j-q,  the following relations holds 

\     ' \-l " \-3 . - L. r^-q 

*. d.i N. 

Mat 
- -x- i) 

A2 C ira^     A 

- L (21) 

Therefore,  if in the series for wf we take the summation of terms 

from n~«q to n,t  the system of equations will be as follows* 

and 

LK        • K      .    - 0 
"l V1 

K      • IX      .  • K - 0 n, n. -l       n, -2 

r^-q+1 l^-q 

L'K«       + K»_     ,  - C 
A 

1^-1 

iu IL. -1 n_ -2 

K» .,  + L'K« » 0 n,-q*l n,-q 

(22) 

(?3) 
t 

.* 
i 
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where L* • 
Mat 

(1* 
nl2     Nl 

\" Tra2C      X 

To obtain the non-trivial solution of (22) we set the determinant 

of the coefficients K    equal to zero, namely, 

L 1 

1 L 

0        1 

0 

1 

L 

0 

0        0- .  .  .  . 0        0 

0 0 .... 0        0 

1 0....0        0 

0 .... 1 

Equation (24) can be rewritten as 

(24) 

L - 

L - 

L - . 

« 0 

(25) 

L - 

L - 1 

L 

By taking more and more terms in the expression for w, we have 

successively larger and larger continued fractions in (25) and in 

each case the roots L are found. 

The question now arises as to which of the roots obtained in 

solving equation (25) is the one which should be used in the final 

analysis. This is easily determinable from relation (21), which, when 

rewritten, becomes 

2 

M IC 

Lat 
(1 • 

N 

V2 no. \      A 
*> (26) 

•  ; 
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0bviou3ly the lowest value of the critical bending moment M occurs for 

the  largest value of Lr  therefore,  in solving equation (25),  the largest 

root obtained  in each case is the one selected? 

It is noted (Fig„ 2)  that the largest root of equation (26)  approach- 

es the v»lue of 2,00 as larger and largsr continued fractions are considered, 

Therefor© the value L « 2o00 is taken as the  so'iution0    Equation (26) 

therefore becomes,  after dividing through by TC/Letr 

n 2 

IC 

N 
1 + 

X 

T 

ira2C 

n. 
_ ^ 

X 
In order to find the lowest possible value of the term 2Mafc/lC, 

it is necessary to minimize the right-hand side cf (27) with respect 

to the variable n,/ X     <•     It may be pointed out that n,/X actually 

takes on only discrete values on account of the integral character of 

n, and of A (• ma/l  )„    However, where A is very large (as it is in 

this case),  it is possible to consider n./\    as a continuous function 

in the minimizing processe 

Having established that it is permissible to consider n,/X as 

a continuous variable,  let us minimize the right-hand side of (27) by 

setting 0 
n, *     N, 

_x        + )m0m 

Hence 

a           (1 , ni Nl T 

M^/ A)      *     X2 C ira2C 

nl          T 2 -=• -  s—•    -  0 
\           2 A      Tra^C 

nl          T 

X     2rra C 

X 

or 

Consequently, equation (27)  becomes 

N 

IC C       '  krr&-Z 

(27) 

(28) 

(29) 

(30) 
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or 
N 

2rra*C V C "    1C (3l) 

Exactly the same result is obtained if we solve for the non-trivial 

solution for equation (23). 

In the case where the cylinder is under axial compression alone, 

M • T • 0, and equation (31) becomes 

(32) 
or 1^ - C 

Equation (32) is exactly the one obtained in Reference 1. 

In the case where the cylinder is under torsional loads alone, 

M « N, "0 and equation (31) becomes 

ii. 
z•2c (33, 

or        N  « + C. 

Equation (33) is the identical equation obtained In Reference 2. 

In the case where the cylinder is under bending moments alone, 

equation (31) becomes 

- \/l - 2Mat/lC • 0, 

a* - c 
i 

Equation (34) is exectly the one obtained in Reference 3. 

If we define the stress ratios R-,, R_, R_ according to the follow- 

ing formulas?* 

I 
i. 



-15- 

« m    1     Critical compresslve 

C     Buckling stress under compression alone 

_   2' t    Critical bending moment  
"B "        "   " IC Buckling moment under bending alone 

T     * Critical torslonal   aoment 

2»ra u      Buckling moment under torsion alone 

then equation (31) may ba written as 

Rp - - \/l - (Rg • Rp). (35) 

The interrelationship between compression, bending, and torslonal 

stress ratios given by equation (35) is plotted for engineering use in 

Figs* 3 and A*    Once any two stress ratios are specified, the buckling 

value of the remaining stress« ratio can be determined graphically from 

these curves. 

i 

!  ' 

1 
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FIGURE   I.    SANDWICH    CYLINDER 

CONFIGURATION   AND  LOADING i1 
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FIGURE    2.     RESULT    OF     EVALUATING      L 

BY    METHOD    OF     SUCCESSIVE    APPROXIMATIONS 
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