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Summary

A theoretic:l iunvestigation is carried out on the buckling of
sandwich cylinders under combined compression, torsion, and bending
loads. The governing differential equation is solved by using
Galsrkin's methcd, The interrelationship obtained between the criti-
cal loeds is plotted in the form of non-dimensional interaction curves,
In the limiting cases of axial compression alone, torsion alone, bend-
ing alone, and combined bending and axial compression, tLe results agree

with those obtained previously.l-3




Symbols end Units

radius of c¢ylinder to mid-plane, in. |
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n

(¢
]

hG, ibs, per in,

flexural stiffness of isoiropic sandwich cylinder, in. lbs.

D = EthZ/2(1 = v3)

Young's moauius for the face material 1lbs. per sqe. in.

= 2tE/a2

shear modulus of the core material,lbs. per sq. in.

= depth of isotropic sandwich plate measured between middle planes
of faces, in,

I = moment of inertia of the sandwich cylinder about its diamester

1 = length of cylinder, in,
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M = bending moment, in., lbdbs,
m = number of half waves longitudinally
N_,N_ = resultant normal forces in x- and y-directions, lbs. per in,

N__ = resuitant shearing force, lbs. per in,
Nl = applied normel force in axial direction, 1lbs. per in,

n = number of full waves circumferentially
T = torsional moment, in, 1lbs,
t = thickness of the faces, in, G
u,v,w = displacements in x-, y-, z-directions, respsctively, of a point in
middle surface of cylinder, in,
X,¥yZ = rectangular coordinates (Fig. 1)
v = Pcissonis ratio fur the face material
0 = circumferential coordinate
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V/‘ = operator, (9—5 + 8—2- ) = (-a—L +2 28 5+ 87) = (97 + —29-5)
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Introduction

In previous papers 1‘7, the senior author and his associates have

investigated the buckling behavior of sandwich cylindérs under axial
compression, torsion, btending and combined bending and axial compression.
The investigation is now extended to the buckling of sandwich cylinders
inder combined compression, torsion and bending loads, By solving
Donnell's equation modified to includé the effects of transverse shear
for sandwich curved plates and shells using Galerkin's msthod, the buck-
ling loads are calculated and are plotted in the form of interaction
cﬁrvéé. In the limiting cases Bf bending alone, axial compression alone,
torsion alone, and combined bending and axial compression, the results
agree with those obtainad previously.
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Formulation of The Problem

By assuming isotropic core material and negiecting the bending
rigidity of the faces about their own middle surfacesz; the equilibri-
ur equstiona for sn elamant of a sandwich cylinder have been derived in
refererce 4. By neglecting terms that were regarded a., small by Donnelle,
these equations can be reduced to a single equation in terms of the lateral

det'lection w only --

4
8 D 2 2tE 8w 4
Dw+ (1 -=97)| =5 = -
c 82 ax4 v
2 2 2
X o2 Y o2 xy
8x oy dxdy

Thia is the so-called Donnell's equation modified to include the effects
of transverse shear for sandwich curved plates and shells first obtained
by Stein and }hyers7.

In the case of sandwich cylinders under combined compression, torsion

&nd bending lomds, we have

N_=- N1 + (2Mat/I) cos 0,

. (2)
Rn-'l‘/zra 5 Ny-o

where Nl is the force per unit length due to axial compression, M is the

bending moment, I i3 the moment of inertia of the cylinder, and T is the

torsiunal moment, With such a loading, equation (1) thus tecomes

D VB\: + (1 - B V?.)
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vhere y 1s taken as a0,

Galerkin's Method

Equation (3) may be tolved by means of Galerkin's method as follows:
we first assume the defiection w of the cylinder after buckling in the
form of a series that satisfies the boundary conditions but with unde-
termined psrameters., Fcr long cylinders, however, the boundary condi-
tions at the two ends become unimportant and we may assume the deflecticn
series withou: any regard for the end conditions, For a cylinder under
combined axial compressicn and bending, w mey be assumed in tha following

rcmn3 ’

©0
v = gin =X ~ A_cos n@ (4)
l n
n=0

and for a cylinder under torsion only, the deflection after buckling

is of the following formé,

[0 @)
w= T B sin (EFZ - n0)

n=1
o

= I B (sin ? cos nQ - cos 3‘?’—"- sin nQ) (5)
n=l

Guided by these expressions, we shell assume the deflection of the cy-
linder in the case of combined iloading as follows:

n n
1 1
mTX mrx a
w = sin T = cos nd + cos 7 Z B_ sin nd, (6)
n=0 An n=1 °

With w expressed in u proper seriss, we shall next substitute this series
into (3). If the expression (6) happens to be the exact solution of
equation (3), after substitution equation (3) will be identicaily equal
to zero. In general, this will not be so and the resulting expression
will be a function of x and © which we shall denote by Q, Galeikin'se
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equations for the determination of ths coefficients A, and Bn are

l

2}( [ Qsin? cos nQ adQ0 dx = 0

7 f Qcos% 8in nQ adQ dx = 0
0

which, when written out, becoms

X cos nd 240 dx

2
2 2
"1/ (V/‘Q-Izi _f veg—%)sm%m— cos nd add dx
x
0

2n {
2 2
_ at (Vl‘-a—" -2 ng—")ainy—x cos nQ cos 9 #d0 dx
1 c ox ¢

ox
2r [
2 V3
__75'_. (gt e 2 o0 &My g4, EIX
ma 8x30 c 8x80 {
[¢] 0

in wvhich F = ZtE/az, and

cos nQ edQ dx = O,

(7)

(8)

(9)
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(D v£u+pa—‘7'; - VZ;Z)“’“':“"' sin nO ed0 dx
Bx c

2
¢N1 /(vl‘ o° P- vég—g)oos%x— sin n0 adf dx

8x
L]
pa s l
2 2
_ 2Mat (V‘L‘z’ Qv"%)coaﬂ sin nd cos O add dx
I ax° ¢ Bx Z
()

]
' 2 2
[(VI‘M 2 V’6'LL)<209}5 sin n0 adQ dx = O,
0xdo c oxbo

Substituting the assumed function w into these equations and
carrying out the integration, we obtain

l.n( A2en? PN pr M (2442

L 8 * al‘ Ca
)\2( )‘2 *nz)z _EILD Az( A.z*nz)a'] ,
a6 Cag J n

+[m 2, p?y? gnl(kz+n213] 5
wa ‘rrCalo

ICa

2,12, 2,2 2,12, 23
Mat . vatd A%(A% ¢ %)
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and

[DL SET 0N .r:_é‘_‘ B INOEE) 3

a a Ca

B

- Z -

a Ca

N]_ X2( )\2 . u2)2 xln XZ( l2 * u2)3}

. m“zz*nzlz ,Q 2‘22*1‘2)3 An
ma uc.1° |

. fw 22t m RO ]
1a® ICa At
- (12) |
Instead of working with these two equations, it is found conven-
ient to combine them into the following ones. Thus, by subtracting
equation (12) from (11), we obtain

OSSN DI B VO o f
a a‘ Ca ?
N A 2( )\2 + 112)2 §,D )\2( Az . ::2)3

- z g 5

a Ca

g,ggg +,_H a”_ 2)3} !

+B,) =~ 0.

£ 0202 + 522 watd 33( 32 4 523
¥ i 2 (Kpy * Kpuy) = 05
Ja ICa

(13)
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in which k = mra/l , Kn = An - Bn’ and 1in which ZKO is to be substi-

tuted for K, at n = 13 K = O vhen n > n,. When equations (11) and (12)

are added, we have

[ 21712 + nz)A s Fﬂlﬁ . DOF br a2 4 n2
38 aL Ca
- 6 = 8
a Ca

mA()\z-&nzjf*TDn)\in*nz)B] .
* wag: 7Cal0 n

Ia ICa

2, 12 2,2 2, 2 2,3
Mat A°( )" + n%) MatD A (.é__*_._)_n -
’ [‘ 5 * (K'n-l * x'xwl) O
(1)
in whiech X'n =A¢ Bn’ Agein at n = 1, ZK'O is to be substituted for

K'o and K'n = 0 vhen n > Dye
The substitution of n from O to n, in equations (13) and (14) re-
sults in 2, ¢+ 1 simultaneous algehraic equations for 2n, + 1 unknowns,

One solution to these equations is of course, the trivial one, namely,

.-. Xn - K'n =0 (n = 0.1,2,39 o o0 o0 9 nl)o

The non-trivial solution iz carried out in the following section,
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Determination of the Buckling Loads

To find the non-trivial solutions of equations (13) and (14) in
their present forms is a very difficult problem, However, from tae
previous investigations 14253 44 wes found that the minimum buckling
loads occur at A = ©© , Dividing equations (13) and (14) by )\8, and
remsmbering that ny may also be very large, we shall drop all terms con-

taining A toa power greater than zero in the denominator but keep
terms containing the ratio nl/l . HEquations (13) and (14) thus become

| E— D T e e g

2 N
a1 _T 1 Mat .
{1+ 2 " l) K+ - (R, +K ) =0 (15)
P e R BRSO (16)
¥ ¢ mT A\ % ¢ o1 m |

After dividing these equations through by Mat/IC, we have

£ AOTARAI © B M I e I

Rl * Kt K = O (17) ]
K'm»l i Lr'lxt'i g K'n-l =10 (18) :
in which ’
2 R 1
Ln--I—C- (l*% --1 o —T§ E), (19) ]
Mat X cC wac A ;
!
1C n? 1 T n .
T I e D (20)
Mat ¥ ¢ mT A

Following the examples worked out in Reference 3, one may attempt to
solve equations (17) and (18) as finite-difference equations, This, how-
ever, was not found possible, The reason is that equations (17) and {18)
are now finite-difference equations with variable coefficients and the
solutions of such equations are difficult mathematical problems, In- |
stead we slhall solve the problem in the following manner, |
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Let us first investigate the magnitude of n If n, is small com-

1* 1
pared to A then nl/ A—> 0 as \—> OO and equaticns (17) and (18)

reduce to the governing equations in the case of combined compressimm
and bending. In order that the torsional load may heve any effect on
the buckling phenomena, ny must be also s large number so that the ratio

nl/ A may rezain finite, For any n close to Dy, 8&Y, n = nl-l, n1-2,
e s o ;= (@ << nl), it 1s obvious that such terms as 1/\ , 2/)
e« e ey a/A vanish as >\—>-00 o Thus, for the equstions in which n = Dy

nl-l, !!i-2, e * s 5 Ny=q, the following relatiors holds

T T T T g
2 N
S (I S S |
s -2 -
Mat )\ c mxT A

Therefore, if in the series for w, we take the summation of terms
from Dy-q to Ny, the system of equations wiii be &as followst

N

X + K =0
o e
Knl + I.xnl-l + Knl-Z = 0 { (22)
o o o
Kn.l-q«vl i mnl-q =0
J
and
LK' ¢+ K =G )
ol i
K! + L'K? <+ K' = 0
il me - nyee ( {23)
K! + L'K! -0
n.-g+1 n.q )l
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n N
where L' = o (1 + -25 - L + _25_ El )
Mat X c m™cec A

To obtaein the non-trivial solution of {22) we get the determinent
of the ccefficients Kn equal to zero, namely,

* =0 (24)

0 0 ¢ 0 Olliie 7o o fo . L
Equation (24) can be rewritten as
L - 1 = 0
L - 1
L-. (25)
- 2
L-__1_
L-1
L

By taking more and more terms in the expression for w, we have
successively larger and larger continued fractions in (25) and in
each case the roots L are found,

The question ncw arises as to which of the roots obtained in
solving equation (25) is the one which should be used in the final
This is eassily determinable from relation (21), which, when
rewritten, becomes

analysis.

2

n N n
M e, (0 12 R - (26)
Lat N c m% A
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Obviously tne lowest value of the criticai bending moment M occurs for

the isrgest velue of Lj therefore, in solviig equation (25), tue largest
root obtained in each case is the one sclecisd.

It is noted (Fig, 2) that the largest root of eguastion (26) spproach-
es the walue of 2,00 as larger end largsr continued fractions are considered.
Therefors the value L = 2,00 is taken as the solution, Equation (26)
therefore becomes, after dividing through by IC/lLst.

1 1 T

(-2 [ NS -
2 -

2Mat . 4
b ¥ ¢ ma<C A

o (21

R A FAEE B e

In order to find the lowest possible value of the term 2Mat/IC,
it is necessery to minimize the right-hand side of {27) with respect
to the variable nl/ A < It may be pointed out that n,/ A actualiy l

takes on only discrete values on account of the integral character of
n; and of A (= mra/l ). However, where A is very large (es it is in

this csse), it is possible to consider nl/'l as a continuous function

in the minimizing process,
Having established that it is permissible to consider nl/)\ as

a continuous variable, let us minimize the right-hand side of (27) by
setting

2
n N n.
T M S S S (28) .
8(n,/ \) X ¢ mT A
Hence o :
1 T
2 = =0
A waZC | j
or Bl o (29) 1+ |.
)\ 2ma C 9

Consequent iy, equation (27) becomes

%’.@E.lnﬁ.,( 2 )2 (4]
1c c sree (30} |

e




or

_ 2Mat .
Ic (BL)

T +/N
: > r o b
2ma C \

Exactly the sams result is obtained if we solve for the non-trivial
solutior for equation (23),

C>'»‘

In the case where the cylinder is under axial compression alome,
M= T = 0, and cquation (31) becomes !

(32)
or Nl =C
Equation (32) is exactly the one obtained in Reference 1.
In the case where the cylirder is under torsional loads alone,
M= N, = 0 and equation (31) becomes
<+
2rrT2c "ol J
* (33)
or N =4+C,
ZT -

Equation (33) is the identical equation obtained in Reference 2,
In the case where the cylinder is under vending moments alome,
equation (31) becomes

1 V1-omt/It =0,

(34)
°r 2Mat | o L

1

Equation (34) is exectly the one obtained in Referernce 3.
If we define the stress ratios RC, RB, RT according to the follow-
ing formlasa
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R, = i Critical compressive simsed
c Buckling stress under compression alone
RB -2 Lt . Critical bending moment
Ic Buckling moment under vending alome
T _ L Critical torsional soment

RT-

2#&20 Buckliny moment under torsion alone

then equation (31) may bs written as

R‘I‘.:\ﬁl-(RB*RC).

(35)

The interrelationship between compression, bending, and torsional
stress ratios given by equation (35) is plotted for engineering use in
Figs. 3 and 4. Once any two stress ratios are specified, the buckling
value of the remaining stress. ratio can be detsrmined graphically from

these curves,
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