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Abstract

/n electron in 8 lettice potentiel together with the phonon modee of
the lettice esre trested asn » eingle conhined eystem “or which tha wave
functions ere products of Bloch functions for the electron end Yermite
polynomisl oscillirtor functions for the normel modee of the lettice vib-
retionas. The clesaicel cecilletory motlon of the lettice points is re-
pleced by the orobadbility distributions of the oacilletor weve functions,
end the wodulstion of the lsttice potential bv the phonon modes denends
only on the electron position coordinatee end on the penerelized coord-
inetes 0% *he phonon Todes = 1+t doea not denand evnliaitlv on tha time,

Steasdy "resonence” stetes o” the combined syster, electron plus
phonon, ere shown to exiets in which e einple quen*i~ of ochonon energy
pesses back end forth betwern electron and lettice, the totsl enerpgy is
conserved, enc the normelizstion of the comdined eigenfunction ls e const-~
ant independent of time. The electric current cerried in these stendy
stetee cen have eny arbitrery value, end the phonon modulsted
lsttice hee ebeolutely zero resistsnce.

Electricel resistence ie coneidered due to rendom trsneitione rmong
t+e phonon oscille'or stetes of the lettice, stixileted by thermsl fluct-
ustions, end the significance of thia Tor the theory of superconductivity

ie briefly discuesed.




Introduction

Conslder eomn quantum mechenicel problsm with s Hamiltonien
whos» eigenfunctions ere known. Let the Hemiltonien be perturbed to H
with unknown eigenfunctions. Ths standerd procedurs is to look for
these un'mown eigenfunotions in the form of lineer combirstions of the
unperturbsd sipgenfunctions of vo, with coef"icients thet msy be functions
of the time. If the system is initielly prepered in one of the unperturdbed
stetsas, the perturbation switch on st time 2zsro, end awitched of¢ egain st
time t, the squere modulus of esny one of the coefficlents equsls the prob-
ability thet the corresponding eipenvelus bs fo.nd by en ohasrvetion nade
sfter time t.

When however the oerturbation is essentielly a difference between the
trus Yeriltonisn ¥ end sn erbitrery but oonvenient Po’ end is present
psrmenently, one is not free to use the coefficlionts to oelculets trens-
{tion orobebilities between the unocerturbed stetes, which are in this ccae
purely fictitious.

This is specirlly importent whsn the Hemiltonisn ¥ conteins time ex-~
plicitly. For exsmpls one mey consider e lattioe potentisl perturbsd by
en elestic vibretion. The conventionel celculation then gives the trens-
itton probebilities for en sleotron to meke jumps from ons eipenstate of
the unperturbed lattice to snother, dus to the perturbetion, the enerpv
difference being te“en cere of by the acousticrl energy quente. This {is

in fact the besis of the standerd theory of sleotricel resistencs. But
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if the elestic vibretion is e stending wave, i.e. & permwanent festure of
the problem, these trensition probebilities ere purely fictitious, becsuse
the electron cennot be prepered in en eipenstate of the unperturbed lettice
in the firet plece, the elastic vibretion switched on et time zero snd off
agein prior to the next messurement. The vibretion le present sll the time
and the electron must be in = stsete epprooriete to this more pompllceted
field.

The correct ploture must be developed es follows: the system includes
both electron and lettice with {ts spectrum of normel modes. The Hemiltonien
of this syoﬁ? involves three terma: *he electron, the phonons, end the inter-
action between them that occurs beceuse of the phonon modulation of the
lettice potential. Any vweve func*ion for such s Hemiltonian is 8 product of
two factors: (i) e function of the electron coordirestes and time, end (1i)

e function of the generrlized coordinetea of the normal modes end time. The
resulting eigenfunctions of the cowrolete Hemiltonien turn out to be resonsnce
stetes in which enersv pes:es hetween the electron end the phonons in sn
oscillatory feshion with no net ecrumulztion in either part. The esquere
modulus of such sn eigenfunction i3 independent of time end it represents

B truc steedv stete of the complete system, electron olus ohono-is. It is

not necesaary for the net current t5 vanish in order to set up these

s teedy stetes, snd the phonon moduleted lettice offers no reasistsnce to

current-carrving stetes.

In 8 natural crystel switches continuslly occur. Under thermal beth




conditions, the quentun stete of the phonons is being chonged in a rendor
menner; these rendom chenges in the normel modes sre exsctly the foeture
that distinguishes thermel motion from ecoustical vibrations that srise
from e coherent source. .n externally stimuleted transition in the phonon
stnte of the lettice -~ stirudeted by & temporery perturbation from ihe
thermsl bsth - will 4induce trensitiom in the electron stetee eand gir* rise
to resistenge. Thene switches howsver sre fror one phonon moduleteé stete
to enother, not from one unmoduleted letticgrzb enother, In the new
ploture one hes to prepere the combined syetem irn one of the phonon mojulsted
stetes, then switch on the thernel serturbe*ion snd c2'cula*e trenai¢ an
probebilities to the stecedy states in the nevw phonon moduletion.

In this paper v first develop the general formelism far erough to
prove the cxistence of steedy current-cerrying stetes in the co%erent phonon
moduleted lsttice. Then ve give en eopromiiete theory which moy turn out
to be more useful in leter evnlicetions of these new concepts 1o the deteiled
theory of' vesistence end suorrconductivity:. The theory of trrrsitions induced
by thermel gerturbetions of the ohonon moduletions is reserved for e leter

osper.,




The steasdy stetes of the phonon moduleted lattice

™o deacribe the combined system, electron plus phonon, we shell use for
the electron, eigenfuncttons uk(q) in en td«el i1ettice with a Femiltonien
H, end eigenvelues Z,, writing e linesr combinetion of these functions for
the electron fector in the combined weve function. <Tor the phonone we
use the normel moden of the lettice. The dieplecemsnt of s let:ice point
at normal position 4 dus to the pt? normel mode ts clessically

Yp(’l) - Ap ot¥pt cos(w p3/L) (1)
where vp is the snguler frequenocy o° the pt“ wodr, £nd *he cosine fector
1s understood to be & product of three cosines, one for esch dimensions of

the crystel of sids L., The coefficients

. iw t
yp(t) - ap ¢ P (2)

are generalized coordinetes for the phonon motinn, and the clessics)l Hom-
1ltonien in terms of thene coordinetes is well known:
2 2 2 2
Honon * }Zpyp * 3’Zp-yp Yo (3)
To be conaistent, the theory must novw treet the phonon part of the problem

a
by replecing *he Heniltonten (%) by en opeator rnd serk its eipenfunctions:

“ohon

“onon ¢ = W2, ¥y ? DARK . (4

The eig~nfunctions for this operetor rre clerrly products 27 the femilier
Hermite polynorial eipenfunctions o” *he alrmple herronic o9ci)'etor, one

for eerch normel ~ode conrdinate, the aipenvelues being sums of (nn})ﬁwps

‘5'1.‘ - " me S D
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d(fnl,fy{,t) = TCan Nl an(,fd—pyp) o 1R EIVE (5)

where ACp = wp/ﬁ end Nn ere normelization constents. Thie funetion

P
depends on all the normel coordinates Ypr and the state is specified by
the set fn} of quantur numherse N, one nurber for esch mode.

Coupling between the electron and phonons is secured through the

phonon modulation of the lsttice potentisl. If the phonon smplitudes

sre not too greet, the potentiel moduletion is proportionsl to the rel-
stive displacements of the lsttice points, so that we masy write for thie

potent irl modulstion:

V e ;Z; Kp Yo sin(w pq/L) (%)

where egein s nroduct of three sinees 18 understood, q is the electron
coordinete, and Yo the normel mode coordinnte that eprenars also in eqe.
(2) = (5). “ote thst V is not e Punction of time explicitly.
The combined Heriltonisn is now
Ho= My o Hyon o+ ¥ (7

end we seels eigenfunctions of this Mamiltonien heving the form

P (fyjrat) = %Z: sCein}t) u (e) o MM grnf sy, 0y (®)

where the "conatents® C(k,fng,t) hsve to be determined. Yriting this

function into the Schrodinger equetion

v g = 1 3P/t (9




end cancelling identicel terms due to the fsct thet the ¢f ers eigenfunctione

of end the u's are eipenfunctions of Hyy one obtains, efter the ueusl

thon

stepe femilisr in the mothod of veristion of conetents:

#d0(j,{m},t) /et = ;212;\ P5nifr]) Uyl V e Biniiy}) T oy,
n} k P

X 2(k$ n'),t) expgi[sj - By o Zp (mp - np)wph]t/h} (10)

where d(jn”y]) etc., meens the function (5) without ite time factor. {
We can seek solutions for the coefficlients of the form
A% fmlt) = C(3,fn}) exp[-2% W(4,fn))t ] (11) |

where o( j,}m}) end N(j,im}) ere oonstente. Ec.(10) then becomes
21(1{% (fﬂ-!ojlvlkofnl) exp{l[.‘:j - E ’g(% - np)ﬂwp}tﬁ.}

- hw(k,}n})skjg’.m”n} c(k,fn},t) - o) (12)

wher~ the V-metrix is en obvioue ebbreviation. Theee equetions ere
8oluble for the coefficiente T in the following wey. First we take sll
the constents (k,fn}) the eams, independent of the stete (k,fn}), cencel
the time Pector of C(k,fns,t) in eq.(12). ‘e then sccept non-zero coef-
ficlente ')(k,sni) only for thoee etetee such thst betwsen sny peir for

which the matrix of V ie not zero, the energy is conserved:

E:j - B % (mp - np)ﬁwp = 0 (13) ‘Q;




£q«(12) for the non-veniehing coefficiente then becomee
2;;2"1 (fmb 3]V[kfr] - ““Sk,8§mgn1 o(k,fn}) = o (12)

This is soluble when W ie one of the eigenvseluee of the V-metrix, and

because the latter doee not contsin time, the solutions ere irdeed ooretsnte.
Inepoction of the V metrix ehows thet it veniehes identicelly unlees

for one and only one normsl mode, the pth, my, = np* 1 or n, - 1. Thie

p

{e because V ie eumned over all the normal modee, while the integretion ie a

product over the modes, esch multiple i{ntegrel contsining as a fector in the

integrand only ons normel coordinste Yo from the pth term {in V. To sstisfy
0q.(135) therefore the atstee j snd k mist be such thet
- - .
By - By > 4w, for eome p (15)
At the seme time, non-venishing {f the V metrix element requires thet the

integrel -
uj(q) ein( pq/L) u,(q) dq =l 0O (18)

These two oonditions sre sufficient in genersl to determine the energise
Ej end %, for eny given mode p. Eq.(15) is of course the conservetion
of energy during electron-phonon interection, while eq.(16) turns out to
be conservetion of rmomentum between phonon and electron.

Ae the eimplest example, we oen form the function (8) from one psir
of Blooh functions, with k end § the wsve nucbere for the eleotron statee.
"he T-zmatrix is then a four-by-four Verwitien matrix with sll ele~ents zero

except those on the anti-diegonel, its eigenvelues turn out to be T V(n,p)

4

oy




whers v(n,p) = (xp/o(.pzi-)(\}&(n NEY (17)

From e clessical point of visw thess sre the emplitudes of the potentisl

wsve (8) heving n quente of ensrgy. If the velocity of propegetion of

phonon weves in ths lettice is ¢, we heve

w, = 2Wpe/L (18)
end the conservetion eas.(15) snd (15) yield*
k = 3p T mlo/m
(19)
i = - I ole/m
vhere m 48 ths s®”ective msss of the elsctron. The positive sipgns

corrsspond to positive ocurrent, the lower signe to nepative current, the

sign of the ourrent being srbitrery. Taking positive current only, there

(-‘ are two functions (8) corresponding respectively to the two eigenvelues of
’_V(n, Pt
- 2 i
W= (/2N By T uy d,) exp(-27 tEt/h) (20)

where E = E + (no %}hwp T ¥(n,p)

= 2 + (n=+le w2 V(n,p) (21)

These functions ere obviously eteedy stetse of ths combined syste} end

their enerriee ere eipenvelues of the metrix H. 1Indeed, once we hevs statsd
the problem in the way we hsve done here, we could heve written down ths
solutions (20} end (21) intuitively. It mey be as well to emphesize egsin

ths essential difference bstween the prssent trsetmont snd prsvious sttempts

¥The vectors k end j slso have to be perallel to the vector p in
weve-number spece to ret this siwple relationship.
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to describe electron-phonon intersctions. For exaomple in Bardeen's theory

of superoonductivity (1) the elsetic weves were thought of simply es time
dependent perturbetions of the lattice potentisl, the lettice pointe being |
treeted cleesicelly end sctually performing the oscillstory motion of a
point in the cleesioel eimple hermonic feshion. Likewiee Fr8hlich (2),

elthough he recognized the fundsmentel imoortaence of the resonsnoe between

sleoctrons end phonone ss euch, sleso eccepted the cleseeicel plcture of the
vibretionel perturbetions, snd used the trensition probsbilities (i.e.
emiseion wetrix) calculested in the stenderd feshion from time~dependsnt
perturbstion theory. In the preeent psper we have instead treated the
normel coordinetee of the lettice vibretione quentum mechenicslly, eso thet
inatend of s clesslioel point motion we heve e weve function for esech normal
(”) mode ooordinete. . pure phonon state of the letiice now Le represented not
by a pattern of clesssicel motions of the lettice points, but by e epectrum of
weve functlione, one to eech normal coordinste. Fro~ this colnt of view it is
quite neturel that the potentisl intereotion between electron snd phonone
should turn out to he s ssries of poesible eirenveluee rether then a contin-
uous function of the tims.
hs mentioned in the Introduction, the eigenfunctions (20) ere etstee
in which one quantum= of phonon energy pssses back end forth between the
electron end the phonons. it no time cen one give s definite essignment of
enorgy to the electron slone, nor to *he phonon alone; but the to*al energy

\ -
ie fixed ell the time and the astete is steady, ite normalizetion being 2
‘:
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independent of time. Thsre {s & similer atete for eech normsl mods of
the 1lattics, snd esch such stets ie quite indspendent of ths excitetion
of the other normsl modss of ths lesttice. This laet point 1s of course
ossantial to the whols ergument: it erisse fromr the orthogonslity of the
oscillator wave functions used for setting up the V-metrixxin eo.(1/), snd
is schisved only beceuss we hsve used e completely quentum mechenicel
treatment of the phonon modes. In e cleseicsl tr~etment of the phonon
perturbstions one could concelivsbly schieve e steedy stete of en slectron
in 8 phonon stste coneisting of ons single exoitsd mods, but the preeencs
of other modes - eve.n if only in thsir lowest zero-point ensrgy ststse,
would conetitu%e sn additional time-—dependent perturbstion end dsstroy the
oripginal stete.

In the preesnt theory ths etsts of s combined slectron-phonon system
could bs formed from sny lineer combinetion of functions such es (20) with

one funotion to ssoh normel mode:
- A 22
I -39, @
A etats of zero nst current is obteined if both solutions (both signe)
snd the corresponding functions edded for sech mode. The nst current in

any ons etate like (20) is sesily shown to bs s meen velue between ths

currents corresponding to the electron ststes u, end “j N

——————
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idigbetic /pproxiuetion using Wennier Functions

By contrest with the foregoing exect end completely quontum mechsnicel
tresastment we now preeent an epproximate diecussion of the electron elone 1in
e time-psrturbed lsttice potentisl, using the Wennter functione (2) for the
unperturbed ststee of the electron in the lsttice. The dif“erence dbetwsen
the spproximate theory end the exact treetment serves to bring out more
etrongly the significance of the latter.

From the Blooh moduleted free-electron weve functions u,(q) we form

the Wennier function over one Bloch zone:
U(q 2 ) - N-%%,-tkq,uk(q) o-1E, LA (2%)

vhere Q‘s ie the position of the Pth lsttice point. We now conaider the
perturbation potential due to the lettice vibretion of e single frequency
v end wavelength 2L/p:

Vp(q,t) - v, sin(™ pq/L) ein wt (2b)
e now make whet might be termsd e quesi-ediebstic approxiretion, and essume
that the verelength ie extremely long compered with the lettice specing, end
replace the potentiel (2L) by the point function

Vp(qp,t) - v ein(w QPp/L) sin wt (25)
definec only in the neighborhood of sny one lettice point. We then form

lineer combinetione of the YWennisr functione with variasble constents

'!

\D - > s U@ e oxP}( 1V, Am) stnfrpay /L) cos “1 (26)
poxy e T TR 7 D 5 oA o
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Ws observs st onoce thst thle function satiefies the Sohrddinger equetion
15 3P - VY - ‘{p(Q,t)\P - rg (27

where Ho is the Hemiltonien correeponding to the unperturbed lettiocs,

end Vp(Q,t) can ﬁow be written Vp(q,t) without sporecisbls error.

The fsct thet the Wennier function U(q,Qb,{k}) hes s ehsrp meximum st

the lsttice point Q‘ permits ths potentisl tsrm to be written in the

form sppesring in 8q.(27) on the preesnt adisbetic epproximation.

The neture of this eolution, (2X), of ths Schrddinger squetion is
oleerly a steedy ststs bscsuse ites squers modulue ie indspendsnt of time.
The snergy however is not independent of time, but osclllet ps with the
phonon frsquency, snd therefors it is not en eigenfunction of the Hsmil-
tonisn. The solution 18 only epproximate beceuee of the step from sq.
(28) to (25), & step thet ie seeentiel to being ebls to operete on (26) by
qo without corsidering the potentiel term in the exponsnt.

The utility of this spproximate solution is thet it permits us to use
the Sleter mathod (ﬁ) of perturbetione with the Wsnnier functions. An
additionel potentlal perturdetion cen now hs superposed on the phonon
potentiel, for exemple & simple potentlial gredient that csn sgein bs trens-
lated into @& point funotion defined only at the lettice points:

Vos -emq =~ -e5q, (28)

snd the perturbed weve function becomes

t
kP = U(q.'zP.ik}) exp%u‘h)j;vp(qf,t')dt' - az'}tt] (29)

=
1
]

B g Jodag - ¢

i

S e R
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We cen now use the Sleter theorem on the coefficlents of this function
snd oaloulste ths current by meens of the formula

e [ (W22 - Teoca)ea whare 5(Q) mens the
exponentisl fector in eq.(29). This current hes two parts, one ths osoil-
letory current due to the Vp term, end thes other a continuslly inoresesing
current of megnitude 85S¢, thus proving that the phonon perturbsd lettiocs
offers no resistance to within the spproximations of the present method.

From the polnt of view of gemerasl theory it is essential to go through
the exect trestment given in the firet part of this paper, po prove that
the phonon moduletion of 8 lattice dose not ceuss resistence; the spproximets
discussion of thie saction however mey yleld importent prectical msans of

applying the theory to sctusl orystels.
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Senclueions

The implicetions of this theory sre feirly obvioue end quite far
reeshing. The underetending of muperconductivity ie tied up with the
need for e revision of the theory of reetstence. The pure coherent phonon
statee hevs no resietsnce. The rendox trensitione emong phonon etetes
induced by thermsl fluctustione do ceuce reeietence. At sufficiently low
temperetures eome of the higher phonon modee must drop into their loweet
stetes with zero-point energy. It is then conceiveble thst under suitable
ciroumstances, the snergy availeble in thermel fluctuetions msy become too
low to exoite these modee from their lowest etates. In euch e case »
reeonence cen occur between electron end zero-point phonon modes, lesding
to juet euch surrent-—cerrying stetee ess described in thie peper. Thie
would not completely explain superconductivity, beceuee the diesmegnetio
problem remeins, dbut it would ecoount for the traneition between normel
and euperconducting etetes.

In previous work (5) it wes speculated that rendom chenges of phsse
in ths phonon weves were receponsivle for melstence, snd that en order-
disorder tresnsition in the pheegs was reeponeible for the treneition. In
the light of the present reeulte it may be thet both phese coherencs end
absence of energy chsngeas emong some of the phonon modes sre needed for
euperconductivity. In sny cese consideraeble light will be csst on thie
question by e deteiled diacussion of trcneitions emong the phonon

moduleted electron stetes, snd this will be undertsken in & later paper.
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