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ABSTRACT

A rigorous mathematical analysis is prcsented for the fcllowing
types of electrode process in electrolysis at constant current in unstirred
solution: 1. Cathodic process followed by re-oxidation resulting from
reversal of the current through the cell, 2. Reduction of a two-component
system; 3. Stepwise reduction of a suinrcle s:bstance. The concentrations
of the substances involved in the electrode process are derived by applying
the method of integrai transforms (Fourier and Laplace), and the corres-

pending transition times are calculated. Equations of the potential-time

curves are also derived tor casce I and III.

In case I, the transition time for ihe re-oxidation process is one-
third of the transition time for the precedins cathcdic process. The
analysis of the potential-time curve enables one to make a complete study
of the kinetics of the electrode process when this process involves
cathodic and anodic overvoltages exceeding C.1 volt: calculation of the
rate constant at zero potential, determination of the transfer coefficient,
calculation of the free energies of activation for the forward and back-
ward electrochemical reaction, and computation of the standard potential
for the couple involved.

In case I1, the transition time for the substance which is the more
difficult to reduce, depends nct only on the bulk concentration of this
substance, but also on the concentration of the substance being reduced
at less cathodic potentials. Quantitative relationships between the

trarsition times for the two steps are derived.



In case III, the ratio of the transition time, T,/ ¥, 4s not

proportional to the ratio of the nuaber of electrons involved in the

corresponding electrode processes. Thus T, / ¥ =3 for n, /ny =1;

T2/ T =8 forn; /n =2, ete.
Experimental results for various electrode processes confiram the

theoretical treatments of the above three cases.

INTRODUCTION

There have been several atteampts in the recent years to apply the
polarographic method to the study of electrode processes, and several
1
contributions in this field have been made in this lsaboratory as well as

2
by other investigators . Interesting results have been reported in this

1 p, Delahay, J, Am. Chem. Soc., 73, 494L (1951); T4, 3497, 3506 (1952);

15, 0000 (1953); P. Delahay and J.E. Strassner, ibid., 73, 5219 (1951);
24, 893 (1952); P. Delahay and T.J. Adams, ibid., 74, 1437 (1952); P.
Delahay and G.L. Stiehl, 74, 3500 (1952); J.E. Strassner and P. Delahay,
24, 6232 (1952).

€ J. Koutecky and R. Brdicka, Collection Czechoslov. Chem. Communs., 12

337 (1947); H. Byring, L. Marker, and T.C. Kwoh, J. Phys. Collioid Chem,.
53, 187 (1949); N. Tanaka and R. Tamamushi, Bull, Chem. Soc. Japan, 22,

187 (1949); 22, 227 (1549); 23, 110 (1950); M.G. Evans and N. S. Hush,

J. Chim. Phys., 49, C 159 (1952); A. Tockstein, Collection Csechoslov,

Chem. Communs., 16, 101 (1951); J. Koutecky, Sbornik Mezinarod. Polarog,
Sjezdu Prace, 1st Cong. 1951, Part I, pp. 826-838. For a survey and
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additionsl references, see I1.M. XKolthoff and J.J. Lingane, "Polarography”,

2 Bd., Interscience Publishers, New York, N, Y., 1952, pp. 268-254.

respect, but the main drawback of the pclarographic method in such studies
is the approximate naiure of the quantitative treatment of the current
observed with the dropping mercury electrode. It is generally feasible to
give & rigorous solution of the boundary value problem being studied for
the case of semi-infinite linear diffusion, but the rigorcus derivation
for tha correspording problem for the expanding sphere generally involves
very serious difficulties. It is then necessary to adant the solution for
linear diffusion to the case of the dropping mercury electrode by a rather
approximate method. Such approximations are avoided in transitory voltam-
metry in which the solution for linear diffusion is applicable with good
accuracy., Hcwever, the mathematical treestment of currents in transitory
voltammetry, which is relatively straightforward i{n simple cases involving
pure diffusionB, becomes very involved when there is partial kinetic

4
control . Electrolysis at constant current in unstirred solution does not

3 A. Sevcik, Collection Czechoslov. Chem. Communs., 13, 349 (19i8);
J.E.B. Randles, Trans. Faraday Soc., 44, 327 (1948); T. Berzins and

P. Delahay, J. Am. Chem, Soc., 75, 555 (1953).
L

F. Delahay, J. Am. Chem. Soc., 75, 1190 (1953).

have the disadvantages of the above methods: the experimental conditions
actually correspond to the case of semi-infinite linear diffusicn, and it
is possible tc solve rigorously the va~ious bo'nndary value problems. This

6
method is rztner olds, but it was revived only recently . A first paper
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from tais Laboratory7 dealt with general principles and with the treatment

> H.P. Weber, Wied. Agn., 7, 536 (1879); H.J.S. Sand, Phil. Mag., 1, 45

(1901); 2. Xaraoglanoff, Z. Blectrochem., 12, 5 (1906).
6

A. Rius, J. Llopis, and S. Polo, Anales Fis. y Yuim., (Madrid), 45, 1029

(1949); L. Gierst and A. Juliard, "Proceeding of the 2nd Meeting of the
International Committee of Electroch=mial Thermodynamics and Xinetics",
1950, Tamburini, Milan; pp. 117 and 279.

v P. Delahay and T. Berzins, J. Am. Chem. Soc., 75, 0000 (1953).

of electrode processes in which the electrochemical reaction is preceded by
a chemical transformation. In the present paper we discuss various pro-

cesses involving two consecutive electrochemical reactions.

CASE 1 - CATHODIC PROCESS FOLLOWED BY RE-OXIDATICN

RESULTING FROM REVERSAL OF CURRENT

INITIAL AND BOUNDARY CONDITIONS.
Consider the electrode process in which a substance O is being reduced

to a substunce R, The electrolysis is carried out at constant current in
an unstirred solutjon, and it is assumed that the direction of current
through the cell is reversed at soms stage of the electrolysis. This
reversal of current results in the re-oxidation of substance R which had
been produced during the preceding cathodi; process. The potential-time
curves obtained in this type of electrolysis can be applied to the quanti-
tative interpretation of electrochemical processes, and it is therefore cf

intefest to develop the mathematical analysis of this type of electrolysis.
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This is done beiow for experimental conditions cor:esponding to semi-~
infinite linear diffusion. Convection or migration effects will be assumed
to be negligible, it being understood that the electrolysis is carried out
in presence of a large excess of supporting electrolyte.

In the course of the cathodic process leading to the formation of
substance R, the concentration of this substance varies with the time t
elapsed since the beginning of the electrclysis and with the distance x

from the electrode. This concentration is, according to Karaoglanoff

Y 2
=)= 20 A 3) - o= A lFem
()

with -
¢
9= ZFz 2)

The notations in equations (1) and (2) are as follows: i, is the

dersity of the current through the electrocljytic cell; n the number of
electrons in the reduction of substance O; F the faraday; DR the diffusion
coefficient of substance R; and “erfc" is the complement of the error

function. Equation (1) was written for the transition times T corres-

8
ponding to the redaction of substance O, but is valid for any value of

t smaller than the traneiiion time T .

e For a detailed discussion of the properties of transition time see ref., 7;

T corresponds to the time of electrolysis a2t which the concentration of

substance O at the electrode surface becomes equal to zero.
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At time T the current throuzh the cell is reversed, and consequently
substance R is now re-oxidized at constant current. This ancdic process
proceeds at a current density 1; which may not necessarily be the same as.
the density io during the cathodic process. Since the current is constant,
the flux at the electrode surface is constant and one can write the following

condition
1

N

4L =0

’
in which )\ is defined as follows
4

A = % (4)

7 F Dg

Note that the concentration CR(x,t'. in equation (3) is written as a
function of the time t' , which is : .ated to the time t elapsed since

the beginning of the reduction of substance O by the following relationship:

=7 =z (5)

This new scale of time is introduced for the sake of simplicity (see
below).,

The boundary value problem is now completely stated. Equation (1)
which gives the distribution of substance R at time v - O, is the initial
condition for the present problem; formula (3) expresses the boundary
condition. The zoncentration of substance R will be derived below by

solving the differential equation expressing Fick’s secord law,

‘o ke pludl



DERIVATION OF THE CONCENTRATION C_(x,t'j.
The function CR(x,t) will b derived by applying the Fourier cosine
transform which is defined by the following relationahip9

9 I.N. Sneddon, "Fourier Traniforms", McGraw-Hill, New York, N.Y,, 1951,

p. 5.

G- (2) / (k) e prdn

in which p is the variable resulting from the transformation and x is the
variable with respect to which the transform is taken., By this transfomm.
the partial differential equation expressing Fick’s second law is trans-

formed into an ordinary differential equation. From (6) one deduces

—z_}&/m Dzek(”; “ @5/436 dx =
2 5 Dz
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as one can readily ascertain by two coneecutive integrations by parts and

by noting that the concentration Ca(x,t') and the derivative
Dcn(x,t') / D x approach zero when x becomes infinite. The first term
on the right-hand of (7) is known from condition (3) and this is why the
cosine transform and not the sine transform is used here. The transform

. of the squation expressing Fick’s second law is:
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The solution of this ordinary differential equatisn is izmediate:

k)= (2]

The integration constant M in (9) is determined by satisfying the

transform of the inilial condition (1). This transform is obtained by
combining (1) and (6) and by calculating the resulting integrals by parts.

After several consecutive integrations by parts one obtains:

G(19-(2)" Fe[r-pCaef)) ()

Introducing now Ea(p,o) from (10) in equation (9), one readily calcu-

lates M, and finally obtains the following transform of the solution:

-~ b

G, (/6 é) =(%)q' 6 20 - ay:[-(bkr + Dkt')/;"] >
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The three terms on the right-hand of equation (1l1) are of the same
form as the transform of the initia) condition (10}, ard consequently the

function Cn(x,t) is the sum of three groups of terms having the same form
as the initial condition (1). Thus:

G(=E) = 29[ De (v + t)]/‘”/)[ < ]

4 Dg (t.’-f- t)

l

_6 e =
* ‘% ~z[bg(z:+6')]/&l

oo ) ep(E)

r(60f)x m/c
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Tha correctness of the above derivation was establishsd by verifying
that the solution (12) satisfies the differential equation expressing Ficx’s
secord law. The initial and boundary conditions are also satisfied.

As an example, the variations of the function CR(x,t) with x and for
given times of electrolysis are shown in Fig. 1. This diagram was constructed

-2

-2 - -
for the following data: 1o = &) = 10 - amp.cm. D, = O = 10 * cm?sect',

R

n=1, C*=5x 10'5 nole.cm:3 . Note that the concentration vs. x curves
exhiibit & maximum for t' > O , and that the slope of the tangsnt to the
curve at x = O is constant, &s it should in view cf condition (3). Purther-
more, the concentration at a sufficient distance from the electrode increases
during the re-oxidation process; this is to be expected since substance R
diffuses toward the region of the solution in which its concentration is
lowered. Of course, for large values of t' , Cn(x,t') ultimately approaches

goro.,

1
TRANSITION TIME (.

Because the concentrations of substances O and R at the electrode sur-
face vary during the re-oxidation process, the correspording electrode
potential varies. At the transition time 't:', the concentration of
substance R is by definition equal to zero, and consequently the electrode
potential becomes infinite. Actually, this merely implies that at times
¢! ;> 1:' the oxidation of substance R proceeds at a rate which corres-
ponds to & current of density smaller than 13 ; 4s a result, the potential
moves toward more anodic values until another anodic process (oxidation of
the solvent, oxidation of the electrode) occurs. The transition time If'

is therefore characterized by a sudden variation of potential as shown in

Fig. 2 (this diagram is discussed beiow).



The value of ‘CI is readily deduced from equation (12) by introducing
the condition CR(O,t') « 0. This leads to the following relationship
between the transition time Z for the reduction process 0 —» R and

the transition time ?," for the re-oxidation process

T (73)

/ 6
/
The quantities 8 and A in this equation are defined by equations (2)

T =
(6 +)\/)‘&_ e—b

and (4), respectively. If the current densities i, and 1¢', are equal, equation

(13) takes the remarkably simple form:
/
r’ = /5 c ( 1¥ )

BEquation (14) shows that the transition time for the re-oxidation

process is equal to one third of the transiticn time for the preceding

cathodic process, the current density bejng the same in both processes.

This conclusion was verified experimentally for a few electrode processes,
and the results are summarized in Table I. Tt is seen from this table that
values of the ratio T/ T /tluctuatoa around 3 ; the average value of
the 16 listed vzlues is 3.02 whereas the theoretical value is 3., The rela-
tively large errors (up to 6-7 per cent) are to be expected because of
the use of a cathods-ray oscillograph as recorder (see below): the length
on the trace correspcnding to the time T’ was less than 1 inch, and con-
sequently the accuracy on T ‘ was poor.

Two examples of potential-time curves are shown in Fig. 2. Note that
the current was reversed very slightly before the transition time was

reached. This procedure is justified because equation (1) and the above
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treatment are valid when the reversal of current occurs at any time t which
is smaller or equal to the transition time 7 . Equatiorn (1), however,
does not hold for values of t larger than T , and consequently it is

advisable in the experimental verification to reverse the current for t S'(.

POTENTIAL-TIME CURVES.

The method involving the reversal of the current would be of 1little
practical value if it were not for the possibility cf studying the kinetics
of electrochemical reactions by the present method. The characteristics of

potential-time curves which are useful in such studies will now be established.

Case in which there is electrochemical equiljbrium at_the electrode.

If electrochemical equilibrium is achieved at the electrode, the potential
is given by the Nernst equation, and the application of this equation
requires the knowledge of the functions CR(O,t') and Co(O,t'). The
former concentration is given by equation (12) in which x is made equal to
gero; the concentration Co(O,t') can be derived by following exactly the
same method as the one which led to equation (12). There is no need for
repeating the derivation here, and the equation for the potential-time

curve can be written directly. Thus:
VR
nF /{R
o [ Deee)]® (Dot VP
RT < "'ZA[ s ") .
In L (#)

TC

nF De(e )P Det
R - 406 (=R-

e B U =

-




The notations in equation (15) are as follows: E® is the standard

10
potential for the couple O-R ; f5and f are the activity coefficients

R

10 If an amalgam electrode is involved, E* is the standard potential for

the amalgam.

of substances O and R ; DO is the diffusion coefficient of substance O ;

C* is the bulk concentration of substance O and the quantity A is defined

éb
2 F Do ()

Equation (15) can be modifisd by recalling that the transition time

as follows:

I

is related to the concentration C® by the equation ?
/
e\ /2
_.ZA(_‘DL__ (7)
. T
By compining (15) and (17) one finally has:

Y Ai / ¢b
£ = Eys KT o [(c+1;) - o ]

with

Eo+ RT / Dkb (!ﬂ)

E, =
f NF / NG
It was preziously shown that the potential E,/z for a simple roduction

or oxidation proccss is observed at a time equal to 1/u T i , and the
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potential K'/a for the reduction of substance O can readily be determined
experimentally. If electrochemical equilibrium is achieved at the electrode,
the rotential 55/2 for the re-oxidation process is observed at a time t' for
which the logarithm on the right-hand of (18) is equal to zero. This con-

dition leads to second degree equation in t' whose solution is:

fE/: " = 0222 ¢’ (.zo)

S ig case of electrochemical reversibil he pot ia

at time 7 /4 for the cathodic process should be ecual to the potential
at the time t' given by equatjon (20). This procedure can be used to

determine whether or not electrochemical equilibrium is achieved at the

electrode. This method, however, leads to erroneous conclusions when the o
electrochemical reaction is followed by a chemical transformation. In
that case the concentrations of substance R might be greatly decreased,

11
and the potential-time curve is shifted accordingly .

= We have also developed the treatment of this case, and this matter

will be taken up in a subsequent publication; for an example in polarography,
see L.I. Smith, I.M. Kolthoff, S. Wawzonek snd P.M. Ruoff, J, Amer, Chem.
Soc., 63, 1018 (1941).

Irreversidble clectrochemical reaction. We consider the case in which the

cathodic and anodic overvoltages are large enough at the current density
io to allow one to neglect the effect of the backward process in writing
the equations for the rate of the electrochemical reaction. This condition

is verified in the great majority of irreversible electrode processes,
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since the above simplification is justified when the overvoltages (cathodic
and anodic) exceed, say, 0.1 volt.
If one assumes that the electrochemical reaction is of the first order

one has:
.

—= = ky (2 (2)

in which kb,h is rate constant (heterogeneous) for the re-oxidation
process. This rate constant is an exponential function of the electrode

potential E of the form

e ke[ e

) RT

L ]
in which kr n

‘ hydrcgen electrode), and C( is the transfer coefficient for the cathodic

is the value of the constant at E = O (ys. the normal

process 0 —) R. By combining equation (i12) (for x = 0) , (21) and

(22) , one obtains the following potential-time characteristic:

Ez_ﬂ‘__&'lt'kb,{_ RT gﬂ e o) _Zél/z

(1-%)nF 'aéiA, (/ °<)nF

(2 3)
According to equation (23) a plot of the logaritim of the quantity

) [( T+ t.')'/2 -2t '/2] versus E should yield a straight line whose recip-

i rocal slope is (RT) / (1 - o{ ) n F ; the value of (1 -o( ) can thus
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be determined from the potertial-time curve for the re-oxidation process.
Since 0( can also be calculated from the experimental potential-time
curve for the cathodic procossv, it is possible to verify by the present
method that the sum o + (1 -, is indeed equal to unity. If there

are kinetic complications (consecutive electrochemical reactions, dismu-
tation, etc.) this sum will generally be different from unity, and such
complications can therefore be detected. The rate constant k;,h is
calculated from the potential t' = O (see equation (23)), and the corres-
ponding rate constant k;,h for the cathodic process is determined from
the potential-time curve for the cathodic proceas7. A complete study of
the kinetics of the electrochemical reaction can thus be made. Finally,
the free energies of activation corresponding to k;,h and k;,h can be
evaluated by application of the absolute rate theory, and consequently the
standard free snergy change for the electrode process can be determined.
Standard potentials for markedly irreversible processes can thus be
evaluated by the present method.

The preceding discussion dealt with re-oxidation processes, and it is

a trivial matter to transpose the treatment to the opposite case in which an

anodic process is followed by cathodic reduction.

CASE 11 - TWO CONSECUTIVE ELECTROCHEMICAL REACTIONS

INVOLVING DIFFERENT SUBSTANCES

INITIAL AND BOUNDARY CONDITIONS.

We consider the case in which two substances O, and O, are reduced
at sufficiently different potentials to yield a pcicatial-time curve

exhibiting two distinct steps. The reduction products are Ry and R ,
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. and tho unumber of electrens n; and n, , respectively., It is also assumed
that U; is the sudbstance sich is reduced at less cathodic potentials.
The characteristics of the potential-time curve for the first step
are not influenced by the presence of substance R, in solution, and
consequently the simple treatmeni developed by Sand5 and by Kauoglanof!5
is applicatle., This is not so, however, for the second step, and the
quantitative treatment for this case will be developed here. As for
Case I, it will be assumed that the experimental conditions correspond
to semi-infinite linear diffusion, and that the effects of migralion and

convection are negligible.

The concentration of substance O; at the transition time ‘7% is

equal to sero at the electrode surface, and this concentration remains
equal to sero at the electrode proceeds. Substance 0,, however, con-
' tinues to diffuse toward the electrode at which it is immediately reduced.
i s As a result, the current through the cell is the sum of two co-pongnta
%} corresponding to the reduction of substances O, and 0,, respectively. Thus: .

L a@eY-o @

I'DCO =, t P (=¢) .
T, Do, ’D;f ) + Ty Dy . =2

e ’7» 20 F

B @9

where the D’s are the diffusion coefficients. Note that equation (24)

- wmv

and (25) are written in terms of the time t! defined by the condition
tt et - .

L- i 80 st . R
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Ths initial conditions are:
N ‘o \

)\/& /4,

(xo) C -2

-
+ Az % (31)0': r"/& ) (z/)

In equations (26) and (27), Cs and C; are the bulk concentrations of

substances O; and O,, and A is defined by equation (16). Equation (26)
simply expresses that the concentraticn of substance O, is constant before
electrolysis. Bquation (27) gives the distribution of substance 0, at

the transition time T ; squation (27) was originally derived by Sancl5

l and by Karaoglanoff 5 .

DERIVATION OF Dcc, (m,')ij for x = 0.

The procedure adopted in solving the boundary value stated by equations

(2L) to (27) is as follows: (firstly, the derivative t) C0 (x,t') / Dx
for x = 0 will be derived by solving the diffusion equation ;‘or conditions
(24) and (27); the resulting value of D CO (x,t') / Dx forx =0
will be introduced in (25), and the function ' C02 (x,t') will then be
derived by solving the diffusion equation for the resulting boundary
condition and for the initial condition (26). We determined the derivative
330' (x,t') / a x for x = O by two methods, namely the Laplace and

Fourier transformations. Both methods ylelded the same result and only

the derivation based on the use of the Laplace transformation will be

discussed here,
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By taking the Lsplace transform of the diffusion equation with respect

to time one obtains the following ordinary differential equatior 12, 13:

12 p s, carslaw and J.C. Jaeger, "Conduction of Heat in Solids", Oxford

University Press, London, 1947, p.246.

13 We use here the notations of R.V. Churchill, "Modern Uperational Mathe-

matics in Engineering", McGraw-Hill, New York, N.Y., 194ii.

dC(22) 4
Ciﬂéb 'IXW

G179~ 2 ()

Do,

where Co (x,C) 4s defined by equation (27). The solution of this equation
1
is of the fora

G0y Mot ] W[ 2] + & (o) (4)

where M and N are integration constants and Ep(s,x) is a particular

solution of equation (28). This particular solution is given by the
1
ralationship 4

14 5ee rer. (9), p. 37, equation (94).

G@0)-/) 2wty @

7 -L o
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where i = (-1)’/2; 75/;3 a positive constant,; éﬁ (p) is the Laplace
transform of the function -CO, (x,0;, / DO, with respect to x (using »p
instead of s to avoid confusion with the previous transformation); and

1l
"T'(p) is the symbolic formulation of equation (28) 5. In the present

15 For a discussion of the D method see for example M, Morris end C.E,

Brown, "Differential Equations®, Prentice-Hall, New York, N. Y., 1946, p.75.

case one has:

v =F-% @)

The integral (30) in which 7“ (p) 1is replaced by its value from
(31) can be evaluated by 2pplying the Faltung theorem for the Laplace

transformlb. Thus:

16 See ref. (9), p. 30, equation (69).

&)= [10) g(=-1)dy ()

in which 57 is an auxiliary variable, and the functions f(x) and g(x)

are defined as follows: f(x) = -Co(x,O) / DO and g(x) 4is such that
) 1

the function 1/ 7P'(p) (see ©q.(31)) is the Laplace transform of g(x).

Hencel7:

17 See ref. 13, p. 296, eq.(17).

o A A A e



"

22

ginh [(_%)' )/‘ x} (33)

(z 4/&
7 (%)

In view of equations (32) , (33) , and the definition of the function
f(x) , the particular solution Ep(s,x) is:

(4::) o 4)/* /xamﬁ{( )(7)] dy

*;;/17/ [ ”T(f/boﬁ)

10,
’7"}(&;&. )| 4| (%) (""7) 47

or in an abridged form

A
(4”) TF bt g
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I, and I, corresponding to the integrals of equation (34). These integrals

are evaluated in appendix I, and the complete solution of equation (28) is:

Cop (27) = M'esh (-9%) « N'ep(32) +

B Do)\d 7['2»& ep(aE)- 2 ?@("'”)

/

'&

i
*,p y 3 ep (3= 13) = 32)

'/)’: 2 /L<?x*,;/a,)”%(u

-&Do,

with (36)
? - _4__/i /z /z /&
Dy, ' (7)

The integration constants M' and N!' in equation (37) are different

from the constants M and N of equation (29), because terms in exp(-gqx)
and exp(qx) in the particular sclution have been included in the first

two terms on the right-hand of equation (36). Since the function

Co(x,t) is bounded for x from O to ©o , it follows that N! = O in
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equation (36). The other integrations constant M’ .5 determined by

expressing that the trensform of the boundary condition (24) is fulfilled.

Taus Co (Oys) = 0 , and
)

’ A N oS
W g G ) ¢

It is the derivative ¢/ C, (x,ti) / .D x for x = 0 in which ue
1

are interested, ard consequently we can directly differentiate EC (s,x)

1
with regard to x and introduce the value x = O in the resulting equation.
After regrouping terms and introducing the values of q and a from (37),

one finally obtains:

D C_o/ (d/ x) a5

’DJZL X =0

I

‘
[ !' ‘7
li é‘ﬁ'ﬁ"‘/’(?d)wc'{(qd)‘]} (39)
|

The inverse transforz of 1/s is simply 1 and ihe transform of the

18
second term between braces can be evaluated by the convolution . By

18
See ref. 13, p. 36.

1 /2 Y /2
noting that the transform of 1/s / is 1 /nntl/ , and the

transform of
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is 1/ Z{-7[ (t' + ) ;7 '/ , one has

Pext) |, .t dp w

’)L 20 '%/ 7[ & }k(b, *t,})h_l
which upon integration yields:

J G, (= f'/ﬂ R B

D z:=0 -Do, 2 T

ore Jén( G - é,/) (w)

zf,f-t

The result embodied in equation (4L1) was also derived by a different

method (Fourier transform); furthermore, equation (41) is verified for
t! =0 and for t! = oo , This establishes the correctness of the

above treatment.

Values of the ratio of the flux of O, for t!' = 0 and x = O to the
flux for t' > O und x = O are plotted against t! / T, in Fiz. 3. This
diagram shows that the contribution of the reduction of substance G, ito
the total current is indeed very important. For example, at time t' = T ,,

the flux is still one-half of its initial value at time t' = O,

1
DERIVATION CF_THE FUNCTION 002 (0,¢').

The boundary condition (25) can now be rewritten by introducing in

it the value of :)CO (=81) / :) X for x =0 from equation (4l1).
)
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Thus
. Y

)Co‘(»,_t‘jl 2 _ 1 ane dm ——.—f-: (‘I-?v)
D2 |x:o 7, Dy, ¥ T Gp &

/1, being defined by 3
The problem is to solve the diffusion equation for the initial con-
dition (26) and the boundary condition (4L2) , and this will be done by

applying the Laplace transformation. It is advantageous to introduce

the function h(x,t') defined by

/. / o /
{(z,é) =C - c%(x,é) (w)
By solving the transform of the diffusion equation one obtains (note

that h(x,x) is bounded for x —)» o° ) the solution

S !
d /z, 5
Jx) = M CX/L [-(—) x 4
(42) L
in which the integration constant M is determined by satisfying the trans-

form of the boundary condition (42). This transform is obtained by

integration by parts, and the following result is obtained

P z(x 9) i r
’)z\.’ xzo-.—.ﬂ:‘l’)% éalb(t:,s)c?&l_(uls)'/b] (¥6)
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After having determinad M from (45) and (4€), one finally deducss the
following transform of the function h(x,t!)
. s
£ (4 x )=
/o
A / /2% exh| - (4 b
7w 3 (& 53 Dy
Do, o =
2 Y
(47)
Since only the concentration of O, at the electrode surface is
needed, the value x = O can be introduced in equation (47). The inverse
transform of the resulting equation is again derived by applying the
convolution. Thus, by nroting that the inverse transform of 1/s is 1 ,
and the inverse transform of S~

( € d) "

isl/[‘f[( T, + t')] /2 one has:

%(O/Z’) = 7, I/&L/& / ( })/;, (%’)

The integral in equation (48) is immediate, and after returning to

the fuaction Co (O,t') , one finally cbtains the concentration of O, at the
2

electrode surface
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, 0 2 b /&
Co(ot)=C - t:+t) %)
0"’() & /QFJ)OL(

This is the remarkably simple final result of the above long derivation.

If the transition time “Z , is made equal to sero, i.e. if only substance

Oy is present in solution, equation (49) takes the form

' /3

This is precisely the value derived by Sands. It is interesting to
find that squation (49) for the consecutive reduction of two substances
is of the same form as equation (50) for the reduction of a single sub-
stance; the only difference between equations /.T) and (50) is that the
square root of the time elapsed since the beginning oi ~lsctrolysis in

equation (5C) is replaced by the difference [( Ty o+t z','/2]

in squation (45).

TRANSITION TIME FOR THS SECOND STEP OF THE POTENTIAL-TIME CURVE.

The transition time T , for the second step of the poten.t.ial-t.ino
curve is determined by the condition that the concentration of substance
O, at the electrode surface be equal to zero. Henze, the right-hand meaber
of (49) is equal to zero for t' = T ,. By solving the resulting equation

in T , one deducee




LX)

/5’&4- z/9 v/" (5!)

p-=nnd ()

0

with

uab hows that the transition time % 2 _not only depends on the
bulk concentratjion of 03, but also on the bulk concentration of substance

Qy which §s reduced at less negative potentials. This is understandable,

since substance O; continues to be reduced while the reduction of substance

O, proceeds. The influence of the reduction of 0, can be evaluated by
considering the following case: ny =n; , C} = C; 5 Do - Do2 . By
1

recalling the value of the transition time T ; for the first steps

1 %o o
2/

/ 2L (53) |

ons concludes from equations (51) and (53) that the transition time T , i»s |

f_&=35, (5//) |

The transition time T , would have been equal to Z ; , had substance
0; not been present. The increase in transition time resulting from the

presence of substance 0; is therefore very pronounced.




Since Coz(O,t') is equal to zero for t! = T ,, it follows from
equation (49) that the product i, [(tl + 2'2)'/2 - le/z for
given conditions of electrolysis, is independent of the current density
io . In the case of the reduction of a single substance it is the product
io ZT,'/z which is independent of cur:ent densitys. Equation (49) also
shows that the concentration C; is proportional to the qusntity
[(‘C, + z‘g)'/z - ,'/2] » and this property can be applied in
analytical determinations.

We also derived the equation of the second step of the potential-
time curve, but the resulting equation does not lead to any interesting
conclusion,

The above treatment was verified experimentally for mixtures of
cadmium and ginc ions. The results summarized in Table IJ show that the
product i, [(‘c, + rz)v/z - tl'/zj is indeed independent of
the current density. The average values of this product are also pro-
portional to the concentration of zinc ion: the ratios of concentrations
are 2, 1, 0.75, and 0,30 whereas the corresponding ratios of the average
values of the product i, [(‘Cl + ‘Cz)'/z - t,'/z] are 2,06,

1, 0.766, and 0,312,179

Note that the soluticns of cadmium and zinc ions were not standardized,
and consequently the absolute concentrations of these substances are not
known exactly. However, the various solutions were prepared by dilution
of a single zinc solution, and the ratios of zinc ion concentrations are

only affeciad by the errors resulting from dilution.
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The experimental errors are thoae one would empect for recording on a
$ inch screen of a cathode-ray oscillograph. Finally, Table II shows that
the experimental determination of sinc ion in presence of a tenfcld excess

of cadmium leads to very uncertain rssults (solution I). This conclusion

P TSI T P e
(]

T,

could easily be generaliged.
CASE III. STEPWISE REDUCTION OF A SINGLE SUBSTANCE

The stepwise reduction of a substance O according to the equations

o+ 7€ = ,el '(fs')
R‘z (5'6)

K, + 7, €

will now be treated for the case in which the substances O and R, are
reduced at sufficiently different potentials to yield a potential-time
curve exhibiting two steps. As in the previous cases, the problem will
be solved for conditions of semi-infinite diffusion, the affects of
migration and convection being assumed to be negligible.

The transition time T, for reaction (55) can be calculated on the
basis of the treatment developed by SAnds, but this is not so for the
transition time T , correspording to the second step. After the tran-
sition time ¢, , the concentration of substance O at the electrode
surface is equal to gero, but this substance continues to diffuse toward
the electrode where it is reduced directly to R, in a process involving
n; + np electrons. Furthermore, substance R, which was produced in the

first step of the electrolysis (equation (55)) diffuses toward the

electrode at which it is reduced according to reaction (56). As a result,

L T Mp et R o et o W Ml i = o o ok

Ak L
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the current through the cell is the sum of two components according to

D Co(z,t)
P

the formula

(72,, + 71’&) F D,

2 =0

- [V Cr/(, ¢) '
+ 7, F R = (
2 -DR/ ')x, x =0 o ( )

which is written in terms of the time t' defined by the relationship

t' =t - T » ¢ being the time elapsed since the beginning of the

electrolysis (1st step). Equation (57) is the boundary condition for
the present problem. This condition can be modified by replacing the
derivative DCC (x,t') / D x for x = 0 by its value derived for

Case II (equation (41)). After a few simple transformations, the

boundary condition becomes:

R, (==, t) 2
’Dx. X=0 ﬂz F ’DRI

'(ﬂ,f'nz)l:o | o | ot d‘.’n s
AT FDg | ¥ T 5+t

Note that equation {58) is written in an expanded form to show the (58)

similarity between the present bowndary condition and that expressed by

equation (41). Equation (1) as written with the diffusion coefficient

D instead of Dp gives the distribution of substance R, at time T, ,
1

and consequently this formula expresses the initial condition for the
present problenm,

B Vo T VAT # g S ——— —— N——— o —
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DERIVATION OF THE CONCENTRATION CR (O,&' ] .
2
The above boundary value problem will be solved by applying the Laplace

transformation as in Case IT., The treatment is similar as that previously

discussed, and equation (36) holds for this case provided that D, and

R,

4'/2 / Dy ve replaced by D, and ¢1/2/ D, , respectively.
1 1

0y
’ /
The integration constant N is again equal to zero, and M is defined by

satisfying the transform of the boundary condition (58), i.e. the con-
dition

X
dx zx0 7 F.DRIJ

_ N

\V4

%/%FDR/ 24

N

(9)

After rearranging the terms one finaily arrives at the following

fa

transform of the solution for x = 0

t, ¢

Y 2 /
CR (0, d) = / /
I T /"72, F b,'}i’ 4

7 :‘obe, 4'?% ”76(%5)% (2.9)"| @)

L
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The inverse transform is performed by applying the convolution as for
equation (35), and this leads to the solution:

-2 é ! /
G0t | b () @)
/ /2 /a2 n, !
TEANS]TION TIME.
The transition time, obtzined by equating to sero the concentration
Cg, (0,t'), 1s

2
5= 2(7)+(52) | &)

Por example, when n; and n, are equal, the transition time T , iz equal

to3 T ; likewise for n, /n =2, one has T,/ T, = 8.

The above treatment was verified experimentally for the stepwise
reduction of oxygen and uranyl ion. Data obtained at different current
densities are listed in Table III, and two examples of potential-time
corvss are shown in Fig. 4. The average experimental results T /T =
2.97 for oxygen and T/ T, = 7.91 for uranyl ion are in good agree-
ment with the theoretical values 3 (n; /n; = 1) and 8 (n; / ny = 2)

0
one computes from squation (62).2

20 The composition of the supporting electrolyte in ihe reauction of

uranyl ion was exactly the same as that Kolthoff and Harris (J, Aw, Chegy.

i
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Sog., 68, 1175 (1946)) used in one phase of their study af the polarography
of uranium. Thie is way thymol was added elthough it might not have been
needed in the electrolysis at constant current. Note that the above authors
found n; / n) = 2J2 from polarographic waves for the conditions listed in
Table III. This abnormality possibly does not exist in the constant cur-
rent method, since the ratio T , / T) forny / m = 2.12 43 8.50
whereas the average experimental value of ¥ , / T, 4s 7.91. This

point, however, cannot be settled here on account of the relatively large

experimental errors (see Pig. 4).

DERIVATION OF an(g,}_'_.

In order to derive the equation for the potential-time curve (see
below) for the second step it is necessary to kmow the concentrations
Cn' (0,t') and an(o,t' ). The former concentration is giwven by equation
(61), and the latter will now be calculated. Substance R, is produced
either by reduction of substance O or by reduction of substances R;.
Hence, the sum of the flwws of substances O , R, , and R, at the electrode
surface is equal to sero., Thus:

AEET T ey

o -

DC&.("‘W] - 63
+. 'DRL [ 7'*- 20 = O [ )

Equation (63) is the boundary condition for the present problem. The

=0

initial condition on the other hand is: CR (x,C) = O.
: 2
Equation (63) can be rewritten by combining it with equations (L1)

and (58), and the following boundary condition is obtained in this manner

8




T P TTTY Py ST (TR TR S B

W W TV e : "

P CR& (=, ¢) %

_ . y -]
pE>

] |
Ay F Dg v T r + ¢
A ), I

(6¥)

The solution is derived by applying the Laplace transformation as in

a0

the previous section, the integration constant being determined by satis-
fying the transform of equation (64L). After inverse transformation one
obtains by using the convolution as in the case of equation (47), the

concentretion CR (O,t1). Thus:
2

Cr, (0,¢) = 2t c+t %"- g/& (¢5
@&( ) %g,,nzl__bgz (/*) / )

POTENTIAL-TIME CURVE.

In case of electrochemical equilibrium the equation for cthe potential-
time curve for the second step of the electrode process (reaction (56)) is
ohtained by introducing in the Nernst equation the concentrations from (61)
and (65). The resulting equation can be rewritten by taking into account
that according to (61) one has:

7 t 1%
/72771, e = (z:, + Q) ((6)
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Thus:

_ RT (t+~r) (z;,,ré)
E= (%), o, T nF . (r:,:,t . Q)

where the potential (E,/Z)R'_Rz is defined in the similar fashion as the
potent ial B./z for the system O-K; in equation (19). The time at which

the potential E is equal to (B'/z)R,-az is obtained by equating to unity
the argument of the logarithm term in (67). After simple transformations

one obtains

A ! N 6y
- 2 T J
éE'ﬁ 4 t 2 7, / ( ) ‘

For example if n; = n,, one has T , = 3 T, , &nd the potential
t.' y is observed at t' = T, /4 + T, /6 or 5T,/ 12. The |
E, 2
time is one fourth of the transition time in the reduction of a single sub- ]

7
stance in a one-step process . {

EXPERIMENTAL

The experimental method applied in this investigation was identical
tov that previously reportod7. The reversal of current in the experiments
on re-oxidation process was controlled by a D.P.D.T. relay which was
actuated manually by closing a tap key. Experimental results were dis-

cussed abdbove,

< oie Vi BN R s QMM
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CONCLUSION

It is possible to develop a rigorous mathematical analysis of potential-

time curves for the three types of electrode processes discussed in the
present paper. Rigorous interpretations of potential-time curves can be
developed for cases for which only approximate treatments are avzilable in
polarography and/or transitory voltammetry (see Case I and ref.7), and
consequently the constant current method appears more advantageous than the
former two methods in electrochemical kinetics. Further work in this direc-

tion will be discussed in a subsequent paper.
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APPENDIX - EVALUATION OF THE INTEGRALS I, AND I,
OF PQUATION (35)

The integral I; is directly obtained from tables. Thus:

N

- 2le[()f]-p @

The integral I, is evaluated by successivc integrations by parts. In

the first integration one sets

~3

A yGhas
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=i #(47) -7 67 ()
de = Fink [ (-f’;f;)lﬂ/z (1-7)] d7 (1)

where a is defined by equation (37). After integration. this leads to a

third integral

. =[zCOg£ [ (:c 7) af (a?)} d7

which is evaluated by setting errc(a‘37) as v and the remaining terms

as du. The following fourth integral is obtained in this manner

/@,,,(a. ")mﬁ[( ) (- )]d7 %

and this integral is calculated by substituting for the hyperbolic sine
the corresponding exponsantial functions. After collecting terms, one

finally obtains equation (36).

~1

L aart 2 gyl Al o aldinaias



n

24

E
E

40
TABLE I
DATA ON THE TRANSITION TIMES FOR VARIOUS RE-OXIDATION PROCESSSES
Thalliun® Cadniun®
-CO
3.30 3.1 3.03 1l.44 3.55 2.38 1.36 1.26
'
1.14 1.C6 1.00 0.50 1.26 0.828 O.4h2 0.423
/¢! 2.89 2.96 3.03 2.88 2.82 2.88 3.07 2.98
c d
Zinc Quinone
s 2.46 1,67 0.907 0.865 3.00 2.93 1.10 0.88,
T'e e -
0.18 00538 00)13 0.282 00965 00965 0.3“5 00276
/¢’ 3.15  3.10 2.95  3.06 3.11  3.05 3.19 3.20
% 10" M thallium nitrate in 1 M potassium nitrate
> 10° M cadmium sulfate in 1 M potassium nitrate
B 10~3 M szinc sulfate in 2 M ammonium hydroxide and 2 M ammonium chloride
. 10" M quinons in buffer of pH 6.9 and 1 M potassium nitrate

Transition times in seconds at different current densities

woih SN S AR et b
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TABLE II
DATA FOR THE ELFCTROLYSIS OF MIXTURES
OF CADMIUM AND ZINC IONS
a a
Solution I Solution II
. % R ==7r' e o
Current t' zz “ (c * ) (l 8) ez TAG B U) &.]
=8 - ud
10 aamp. sec. sec. 10 > lnp.soc.'/2 sec, =secC. 1072 amp. aec.'/2
1,22 2.70 1.32 0.13 2.50 1.56 0.58
1.96 1.28 0.25 0.22 1.17 0.685 0.54
3.18 0.42 0.0878 0.21 0.42 0.307 0.65
4.81 0.182 90,0612 0.32 0.202 0.123 0.58
9.39 0.050 0.015 0.30 - - -
average 0.24 uverage 0.59
a a
Solution III Solution IV
i 1.32 2.62 202‘5 0077 - - L
1.9é 1022 100’7 0081 1021 2.5‘; 1.65
3.18 0.435 0,385 0.78 O.L42 0.87 1.54
4.81 0.178 0.161 0.77 0.19 0.40 1.59
9.39 0.046 0.0377 0.70 0.0477 0.102 1.59
. average 0.77 average 1.59
. ®  Concentration of cadmium ion: 3 x 1077 M in all cases. Concentration of gzinc ion:
3x10°" M (s0l.I), 7.5 x 10" M (s0l.II), 10" M (sol.III), 2 x 10™> M (sol.IV).

Supporting electrolyte: 1 M potassium nitrate.

eg i s R o i i



TABLE III

DATA FOR THE STEPWISE REDUCTICN OF OXYGEN

AND URANYL ION

Oxygen 2 Uranyl ion -
Y, 4 2/ © T, e, £,/ ¥,

sec. sec. sec. sec.
1.29 3.84 2.97 0.264 2.14 7.97
0.716 2.09 2.92 0.139 1.09 7.86
0.328 1.02 3.1 0.090 0.7 7.89
0.128 0.368 2.88 - - -

average 2.97 average 7.91

1 M lithium culoride saturated with oxygen at 25°

b

10°

-5
acid. Thymol present at a concentration of 2 x 10 per cent.

3

M ureanly nitrate in 0.1 M potassium chloride and 0,01 M hydrochloric

@
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Variation of the concentration of substance R during the

re-oxidation process. The number on sach curve is the time t'.

Potential-time curves for the reduction - and subsequent
re-oxidation - of cadmiua ion (left) and gzinc tetrammine ion.
See data in Table I. Note that one has approximately

AB = 3 BC (ieft), and AB =« 3 CD (right).

Variations of the 1‘atio of the flux of substance Oy at x = O
and time t' to tha Slux of ihis substance at x = O and time

t.' = 0, Abscissas are calculated in terms of the retio

Potential-time curves for the stepwise reduction of oxygen
(left) and uranyl ion. See data in Table III. Note that

one has spproximately Z 2 = 3 C, (left) and T, = 8°7,
Gight).
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