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Abstract 

/n electron In a lattice potential together with the phonon modes of 

the lattice are treated an  e  single combined system "or which the weve 

functions ere products of 31och functions for the electron and l'ermlte 

polynontel oscillator functions for the normal modes of the lattice vib- 

rations,  ""he claaslcel oscllletory motion of the lattice polnta Is re- 

plpced bv the probability distributions of the oscllletor wave functions, 

end the modulation of the lattloe potential bv the phonon modes deoends 

only on the electron position coordinates and on the penerellied rsoord- 

lnp*es o* *he p*»onon TOO"** - It Ho** not d*n*nd *rollolt.lv on t>e time. 

Steady "rssonsnce" ststes o" the combined system, electron plus 

phonon, ere shown to exists In which s slnple quan* j"» of phonon snergy 

/      pasies bsck end forth between electron end lattice, the totel rnerpv la 

conserved, and the normalization of the combined elgenfunctlon Is a const- 

ant Independent of time. The electric current carried In these steady 

states can have any arbitrary value, end the phonon modulated 

lattice h«s absolutely aero reslstence. 

Electrical realatance Is considered due to random tranaltlons rmong 

tKe phonon osclllp'or states of the lattice, stliralfted by thermal fluct- 

uations, p.nd the significance of this "or the theory of superconductivity 

la briefly dlscuased. 
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Introduction 

Consider eome  quantum raeohsntcsl problem with a Haralltonlan H 

whos.« etgenfunetlone  ere known.    Let the Feralltonlan be  perturbed to H 

with unknown elgenfunetlone.    The standard  procedure  le to look for 

these, unknown elgenfunotione  In the form of linear oomblrrtlone of the 

unperturbed elgenfuncHona of H ,   with coefficients thet may be funotlona 

of the time.    If the  ayatem la  Initially prepared  In one of the unperturbed 

states,   the   perturbation awltch on at time   zero,   end switched of again a* 

tlnjs t,  the equsre  modulue of  any one of the  ooef'lolenta equals the  prob- 

ability that the  eorreapondlnp: eigenvalue be fojnd by  an oSaervetlon made 

after time t. 

When however  the   oerturbatlon  la essenttelly  a difference between the 

trua "arrlltonian " end  sn arbltrcry but oonvenlent H ,   end  la  present 

permanently,   one  la not free *o use the  coefficients to celeulste trans- 

ition  probabilities between the unperturbed  stptes,   which are  In thla  crae 

purely  fictitious. 

Thla  la  specially  Important when the  Hamlltonlen P contains time ex- 

plicitly.    For example  one  mpy  consider  e  lattice  potentlsl  perturbed by 

en elastic vibration.     The  conventional calculation then gives the  trsns- 

Itlon  probsbllltles for  sn eleotron to  make   jumps  from one  elgenstnte  of 

the unperturbed  lattice  to  another,   due  to the   perturbation,   the enerev 

difference being ts'^en cere of by the scoustlcrl energy quants.      ""his  Is 

In fact the brain   of the standard  theory of electrical reatstance.    But 
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if the  clastic vibretion la  a stendinp; wave,   I.e.  e permanent, feature  of 

the   problem,   these transition  probabilities   are  purely fictitious,  because 

the  electron cannot be  prepared  In on elpenstste  of the unperturbed  lattice 

in the   first  place,   the elastic vibration switched  on at time   zero  end  off 

again prior to the  next meeaurement.    The  vibretion Is   present all the  time 

and  the electron rauet be   In  2 state  epproprlete  to this  more complicated 

field. 

The  correct  ploture  must be  developed   ee  follows:   the  avstera Includes 

both electron and  lattice  with  Its spectrum of normal modes.    The  Hemtltonlen 

0? thla syetm Involves  three  terms:  *he  electron,   the  phonons,   end the  Inter- 

action between them that occurs because  of  the   phonon modulation of the 

lattice  potential.     Any  v-eve  function for such  a Hemlltonlan la  a  product of 

two factors:   (i)   a function of the  electron  coordinates  and  time,   end (11) 

a function of the  frenerrll7ed  coordinates  of the  normal rnode8  and  time.     The 

resulting elpenfunctlon3  or  the  ccvrolete  Hetrlltonlan turn out  to be  reeonence 

states   In which ener.^v   peo es  between the  electron and  the  phonons  In an 

osolllatory feahlon with no net  ee^uaulstIon  In either  pert.    The  square 

modulus  of such  an elgenfunctlon  Is  Independent  of  time  end  It  represents 

a true  ateedv  state  of  the  complete  system,   electron  plus  phono iS.     It  Is 

not neces'nrv  for the  net  current  +o vanish  In order to set up theae 

steady  stetes,   snd the   phonon  rr.oduleted  lattice  offers  no resistance  to 

current-carrying stetes. 

In s natural  crystal switches  continually  occur.     Under thermal bath 

o 
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conditions,   the  quantum stcte  of  the   phonons   Is being  changed   in a random 

manner;  these random changes   In the normal modes   ere exactly  the  feature 

that distinguishes  thermal motion from scoustleal vibrations that  nrlse 

from 8 coherent aource.     ;.n externally stimulated transition  In tha  phonon 

st«te   of the  lattice  - stlnujeted by  a temporary   perturbation from the 

thermal bath - will  Induce  transition! In the electron states  and glf*  rise 

to resistance.     These  switches  however  ere  frorr one   phonon modulet.er. atete 

to another,   not from one unmodulated   lattice.to enother.     I~ the new 
r 

picture  one  hea  to  prepare the   combined system In one  of the   phonon modulated 

states,   then switch on +he therrtel pT+urbeMon and  c?1culate  tr*mal*'on 

probabilities  to  the   steady  atates   In  the  new  fhonon modulation. 

In this   paper  w  first develop the  general formalism far enough tc 

f 0 prove  the  existence   of steeuy   current-cerryInp states   In the  coherent  phonon 

modulated   lattice,     ""hen we  p;lve   en approximate   theory which moy turn out 

to be  more useful   In   later  8opllcetlons   of  these   new concepts  to the  detell»d 

theory  of insistence   and superconductivity t     ""he  theory  of trTSlttons   Induced 

by thermal perturbations  o" the   phonon modulet '.ons   Is  reserve.!  for   a leter 

paper. 
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The  eteady states  of the   phonon ooduleted   lattice 

•-• 

""o describe the confined system, electron plus phonon, we shell use for 

the electron, elgenfunctions Uj^q)  In an ld-«l lattice with a Famlltonlan 

H end elgenvelue3 3^, writing e llnepr combination of these functions for 

the electron factor In the oomblned weve function. ?or the phonons we 

use the normal modee of the lattice. The displacement of a lattice point 

st normal position 3 due to the p*n normel mode Is classically 

(1) 
l»nt 

V^    "    Ap e    P    coe^po/L) 

where    w      Is the  angular frequency o* the   p*'* mod'',   nnrf •he cos In* fee*or 

la understood  to be   a product of three  coelnea,   one  for each dimensions of 

the  crystal of side  L.    The   coefficients 

ypCO 
lwnt e    P (2) 

are  gener*ll7ed  coordlnetes for the   phonon motion,   and the  classical Hom- 

lltonlan In terms of these  coordinates  la  well known: 

2.W..  ? ~ 2 ^ 
"ohon - Myp

2 •  ^Z:- 
p  * p 

'V W
P 

i*o  be conalatent, the theory must no* treet the phonon part of the problem 

by replacing the KenlltonVen (5) by an opertor nnd seek Its elpenfunctlonsj 

Hphon* * "*?2 >**/** * XZ«**&    " E 
P 'P phon (*) 

P P 

The elfj»nrunctlon8  for this operetor  rre  clerrly   products  nr the  frmlller 

Mermlte   polynoilel elpenf unctions  o" *he  simp!* h'rronlc oselVr+'or,   one 

for eech nomel ^odt.  coordinate,   the eigenvalues belnp surrs  of (rr>?:)tfw_t 

> 
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«f»J,W.t)    -    Tt%'"'V(,2,,np(VVI>)«
l<V*)V (5) 

whs re   pL    • w_/^fi    end    N „ ere  normalization const ants.     This  funotlon p        P np 

dspsnds on all the  norreel  coordInetes y  ,   and the  state   la  specified by 

the  set    fnj    of  quentur numbers    n ,   one  number for each mode. 

Coupling between the  electron and  phonons   la  secured through the 

phonon modulation of  the   lattice   potential.     If the   phonon smplltudas 

sre  not too great,   the   potential  modulation  la  proportional to the  rel- 

ative  dla placercenta  of the   lattice  points,   so that we  may  write  for thle 

potential modulation: 

V      *    1L   Ko ^0 •ln(irpq/L) («) ^ p P 

where again a product of three slnea Is understood, q 18 the electron 

coordinate, and y the normal mode coordinate that apreara also In eqa. 

(2) - (5). vote thst V Is not a function of time explicitly. 

The combined Heirlltonlen Is now 

o     phon *• ' 

and we seek elgenfunctions of this ''amlltonlan hevlng the form 

^(jyj.q.t)  - ?  ^5(k,JnJ,t) uk(q) a'
1^ <Zf(fn},jyf,t)    (8) 

where the  "eonetenta"     0(k,jn[,t)   have to be  determined.     Writing this 

function Into ths Ichrodlnger equation 

H "jp - tft oVf/dt (9) 

rr 1 .-—iz— • T-r 



and  canoelling idantioel terra due to the feet tuat the 0 ere elgenfuncttone 

O 

of H .    and the u*s are eigenfunctione of H , one obtalna, after the usual 

atepa familiar in the method of variation of oonatente: 

rr 

tfidO(j,{m],t)/dt    -    22 
m k 

Jy 

l^(J»yyJ) Uj(q) Vuk(q) BfCjn^fyi)  dqlf dyp 

X      C(k,$n^t) expjlfSj - Ek • % (»p " np)Wph]t/*f (10) 
< 

( 

where    1^(5nHyl) etc.,  meena the funotion (5) without ite time factor. 

We  oen eeek aolutiona for the  coeffioiente of the fore 

*3(ji{»J»t)    -    C(J,/BJ)  exp[-2lTlW(j,Jm})t] (U) 

where    0(j,jmp  and W(j,fm\)    ere  oonatente.    Eq.(lO)  then becomea 

-    hW(k,in))SkjSfBHn 5(k,(n),t) (12) 

wher* the    V-metrlx ia  an obvious  abbreviation.        These equations  ere 

soluble  for the  coefflclente 0  in the following way.    First we teVe all 

the  conetanta    V/(k,[n})  the  anw,   independent  of the  atete  (k»jnl), csncel 

the   tine factor of    ~(k,fn|,t)   in eq.(12).    We  then  accept non-sero coef- 

ficiante    ^(kijnp only for thoee  etetee auch that between any pair    for 

which    the matrix of V  la  not  »ro,   the energy  is  conserved*. 

0 (15) •j  ~ Ek • 2 («p  * "p)*w, 

"• ' ' TT  
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Eq#(l2) for the non-vsnlshlng ooefflolentB then becomes 

OCk.fnj)       -      0 22 
M 

M({»|,j|v|k,/np    -    hw£kjJj.f,] (1*) 

This Is soluble when W le one of the eigenvalues of the V-mstrlx, snd 

because the letter does not oonteln time, the solutions ere Indeed coratente. 

Inspection of the V matrix shows thst It vanishes Identically unless 

for one end only one normel node, the p*n,  m_ • np +   1 or n_ - 1. This 

Is beosuse V Is sunned over all the normal modes, while the integretlon is s 

product over the modes, eeoh multiple Integral oontelnlng as a f sctor In the 

Integrsnd only one normel coordlnete y_ from the p  term In V. To satisfy 

eq.(15) therefore the etstes j snd k must be such thst 

I <nw. for some p (15) uj  Bk   - -p 

At the  seme time,   non-venlshlng If the V metrlx element requires thet the 

Integr rrel f 
juj(q)  sln(irpq/L) u^Cq)  dq (10 

These two oondltlons ers sufficient In genersl to determine the energies 

2,    end  5^    for any  given mode   p. Eq.(15)   Is of course  the  conservation 

of energy during electron-phonon Interaction,   while eq.(l6) turns out to 

be conserve!ion of momentum between phonon end electron. 

As  the slmplsst exsmple,   we can form the function (8) from one   pslr 

of Blooh functions,   with k end  J the wave  nucbere  for the  electron stetss. 

""he ?-matrix Is thsn a four-tyr-four "errltlen rrstrlx with all ele-«nts  aero 

exoept those on the  antl-dlegonsl,   Its eigenvalues turn out to be * V(n»p) 

—:—wsr.— 
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where V(n, P)     -     (IL/fc J^bTiCn • 1) (17) 

wp      •       2lfpc/L 

P'^P" 

Fron • classical point of view these  ere the amplitudes of the  potential 

wave (8) having n quanta of energy.    If the velocity of propagation of 

phonon wavea  in the  lettlce  Is    e,     we heve 

(18) 

and the conservation eqa.(15)  end (1^) yield* 

k      -      \p    _    mLoA 

j      -      - Jp   1    mLo/h 

where    ra    la the ef'eotlve mass of the electron.        ""he positive signs 

correspond to positive ourrent,   the   lower signs to negative  current, the 

sign of the  ourrent being arbitrary.      Taking positive  current only,  there 

are two functions  (6)  corresponding respectively to the two eigenvalues of 

Lv(n,p)t 

1 (19) 

SPp      -      (l/2*)(uj«rmI    l   UkCfn)  expC-2-riSt/n) 

where        B    •    B^    •     (n • *)fkw      *    V(n, p) 

-    Sj    •     (n*  !•   J)ftwp    1    V(n,p) 

(20) 

(21) 

These functions  are obviously ateedy ststee of the combined ayate? and 

their enerrles  are  eigenvalues of the metrlx H.    Indeed,   once we heve stated 

the   problem In the way we have done here,   we  could heve written down the 

solutions (20)   and  (21)   intuitively.     It may be  as well to emphesias  again 

the essential difference between the  present treetment end  previous attempts 

"  me veotors k end j also hsve to be  parallel to the vector  p In 
wave-number space   to get this sltple  relationship. 

?==« •»« 
'\ •*"- 
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to describe eleotron-phonon Interactions*    For example  In Bardeen's theory 

of euperoonducttvlty  (I) the eleettc waves were thought of simply  as time 

dependent    perturbations of the  lattice  potential,  the   lattice  polnta being 

treated  cleeslcelly  and actually  performing the oscillatory motion of a 

point In the  classical simple hsrraonlo feahion.     Likewise Fr8hllch (2), 

although he recognised the fundamental Importance of the reeonance between 

electrons snd  phonons aa such,   alao accepted the  classical  picture of the 

vlbretlonal perturbatlone,   and uaed the tranaitlon probabllltlea (I.e. 

emiaelon matrix)  calculated  In the stsnderd fashion from tins-dependent 

perturbstion theory.      In the  present paper we heve  instead treated the 

normal coordlnate-a of the  lattice vlbratlona quantum mechanically,   ao that 

inatend of a clessicel  point motion we heve a wave  function for eaoh normal 

node coordinate.    .. pure  phonon atate of the   lattice now is  represented    not 

by a pattern of classical motlona of the   lattice  points,  but by  a spectrum of 

wsve functions,   one to each normal coordinate.    Fro" thla  point of view It  la 

quite natural that the  potential Interaction between electron and  phonona 

should turn out to *»e  s series of  possible eigenvalues rather than a contin- 

uous  function of the time. 

As mentioned  in the Introduction,   the eigenfunctions  (20)  pre  statss 

in which  one  quantum of  phonon energy  passes back end  forth between the 

electron end the   phonons.    At no time can one give  a definite  assignment of 

energy to the electron alone,   nor to the  phonon alone;  but the to*al enerrv 

la  fixed  all the time and the atate  la steady,   Ita normalization being 

0 

LJ*    1 
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Independent of tins.    There  is  & slallsr state for eeoh normal mode of 

the   lattice,   and each such stete   Is quite  Independent of the exoltetlon 

of the   other normal modea of the   lsttioo.    Thla  laat  point  is of course 

essential to the whole  argument:   it erieee from the orthogonality of the 

oscillator wave functions used for netting up the V-m?trlxxln eo.(l'i),   end 

ia achieved only beceuae we have ueed a completely quantum mechanical 

treatment of the  phonon modea.     In a classical treatment of the  phonon 

perturbations one could oonoeivably  achieve  a ateedy state of en electron 

in • phonon state consisting of one single excited mode,  but the  presence 

of other modes - eve n if only  in their  loweat zero-point energy states, 

would constitute  an additional time-dependent  perturbetion and destroy the 

original state. 

In the present theory the etate of a combined electron-phonon aystem 

could be formed from eny  linear combination of functions auch as  (20) with 

one funotion to eeoh normal modei 

^ 2 s$. (22) 

A state of zero nst current is obtained if both solutions (both signs) 

and the eorreepondlng functions sddsd for eech mode. The net currant in 

any one state like (20) is eeally shown to be a me en value between the 

currenta corresponding to the electron atatee u^ end u^ • 

0 LEGI8ILITYP00R 
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Ad lab at lo ..pproxLuctlon using Wcnnler Functions 

By oontraat with the foregoing exeot end completely quantum moohanlcel 

treatment w now preeent an approximate dlaouaalon of the electron alone  In 

a time-perturbed  lattice  potential, uelng the Wennler funetlona (J) for the 

unperturbed stetea of the eleotron In the  lattloe.    '''he dlferenoe between 

the approximate theory  and the exaot treatment sorvej to brlnr out more 

atrongly the significance of the  latter. 

From the Blooh modulated free-electron wave funetlona    u^q) we form 

the Wennler funotlon over one Blooh xonez 

-is^t/h- N^^.-^uk(q)a^Ek (25) 

V (q,t)       -      V    aln(lf pq/L)  a In wt 

u(q.yf*P    • 

where    3.    la the   position of the   t^*1 lattice  point.    We now conalder the 

/  \ perturbation potential doe to the  lattice vibration of a alngle frequency 

w and wavelength    2L/p« 

(2A) 

We  now make what might be termed a quaal-adlabatlo approximation,   and aaauma 

that the vevelength la extremely  lonp compared with the  lattice spacing,   and 

replace the  potential (2*) by the  point funotlon 

defined only In the neighborhood of any one  lattice  point.    We then form 

linear combinations  of the  Wennler functions with variable  constants 

Vj       -     J^-UC^fyf*}) "P^V**)  •tntoxy/L)  coa wt| (2*) 

© 
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We  observe  at once that thla function satisfies the Sehrbdlnger aquation 

tfiolP/M        -        H057       *   vp(Q,t)3> -     HCp      (27) 

where    H      is the Hemlltonlan oorreeponding to the unperturbed  lattice, 

end    V (%t)    can now be written    V (qtt) without appreciable error. 

The feet thet the Wennter function    U(q,3.,{lc]) hea  e eherp mexlnum at 

the  lettloe  point %. permits the  potential tern to be written In the 

form appearing  In eq.(27)  on the   present  edtabetic approximation. 

The nature of this solution,   (2*),   of the Schrddlnger equation la 

dearly a steady state because   Its squere modulus  is  independent of time. 

The energy however le not  independent of time,  but oeollle^se with the 

phonon frequency,   and therefore  it le not en elgenfunotlon of the Hemll- 

tonlan.    The solution le only  approximate because of the step from eq. 

(2*) to (25)»   e step thet is essential to being eble to operete on (2^) by 

H    without oo^elderlng the   potentlel term in the exponent. 

The utility of thie epproxlTsts solution la that it permlte us to use 

the dieter msthod  (4) of perturbetlone with the Wsnnlsr functions.    An 

additional potentisl perturbstton can now bs superposed  on ths  phonon 

potential,   for exemple  e slmpls   potential gradlsnt that  can apeln be trans- 

lated   into e point function defined only  at the  lattice   pointst 

V       -       - eEq    —>-      - e SQ. (28) 

and the  perturbed wave function beoomee 

^P      - U(q,a,fk]) exp (i/h) J   vp(yf)dt«    -    eEy (29) 

II 
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o 

ft 

IA 

We can now use the dieter theorem on the coefficients of thts function 

and oaleulete the  current by means of the formula 

H*V9(l)*5'('l)/o^    -   ^(l)oO(9)/oQ] where 0(q)  tneene the 

exponential factor in sq.(2?).    Thla ourrent hae two parta,   one the oscil- 

latory  current  due  to the Vp term,   end the other a continually   increasing 

ourrent of magnitude    eSt,  thua proving that the  phonon perturbed lattice 

offers no resistance to within the approximations of the  present method. 

From the point of view of general theory it la essential to go through 

the exaot treatment given in the first  part of thla paper,  to prove that 

the  phonon modulation of a lattice doea not causa resistance)  the  approximate 

discussion of this section however may yield  important practical means of 

applying the theory to sctuel ery*tale. 

O 
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3cncluelona 

The   Implication* of this theory  ere  felrly obvious  end quite far 

reeohlng.    The understanding of superconductivity  le tied up with the 

need for e revision of the theory of resistance.    The  pure ooherent phonon 

states hsve no resistance.    The random transitions among phonon etetes 

Induced by thermal fluotuatlone do cause resistance.    At sufficiently  low 

temperatures some  of tho  higher  phonon modee muet drop Into their   loweet 

etates with aero-polnt energy.     It  Is then conoelvable  that under suitable 

olreumstnnces,   the energy  available   In thermal fluctuations may beoome too 

low to exolte these modes from their  lowest  states.    In eueh a case a 

resonsnee  can oocur between electron end   zero-point  phonon modes,   leading 

to just suoh ourrent-carryIng states  as described  In this  paper.    This 

would not completely explain superconductivity,   because the dlamagnetlo 

problem remains,   but  It would   account for the  transition between normal 

and superconducting states. 

In  prevloua  work (£)   It was  speculated  that rendom changes of   phase 

In the  phonon waves were responsible  for assistance,   and thst an order- 

disorder  transition In the   phaeej was  responsible  for the  transition*     In 

the  light of the   present results  It may be thet both phsse  coherence  end 

absence of energy  ohengee among some  of the   phonon modes  ere  needed for 

superconductivity.     In any  cose  considerable   light will be  cast on thla 

question by e detailed dlacueslon of trrnaltlons among the  phonon 

modulated electron states,   and this will be undertaken  In s later  paper* 

I 
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