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ABSTRACT

A large number of the Chapman and Cowling collision integrals

have been calculated for gases obeying a modified Buckingham potential,

€ o a(1-"rm) fon \ ©
@)= |—“Z}x[ - - (?) ] The results are tabulated over a large
temperature range, kT/e& from 0 to 200, and for four values of the
parameter &« , 12, 13, 14, and 15. The treatment was entirely classical,
and no corrections for quantum effects were made. The results should be
applicable to most simple, non-polar gases, and may be used to obtain informa-
tion about intermolecular forces from the observed temperature dependence of
gaseous transport properties.

The second approximation to the thermal diffusion ratio and the
third approximation to the coefficient of ordinary diffusion have been derived
according to the method of Chapman and Cowling.

Evaluation of the potential parameiers for specific substances and
applications of the results will be published later.

* This work was supported in part by Contract N7onr-28511 with the Office
of Naval Research.
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I. INTRODUCTION
The influence of intermolecular forces on the transport properties
of gases is well known, and information concerning intermolecular forces may
be obtained from the temperature variation of gaseous transport coefficients

(1) srd by Chapman' s, Such

by means of the theory developed by Enskog
information is useful in correlating other properties of gases, as well as
properties of the liquid and solid states.

The theory of Enskog and Chapman depends on the following
assumptions: (1) only binary collisions between molecules are important;
(2) the binary collisions are elastic; (3) the intermolecular force field is
spherically symmetric; (4) molecular ~ollisions are adequately described by
classical mechanics. Thus the theory applies atrictly only to monatomic gases
at moderate pressures and at temperatures high enough that quantum effects
are negligible. The extent to which the thearetical relations do not mply when.
conditions (2) and (3) are not met is not yet known(3). However, the theory has

had success in correlating transport phenomena in polyatomic gases, so that

these conditions may not be a severe limitation“).

(1) D. Enskog, Phys. Zeit. 12, 56, 533 (1911); Inaug. Diss. Upsala (1917).

(2) S. Chapman, Phil. Trans. Roy. Soc. (London) A211, 433 (1912); A2l6,
279 (1916); A217, 115 (1917).

In the case of the thermal conductivity it is known that the Enskog-Chapman
theory fails badly when energy may be transported by means of the mclecular
internal degrees of freedom.

(4) S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform

Gasee (Cambridge University Press, Teddington, England “2nd edition, 1952},

p. 7.
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In order to obtain specific infcrmation about intermolecular forces
from transport phenomena, it is necessary to as3ume an analytical form for
the intermolecular potential, calculate from this the Enskog-Chapman
v'collision integrals®™, or "temperature-dependent cross sections', as a
function of temperature and the potential parameters, and evaluate the
parametefs for any specified gas by comparison with collision integrals
derived from experimental measurements. If the theory is correct and the
chosen potential form suitable, a single set of potential parameters should
suffice to describe all the transport properties of the gas, as well as other
properties, such as the equation of state. Except for very simplc and physically
unrealistic potential forms, the calculation of the collision integrals involves
extensive numerical integrations.

The best intermolecular potential used to date for the study of
transport phenornena is of the Lennard-Jones form, with a repulsion term
varying as the inverse twelfth power of the distance of separation between centers
of two molecules, and an attraction term varying as the inverse sixth power of
the separation distance. The collision integrals for this potential have been

evaluated independently by a number of worke rs(s)'(a), and their results have

5
(=) T. Kihara and M. Kotani, Proc. Phys.-Math. Soc. Japan 25, 602 (1943).

(6) J. de Boer and J. van Kranendonk, Physica 14, 442 (1948).

(7) Hirschfelder, Bird, and Spotz, J. Chem. Phys. 16, 968 {1948);
1343 (1949).

(8) 3. s. Rowlinson, J. Chem. Fhys. 17, 101 (1949).
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(9)-(14)

been extensively compared with experiment The results obtained
have not been entirely satisfactory, and the question arises whether this
is primarily the fault of the theory or of an inadequate potential form. That
the Lennard-Jones (12-6) potential is not entirely adequate is shown by lack
of complete agreement between theory and experiment even for the rare gases.
It is the purpose of the present articie to describe calculations of
the Enskog-Chapman collision integrals for a more realistic potential form
than has been used previously. It is hoped that some light mav be thrown on
the reasons for the present lack of completec agreement between theory and
experiment. The inverse sixth power term in the Lennard-Jones (12-6)
potential represents the leading term in the theoretical form for the dispersion
energy, but the inverse twelfth rower is oniy an empirical approximation to
the repulsion energy, and is not expected to be accurate over a large range of

separation distance. There is a considerable amount of theoretical and

experimental evidence which indicates that the repulsion energy is more

- - -

(9a Hirschfelder, Bird, and Spotz, Chem. Rev. 44, 205 (1949); Trans Am.

Sec. Mech. Engrs. 71, 921 (1949).

Hirschfelder, Curtiss, Bird, and Spotz, The Molecular Theory of Gases
and Liquids (John Wiley and Sons, New York, 1954), Chapter 8.

(10) . E. Grew, Proc. Phys. Soc. (London) 62, 655 (1949); K. E. Grew and

T. L. Ibbs, Thermal Diffusion in Gases (Cambridge University Press,
Tedd:ington, England, 1952).

(11) E. R. S. Winter, Trans. Faraday Soc. }_6, 81 (1950).

(12)

i

Z. Whalley and W. G. Schneider, J. Chem. Phys. 20, 657 (1952).

(13) g, N. Srivistava and M. P. Madan, Phil. Mag. 43, 968 (1952); Proc.
Phys. Soc. (London) Ab6, 277 (1953).

(14} Amdur, Ross, and Mason, J. Chem. Phys. 20, 1620 (1952).
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suitably described by an exponential form( 15)_(20)., Accordingly we have
chosen the form

- € [(_‘_ t:oc(l-r‘/rm)“ (EQ)GJ |
=L/ L r ) (1)

where @ (r) is the potential energy of the rnolecules at separation distance
r , =€ is the minimum potential energy, T is the value of r for which

¢ (r) is a minimum, and « is an additional parameter which may be considered
a measure of the steepness of the repulsion energy. 7The next higher term in the
dispersion energy, a term varying as r~8 and representing the dipole-quadrupole
energy, has not been included since the same effect as adding such a term may
be achieved to a good approximation by a variation of the parameter «

(15) C. Zener, Phys. Rev. _31, 556 (1931).

(16) R. H. Fowier and E. A. Guggenheim, Statistical Thermodynamics

(Cambridge University Press, Teddington, England, 1939), pp. 276-279,
291-294, give a summary of the evidence prior to 1939,

(17 R. A. Buckingham and J. Corner, Proc. Roy. Soc. (London) A189, 118
{(1947); J. Corner, Trans. Faraday Soc. 44, 914 (1948).

(18) 1. Amdur, J. Chem. Phys. 17, 844 (1949).
(19} J. L. Yntema and W. G. Schneider, J. Chem. Phys. 18, 646 (1950).

(20) ». Kunimune, J. Chem. Phys. 18, 754 (1950); Prog. Theor. Phys. 5,
412 (1950).
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A typical potential energy curve is shown in Figure 1. A more

easily visualized measure of the steepness of the repulsion energy than «
is the ratio O /rm » where (¢ is the value of r for which ¢ {r) =0 .
Table I gives /rrn as a function of o« ; included for comparison is

O /r for the Lennard Jones (12-6) potential.
m

Table I. Ratio of the low velocity collision diameter, ¢ , to the position of

the minimum, r

S
2 CT/rl_n
12 0.8761
13 0.8832
14 0.8891
15 0.8942
Lennard-Jones {12-6) 0.8909

A potential of the form of Eq. (1) was derived theoretically by Slater and

Kirkwood(zn for the special case of helium, but its use as a semi-empirical

form and its extensive application has been carried cut mainly by thkmgham‘-zz)
(21) 1. G. Slater, Phys. Rev. 32, 349 (1928); J. C. Slater and J. G. Kirkwood,

Phys. Rev. 37, 682 (1931)7
(22} «. A. Buckingham, Proc. Roy. Soc. (London) A168, 264 (1938);
H. S. W. Massey and R. A. Buckingham, ibid. A168, 378 (1938);
Al69, 205 (1938); Buckingham, Hamilton, and Massey, ibid. Al79,
103 ( (1941); R. A. Buckingham and R. A. Scriven, Proc. Phys Soc.
(London) 65, 376 (1952).




Pry

WIS-ONR-1
19 June 1953

6

Fig. 1.

r

A typical intermolecular potential energy curve.
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This potential has the defect that at a small separation distance, Ty e it
spurious

has a/maximum, and approaches minus infinity as r approaches zero. There-
fore Buckingham usually has used Eq. (i) only for r > rm , and for r< T
used another form in which the inverse sixth power term of Eq. (1) was
multiplied by another exponential term to prevent the potential from having

a maximum. However, the maximum occurs at such high energies that it has
little effect on ordinary thermal collisions, and we believe it is preferable

to use Eq. (1) for r> T and to set the potential equal to infinity for

BE L aw b We have called this form a modified Buckingham potential, which

might be referred to as the "Exp-Six! potential.
g P P

II. GENERAL FORMULAS

According to the theory of Enskog and Chapman, the transport
phen,o;nena depend on the intermolecular potential through collisions of single
pairs of molecules, and the only feature of a collisicn which it is necessary to
consider is the angle of deflection, X, through which the relative velocity

vector of a pair of molecules under consideration is rotated by the collision.

The angle X is given by!23) (24}
() . _‘5
X(v,b)=ﬂ-2bf [l-b /r2_ Q(p(r)éuvl] dr‘/rz 7 2
'\
[

(23) E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill Book Co., Inc.
New York, 1938), pp. 115-122.

(24) Reference (9b), Chapter 1.
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where v is the absolute value of the relative initial velocity of the pair of
molecules, b , the collision parameter, is the perpendicular distance between
one of the molecules and the initial line of relative approach of the other, yz
is the reduced mass of the colliding pair, and r. is the distance of closest

approach during the collision, given by

- b*/r2- 29 (00 fuv?- 0 . (3)

I

The reduced velocity-dependent cross sections are determined from X by

w
S (K)= 2[!-- I+1. f(:—cos x)pd/e - (4)

where we have intrcduced the reduced quantities K=/u_vz/26 and /3 =b/r
m

Finally, the reduced collision integrals, which directly determine the transport

properties, are

o0

(!,n)*. ' eal™ [ ok/TE e D)
Q=" e ery ’] /e TR TKK, )

[2]

where T*=kT/e , k is Boltzmann's constant, and T is the absolute

temperature. The cross sections have bean reduced by dividing by T 1_2 =
m

(L)
and the collision integrals are just the () (n) of Chapman and Cowhng(zs),

divided by their values for rigid spheres of diameter I Thus S(E ) (K)

@) .
and L)~ (T*) are unity for rigid spheres.

- - - -

4e3l Reference (4), pp. 157, 160.




WIS-ONR-1
19 June 1953

9
The values of the transport coefficients may be expressed as
infinite series, and higher approximations to the coefficients z2re obtained
the more terms of the series that are taken. Fortunately, the convergence
is rapid, and very few terms are needed. The coefficient of viscosity, TL ,

of 2 pure gas is

2 A 2DK, o
r. & () (6)

where M is the molecular weight, R is the gas constant per mole, and

f 0 represents the infinite series, and is a complicated function of the
collision integrals. The term f 1 is nearly unity, and is a slowly varying
function of T#* ; in Appendix I the expression for the first three terms of f’l

is given in terms of the collision integrals.

The coefficient of thermal conductivity, A , of a pure gas is

Zv
fm QBT (7)

\ .25 (L)é ¢ £

= 32 ™

where Cv is the molar heat capacity at constant volume of the gas, and f;\
ie a term similar to f 7 - The first three terms of f , 3are given in terms
of the collision integrals in Appendix I. The formula (7) does'not take account
of the large amount of energy transported by the internal degrees of freedom
of the molecules, and thus applies only to monatomic gases. An approximate

correction for this extra energy transport may be made by multiplying the
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right hand side of Eq. (7) by the "Eucken factor"(26)(27)(28),

which is usually
taken to be (9 ¥ /10 - 1/2) , where Y is the ratio of the constant pressure heat
capacity to the constant volume heat capacity of the gas. Ne exact method for
making this correction has yet been worked out.

The coefficient of mutual diffusion of a binary mixture of gases of

types 1 and 2 is

Dti(M,+M: 2RT>3 fo

v n (rm)fl Q‘,'_:L"*tr*) (8)

where DIZ is the mutual diffusion coefficient, Ml and MZ are the molecular

weights of the species 1 and 2, and n is the fotal molecular density. The
subscripts 1, 2 refer to an interaction between a molecule of type 1 and one

of type 2. The term fD is a very complicated function not only of T¥* , but
also of Ml 5 MZ , and the composition of the diffusing mixture. The dependence

of DlZ on the composition is entirely contained in this term, as well as the

dependence of D12. on 1-1 and 2 -2 molecular interactions. The third

approximation to £D is given in Appendix I. It seemed worthwhile to extend

» axnressiong for the diffusion and thermal diffusion coefficients to one more

(26) A. Eucken, Phys. Zeit. 14, 324 (1913).
(27) Reference (4), pp. 237-240.

(28) Reference (9b), Chapter 7.
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approximation than has previously been used for a realistic interrnolecular
potential, inasmuch as there is evidence(29) that the lower approximations
might differ from the limiting theoretical values by amounts greater than the
error involved in determining the quantities experirnentauy. The expression
;or the self-diffusion coefficient, D . , is obtained from Eq. (8) by setting

11
Ml = Mz and deleting the subscripts 1, 2.

-

The general expression for the thermal diffusion ratio is quite

complicated, and for computational purposes is perhaps best expressed in the

.- x

- * ae .

‘determinant notation of Chapman and Cowling. In this form, the expression
for the m-th approximation to the thermal diffusion ratio, [ kT] m* of a

binary mixture is

: " 1
[k ] N x'.ﬂgo:’n)( M_;_N'M"a)i:&+ x&ﬂ:_':l)(ﬂ_;_miq_i_)/a
Tim 2‘2}5;-- } e:" J’za(:” ? -

g (m)
where x; and x, are the mole fractions of the two components. az¢ is

a determinant of (2m + 1) oxder, whose general term is aij , where i and
’ (m) (m)

j range fromm -m to m . 02{.1. is the minor of ¢  obtained by

striking out the row and col. mn containing aij . ThLi? elements a.ij are

functions of the collision integrals (1! & »2)*, the molecular weights of

the component gases, zud the composition of the mixture. The expressione

for the a . for m - 2 are given in Appendix I.

o

(29) Reference (4), pp. 169, 196.
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For binary mixtures of heavy isétoPes, where the force = between
the difierent molecular species are the same, Eq. (9) may be put into a
simpler form by expanding the determinants in powers of the small quantity
(M1 - MZ)I(M1 + MZ) , and keeping only the first power. To this order of

approximation,

(10)

where [k}"I“]m is a reduced thermal diffuszion ratio, and is a function of the
reduced temperature alone. Since the expression for [k;] - in terms of
the collision integrals is. complicated, it is placed in Appendix I. We prefer
the function k; to the more frequently encountered . R , for reasons which
.are discussed in detail at the end.of Appehdix I. The two functions are very
simply related: R = (118/10{5) ,k",l‘,

For mixtures of gases, the following three ratios of collision

integrals occur frequently:

(.1_:2)*/ G, 1) %
A% = Qla .Q‘:

2

. O,k (,3) (L) %
B*: {5\.()..!2 'q’ﬂ‘a ]/n12 ; (11)
(‘)2)* (l,l) *
*x =
& ¢ 12 /ﬂ 2

These quantities are equal to unity for rigid spheres.
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III. NUMERICAL CALCULATIONS

The first step in the evaluation of the collision integrals is the
calculation by numerical integration of the angle or deflection, X , as a
function of v, b, and the potential parameters. Eq. (2) i8 inconvenient
for numerical computations because the integrand becomes infinite at the
lower limit of the integral. This singularity may be removed by substituting
into Eq. (2) the value of b from Eq. (3), and making the change of variable

g8in 8 = rc/f; after which Eq. (2) may be rearranged into the form

2 ' - - y/sing\y~ 2
=1 - E : [l— S'ln26+5.n¢9 . (o )€™ (euys.mze _e /s:ne)] i
d K(-6/a)y® — K(-a) cos?e (12)

where y is the reduced distance of closest approach, rclrm , and ﬁ is the

reduced collision parameter, b/rm , given by

O-y) %
Rl e e y“;-c)]”. (13)

The integration in Eq. (12) was performed numerically, the integrand being
evaluated at intervals of 8 = T /60 in cases where the integrand varied
rapidly with 6 , but otherwise at intervalsof 6 = 1m 20 or 17 /12,
depending on the behavior of the integrand. The integrand in Eq. (12)
becomes indeterminate at 6 = 11 /2, but may be shown by L'Hospital's

Rule to approach the limit '

w(1-y) 3
A S0 ¢
e . 2

& wy N
l,—K("EHG " K(1- &) <2 ,)J (14)
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The numerical integration of Eq. (12) was sufficient to determine X to a few
ten -thousandths of a radian. Values of X. , together with the corresponding
values of /3 , have been tabulated as a function of y and K for « =12,
13, 14, and 15; the length of the tabulations prevented their publication
in the present paper(30). The tabulations cover thirteen values of K for
each value of o , as in Table III, and an average of about 20 values of y for
each K . The size of the intervals on y varies from 0.005 to 0.40, depending
on the behavior of X , and was chosen so as to obtain an accuracy of 0.1
percent im the integration for S( L )(K) :

The culculation of X was complicated by the fact that for some
collisions which occur at less than a certain critical energy, Ko , the
molecules may *'orbitlt around each other for an indefinite number of
revo utions, and X consequently tends to minus infinity. Such orbiting
collisions have been discussed in connection with the Lennard-Jones (12-56)
potentia}(7)(14) , and the same general behavior is observed with the present
potential. For energies equal to or less than Ko » there is a critical value
of beta, /3s » for which orbiting will occur. There are two values of the
distance of closest approach, y , which correspond to /3 o} values of y
between these two critical ones cannot occur physically. The larger vy,
designated as Y, will cause the integrand of Eq. {12) to become infinite at

the upper limit, so that the value of Yo may be determined by numerical

0)
(30} Multigpphed tables may be obtained from the author on rzguest.
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solution of the equation
al1- yo)

- 2 - (6/x)e
K(I- o/«)yo" K(1-¢/u)

( LY -1)-0, 09

which is ebtained from Eqs. (12) and (14). The value of ﬂ may
o
be found by substituting the value of v, into Eq. (13) and solving. The
smaller value of y , designated as y, , also satisfies Eq. (13) with £ = 8 ,
. o

and may be calculated in this way. At y =y  the integrand of Eq. (12) becomes

1
infinite for (P = arc sin(yllyo). Between y = e and y = Yy there are two
values of y which give the same 4 when substituted into Eq. (13), but
these values are without physical significance. Values ef /30 s ¥ , and y
o
for several values of K are given in Table Il; y and yl become equal at
o
K=K .
o
For small values of X , it is useful to have the asymptotic

series, valid for large values of y:

o

z - - 15T [ | _ 58571 |
16 K(i- /) y© 102% K(i-t/x) y©
. 1 (16)
(- 7
K(1-6/¢) 2/ N g"'_‘]’ -2("‘)’)2 ] ’

which was obtained by the method of Amdur and Pea.rlmem(?'l).

— — - e

(31) 1. Amdur and H. Pearlman, J. Chem. Pkys. 9, 503 (1941);
I. Amdur, J. Chem. Phys. 15, 482 (1947).
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Table II. Conditions for orbiting.
Lo K ﬁl’ \/o y,
12 .4 .7916 . 4468 . 9694
=.78101 . 5835 . 1849 1.1849
13 -4 . 7716 . 4353 . 9649
.8 . 5636 . 2098 1.1076
= .82691 5530 . 1708 1.1708
14 -4 . 7555 . 4253 .9621
.8 . 5530 . 2209 1.0710
= . 86809 . 5281 . 1594 1.1594
15 .4 . 7421 . 4166 . 9604
.8 . 5437 . 2248 1.0504
= .90530 .5075 . 1498 1.1498
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To evaluate the cross sections S( 2 )(K) defined in Eq. (4), the

integration variable was changed frorn/ﬁ to y , and Eq. (4) transformed to

oo x(1-y)

(L) 2 1. 2 (9 )e o oLy } i

S (K)- W—] f("cos ")[" K(I-G/az)y4+ K (- 6/x) (?">Jy°y’
< s d Ye

{17

where Ye is the value of y for which # =0, and represents the reduced
distance of closest approach for a head-on collision. Most of the integration
could then be carried out numerically, using the values of X tabulated as a
function of y for a given K and &« . To avoid the necessity of calculating
accurate values of T from Eq. (13), the numerical integration was started
from a lower limit Y which was slightly greater than Y. ¢ and the integration
from Yo t© Yu executed as follows. Eqs. (12) and (13) were differentiated

to form (dX /d A ) interms of X and A for the limitof 4 — 0.

Solution of the resulting differential equation then showed that X varied linearly
with /3 when /3 was near zero, so that the integration from Ve to yA could be
performed analytically. The equations obtained {Gr these small contributions

to the cross sections are:

2 2
aw 2 98, D'BA n {1 -
A \K)-ﬁA -(.“"XA)l [l- cos(n-xA)]»(——-n_xA sin{n XA‘)7
A A
@y, 3473 _La =g - X }-3--—‘_ sin 2(m-
AT 3B, * g (n—xj[' cos 2(m-X )|~ 2 =3 moa(r-%,)

(18)
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3) 2 ) ﬁA 3 A _
AKI=A - — i—cos3(m-X, )| -2 LA b o cosim 18
/QA '€ ('.T-XA)1 [' ( A)] 2 (W-XA)”L cos(m XA)}
2 2
A A
1 A 3 P 3 s :
*eoa-x, ST LONES X, sin(1-X,) |

I- cos 4(11-7(‘)]

4

2 (18)

5 A 5 ,82 . {cont.)
B e g - CoS 2{f- - = -
e (TT_XA)Q_[ @S2 XA)] " X, Sin 4 (1 XA)
2
5 B o
—-— -— n .
8 m-X S X\,

where the A( 1 )(K) are the contributions to the S( 'Q)(K) for the range Ye
to y,,and S , and X.A are the values of A and X corresponding to
Ya The numerical integration of Eq. (17) when no orbiting occurred

(K > Ko) was carried out from yp to Vg where Yy Wasa large value
of y , and the remainder of the integration, from Vg to infinity, carried
cut by substitating the small angle formula, Eq.(16), into Eq. (17), expanding

(1 - cos 1 X ), and integrating analytically to yield:
nt 2’

L 1+ () = ‘E."_T 2 ol (e ( 3
.Il[ |- .'L i ]F (K) = ( 1% ) y:[:lo(K(i—c‘/u)yz) -g‘z_i.\m‘:/&)yz)]

- 3
E (1_5_"._1\(6/04)6¢¥ %/ an Y[, A NN 1 i
6] K(1- /) 5}2 fuy,  3alay)? ] 5

where F(JZ )(K) is the contribution to S{Z )(K) for the range Vg to

infinity.
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When K 1is equal to or less than the critical energy for orbiting,
Ko , numerical integration of Eq. (17) cannot be carried out over the entire
range from Y, to Vg because: (1) the region from Y, to Yo is physically
inaccessible, and in fact X is imaginary there; (2) the integrand oscillates
violentiy near Yi and Vo where X goes to minus infinity. For
K < K the integral from Yo to yp was therefore broken up into four
integrals: B{A)(K), c'4)k), DIL)(K), and E'L)(K) . The integral
B(l)(K) extended from %n to yB » Where Yp Was slightly less than Yl .
and was evaluated numerically. Similarly, the integral E( 2 )(K) extended
from Yp » where YD was slightly greater than Yo , to YE , and was also
evaluated n;J.merically., The integrals C( ““(K) and D( 2 )(K), cavering
the regions Yp to v, and Yo to Vp respectively, were calculated by the
method of Hirschfelder, Bird, and Spotz(7) , in which X is represented
near the regions of orbiting by equations of the form
X+ const. /(A0
o »

(20)

and Eq. (4) is integrated analytically between the proper limits. The results

of this integration are:

S
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¢RI (B p ) [1- cosNg+ Xy s Xg X Ci (- X,)] 20
.(2)( _3 2 2 I’ : . 2 =

- =g (8-, L 1 Cos X+ AN SN 2N 4K, ci(-QXB)J )

r

8
1/ ,2 ,2 - .
C () (A, ) | 4- cos3X - 3CosXy+ 3Ky 53X,

8 _ 3 , N 2
* 3Xpsin Xy I, C (—SXB)-axB Ci (-xg)

e

(21)

& 5 EIEA © .
C - 3_9_(/30 “fa ) 5 - cos 4XB— ¥ cos 2X5+4.7(B Sin ¥ X

#8 Xy sin 2Xg =16 X; Ct (-‘-4XB)

—16 Xy Ci(-a%,) ;

L

where /SB and X . are the values of A and X correspo:nding to Vg » and

Ci(- X B) is the cosine integral, a tabulated function(32), defined as follows:

oosd
Ci () f cost
| = dt . (215)

The D'L)NK) are of the same form as the c!)(x).

.Y - by
The cross sections S'% /(K) are not convenient to use directly,

since they vary rapidly when K is small, and tend to infinity as K goes to

(5) .

zero. Kihara and Kotani have shown that in the limit K — 0 , the cross

32

(32) Federal Works Agency, Work Projects Administration for the City of
New York, Tables of Sine, Cosine, and Exponential Integrals, Vol. II
(1940); Table g_f_S'me and Cosine Integrals (1342).
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sections are independent of the potential energy of repulsion, and depend on the
attraction energy alone. From this it is easy to show that the S(2 )(K) are

] -1/3

proportional to [K(l -6/w) for K—0 ; we therefore define the

functions R(Q )(K) :

1/

R k) = [k - 6ra)] st (22)

which are given in Table III , and plotted for & =12 and 15 in Figure 2 for
the two most important cases, £ =1and 2. For comparison, the analogous
functions for the Lennard-Jones (12-6) potential are also plotted. Since

R( 1 )(0) is independent of the repulsion, the values given in the table for | =1
and 2 were taken directly from Kihara and Kotani(s) . For ) =3 and 4,
the values of R( ! )(0) were obtained by extrapolation, a procedure which is
permissible because these functions occur in the expressions for the transport
properties only as correction terms.

For use in cvaluating the collision integrals, the cross section

functions were approximated by the following algebraic expressions:

) (L) w3

RT(KY=R (0)(1+a, Kafal K™ ), 0sKz< 08 ;
(e @ -1 &) -2

Sw(K)= Q(;)K2+ Q+)K+O.5 )*aé K +a, K | 08<K £ 2,

w
9

Q) 0 Y I C I
e (K)=a8K+a' +Q;0K Fa,K 2
3
) ) W o W o-a W, (23)
S (K)o A K+ K s0, KT f

S—————
b
A
x
N
=

-L \
) w w3 M .3 10 K < o0 .
SK)= Qpp + 0K 4 QK+ aK? , \
|
l
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Table III. Cross section functions, R( p)(K) .
R‘Iqu
K e 12 13 14 15
0 1.5778 1.5778 1.5778 1.5778
0.4 1.5701 1.5588 1.5495 1.5490 |
0.78101 1.5327 '
0.8 1.5280 1.5277 1.5275
1.0 1.5178 1.5297 1.5320 1.5282 |
1.2 1.4083 1.4392 1.4566 1.4811 |
1.6 12271 1.2714 1.3027 1.3282
2 1.1336 1.1743 1.2073 1.2350
3 1.0361 1.0805 1.1177 1.1509 |
4 1.0119 1.0613 1.1018 1.1366
5 1.0109 1.0626 1.1070 1.1443
10 1.0646 1.1297 1.1865 1.2356
20 1.1546 1.2401 1.3107 1.3769
50 1.2824 1.4032 1.5069 1.6000
100 1.3676 1.5226 1.6579 | 1.7811
R}ZNIQ
0 1.7865 1.7865 1. 7865 1.7865
0.4 1.7923 1.7936 1.7985 1.7980
0.78101 1.7991
0.8 1.8001 1.3060 1.8045
1.0 1.8357 1. 7864 1.7959 1.7984
1.2 1, 8041 1.8727 1.8627 1.8304
1.6 1.8344 1 8688 1.8826 1.3918
2 1.6926 1.7333 1. 7587 1.7726
3 1.4442 1.4921 1.5288 1.5621 |
4 1.3418 1.3870 1.4305 1.4619
5 1.2986 1.3489 1.3918 | 1.4274
10 1.3051 1.3676 1 4200 | 1.4689
20 1.4141 i 1.4972 1. 5605 1.6272
50 1.6063 1.7233 1.8294 1.9171
100 1.7599 1.9129 2.0461 2.1613
| |
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sections are independent of the potential energy of repuision, and depend on the

attraction energy alone. From this it is easy to show that the S( 2 )(K) are
: : -1/3 .
proportional to [K{l -6/« )] for K—0 ; we therefore define the
functions R(‘Q )(K) g
1/3
RO = [k - 6/00] Pk, (22)

which are given in Table III , and plotted for & =12 and 15 in Figure 2 for
the two most important cases, 1 =1and 2. For comparison, the analogous
functions for the Lennard-Jones (12-6) potential are also plotted. Since

R( 4 )(0) is independent of the repulsion, the values given in the table for ] =1
and 2 were taken directly from Kihara and Kotani(s) . For J =3 and 4,
the values of R( 1 )(0) were obtained by extrapolation, a procedure which is
permissible because these functions occur in the expressions for the transport
properties only as correction terms.

For use in evaluating the collision integrals, the cross section

functions were approximated by the following algebraic expressions:

L

) ) 5w 3
R (K)=R (o)(H»a, K +ta, K ), osK< 08

() @,2 (@ ) (@ -1 ) -2 '

S (K)=a3)r< tay Kvag ra, K +a, K 05<K < 2,

) 0 Q)] QI R Y

S (K=a, K+a, +a,,K +a,k

24K <10 (23)

W W W o o g

ST(K) . 0y faqK +a, K v, K >£¢’)

@ w5 W -3 B e

) ) V2 s
S (f‘f):a11+u‘laK + Oy Ko+ a‘lSK"'L

7
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Table III. Cross section functions, R( Q’)(K) . Continued
rR3)K)
K = 12 13 14 15
0 {1.8236) {1.8236) (1.8236) {1.8236)
0.4 1.8115 1.8005 1.7938 1.7987
0.78101 1.7831
0.8 1.7749 1.7821 1.7745
1.0 1.7796 1.7833 1.7778 1.7797
1.2 1.6788 1.6930 1.7042 1.7285
1.6 1.6121 1.6333 1.6433 1.6595
2 1.5325 1.5665 1. 5884 1.6151
3 1. 3587 1.4012 1.4376 1.4692
4 1.2689 1.3167 1.3557 1.3934
5 1.2256 1.2776 1.3206 1.3574
10 1.2222 1.2875 1.3447 1.3893
20 1.3151 1.3993 1.4632 1.5363
50 1.4922 1.6047 1. 7045 1.7928
100 1.6115 1.7641 1.8980 2.0141
0 (1.9100) (1.9100) (1.9100) (1.9100)
0.4 1.9335 1.9208 1.9225 1.9274
0.78101 1.9345
0.8 1.9178 1.9221 1.9586
1.0 1.9330 1 9191 1.9065 1.9107
1.2 2.0278 1.9948 1.9907 1.9674
1.6 1.9600 1.9878 1.9770 1.9983
2 1.3895 1.9176 1.9300 1. 9258
3 1.6584 1.7026 1.7363 1.7663
4 1.5197 1.5623 1. 6045 1.6348
5 1.4433 1.4941 1.5328 1.£705
10 1.3868 1.4514 1.4987 1.5488
20 1.4838 1.5670 1.6252 1.6893
50 1.6931 1.8089 1.9105 1.9954
100 1.8636 2.0136 2 1450 2.2558
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This curve-{itting procedure effectively permits the extrapolation of the

(L)

(K) to infinite K , which is necessary because the potential energy
function CJO {r) of Eq. {1) misbehaves for very small values of r by
becoming negative.

The final integrations with respect to K to obtain the collision
integrals defined in Eq. {5) could be carried out by replacing S( L )(K) in
Eq. (5). by the algebraic expressions obtained from Eqs. (22) and (23).

For K > 0.8, the resulting integrals could be easily evaluated in terms of
elementary functions and error integrals, which are tabulated functions. For
K < 0.8, the integrations were performed numerically for large T#*, where
this region did not contribute greatly to the result, and for small T* by
means of in complete gamma functions tabulated by Kotani(33), In practice it
turned out to be easier also to integrate numerically for K > 0.8 when T*
wasg large. For numerical integrations, algebraic expressions in Eq. (23)
were used only as interpolation functions to obtain values of S( ¢ )(K) at
small intervals of K.

The collision integrals are not especially well suited to tabulation
because their rapid variation for small T¥ makes interpolation difficult

unless the tabulations are made for small intervals of T¥. A more suitable

function for tabulation is

Z(Q,n) 1/3

(T#j = [ T#(1 - 6/} ol gy (24)

33 )
33) M. Kotani, Proc. Phys.-Math Sac. Iapan 24, 76 (1942).
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This function varies relatively slowly with T¥*, and unlike \Q,( L, n)*(T*)
is finite and independent of the parameter X when T¥* =0 . The functions
Z( L n){T*) are tabulatec in Table IV for T¥ from 0 to 200 . The inherent
computational error 1s estimated to be of the order of 0. 2 percent, except
for very small T* , where it may be as large as one percent. To maintain
iniernal consistency, more figures are given in Table IV than is strictly
justified by the estimated error. The reason for the lower estimated accuracy
at small T* is that the cross section functions R( 2 )(K) seem to have an
oscillatory behavior when K is small, but no attempt was made to follow this
behavior in detail since many calculations at closely spaced values of K would
have been necessary. The labor involved did not seem worthwhile, particularly
since the neglect of quantum corrections at low K is probably a much more
serious error.
IV. ADDITIONAL TABULATIONS

In Table V are presented the functions, f , which give the higher
approximations to tlie transport coefficients for pure gases; the superscripts
indicate that these are the third approximations rather than the exact values.
The function fD for a pure gas refers to the coefficient cf self-diffusion.

The second approximation to the reduced thermal diffusion ratio for
a binary mixture of heavy isotopes, [k}] 2 » is given in Table VI as a
function of T* , and plotted in Figure 3 for « =12 and 15. For comparison,
the function [k;-ljl for the Lennard-Jones (12-6) potential, as calculated by
the method of Chapman and Cowling. is also shown in Figure 3. It is of interest

* =F ; .
to note that [kT] . 18 always positive for 2 = 15, showing that there is no
L
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inversion temperatvre when the repulsive portion of the potential ¢ (r) is
steep encugh.

Table VII gives the values of the ratios A¥ , B* , and C*
which ocecur in the expressions for the transport properties of mixtures
The dimensionless group £ D11/ 11 . frequently encountexed in kinetic
theory, is given by (6£D/5£n JA*

Experimental viscosity results are often expressed by an equation
of the form

N =eT ™, (25)
where ¢ and s n are supposcd to be constants for a particular gas. The

temperature index, =, , is seen to be given by

I

8q = d 1ogTI /d logT. (26)
The temperature index has tie folilowing physical significance: if the
intermolecular potential were of the form 9 (r) = const. /r . , then s n
would be constant and equal to [ 1/2+2/(v - 1)] . We can investigate the
behavior of s,l for the potential given by Egq. (1) by requiring that the values
of ‘Il and dﬂ{ /dT determined from Eq. (25) agree with those from Eq. (6)
at a given temperature. 1In this way we find that sYI {8 not a constant, but
the following function of T* :

23)"

40 dloqfl
R dlog T 7

(27)
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where we have made use of the recursion relation
any* (L net)®
d lO Du ' / !
e — ey (S
dlho (G : (28)

Another common method of expressing experimental viscosity results is by the
Suthe rland equation,
L
e T
L Sy/T Z (29)

where c¢' and S,l are supposed to be constants for a particular gas. This
equation is based on the physical model of rigid spheres which have a weak
attraction for one another. The physical significance of the Sutherland

constant, S » is that it 18 proportional to the potential energy of two such

1

spheres when in contact. We can find the dependence of S on T#* in the

2

same way that the behavior of sTl was found; it iz

(2,3 )% 2,3

Sa 4<_ 1) )glﬁ_‘s‘_l ["“(" G >+ dlog §¢
—r._l.: - —W/ d‘O(} T\* : n(ﬂ,l)* d'()% T* . (30)

An entirely analogous result holds for the coefficient of thermal
conductivity, A . The expressions for s s and § /T are the same as
given in Egs. (27) and {30), respectively, except that f.,] is replaced by f )

- In a similar way, we can define a temperature index for seli-
d%ffusion,

=d .
55 log D“/d log T, {31)
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and a Sutherland constant for self-diffusion.
o
TR SD/TT t52}

Iif D, in Eq. (31) is expressed at constant density, we find that the temperature

index 5p is the following function of T¥* :

(I,:()*
30 d log &D

- —_—

1
s, =32 T g™ dlog 75 . (33)
For the Sutherland constant SD/T we obtain
C1,2) %

S _ Q d!oq%o '| '_Q,(":)* . d \oq S’D
—D [3(" \(),(l")*_>+ dfo(tT*J ["3(" ﬂ(l,l)*) d ‘0‘}1'* 7 (34)

independent of whether D11 is expressed at constant density or constant
pressurc,
Values of the temperature indexes for viscosity, thermal

conductivity, and self-diffusion were calculated from Eqgs. (27) and (33)

neglecting the terms involving { , and are given as a function of T#* in
Table VIDA. The error ihitroduced by neglecting the terms in f ig in all

cases less than onpe percent. In Figure 4A is plotted 8. Vs. T* for

X =12 and 15, together with the cozresponding rsYL for the Lennard-
Jones {12-6) potential for comparison. Values of the Sutherland constants
are given in Table VIIIB, and plotted in Figure 4B for o« = i2 and 15,
and the Lennard-Jones (12-6) potential. The neglect of the terms involving

f in the calculations of the Sutherland constants introduced an error of less

than one percent.
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Numerical values of the potential pararmeters of Eq. {1) for a
particular gas may be calculated by comparison of the experimentally
determined values of S/T or s with the theoretical values in Table VIII.
Caution must be exercised if this proczdure is used, however, because
incorsistent results may be obtained unless the experimental quantities are
calculated in the same way as the theoretical quantities were; that is, from both
the temperature derivative and the numerical value of the transport coefficient

at 2 given temperature.
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z n)%
ARG E LIRS Ao R b EEkie
=12

T z(1, 1) z(1. 2) zii, 3) zil. 4) z(1. 5) 7(3, 3)

0 1.1870 1.0551 0.9672 0.9027 0.8572 1.1178
.1 1.1911 1.0523 0.9584 0.8883 0.8320 1.1079
a2 1.1662 1.0142 0.9025 0.8113 0.7338 1.0704
.3 1.1243 0.9515 0 8232 0.7239 0.6475 1.0161

4 1.0750 0.8900 0.7597 0.6667 0.6005 0.9641

.5 1.0282 0.8402 0.7160 0.6328 0.5764 0.9194
.6 0.9873 0.8025 0.4870 0.6131 0.5643 0.8828
" 0.9530 0.7745 0.6679 0.6019 0.5589 0.8536
.8 0.9248 0.7538 0.6555 0.5959 0.5572 0.8305
.9 | 0.9016 0.7387 0.6475 0.5930 0.5576 6.8125
1.0 0.8825 0.7272 0.6425 0.5923 0.5593 0.7985
1.2 0.8541 0.7130 0.6385 0.5942 0.5646 0.7793
1.4 0.8350 0.7058 0.6388 0.5985 0.5711 0.7684
1.6 0.8221 0.7028 0.6414 0.6039 0.5779 0.7625
1.8 0.8135 0.7025 0.6451 0.6096 0.5845 | - 0.7601
2.0 0.8080 0.7037 0.6496 | 0.6155 0.5910 0.7600
2.5 0.8023 0.7104 " 0.6A16 - 0.629¢ 0.6059 0.7654
3.0 0.8031 0.7195 C.6735 0.6425 0.6180 0.7746
3.5 0.8070 0.7288 0.6847 0.6541 0.6305 0.7853
4 0.8126 6.7382 0.6950 0.6644 0.6404 0.7963
5 0.8253 0.7556 0.7129 0.6819 0.6572 0.8174
6 0.8384 0.7709 0.7280 0.6962 0.6705 0.8364
7 0.8509 0.7842 0.7409 0.7081 0.6817 0.8533
8 0.8623 0.7961 0.7520 0.7i85 0.6912 0.8680
9 0.8730 0.8067 0.7618 0.7272 0.6993 0.8813
10 0.8829 0.8160 0.7702 0.7351 0.7066 0.8929
12 0.9002 0.8322 0.7848 0.7485 0.7189 0.9133
14 0.9150 0.8457 0.7969 0. 7594 6 7292 0.9301
16 0.9280 0.8572 0.8074 0.7690 0.7380 0.9444
18 0.9394 0.8674 0.8164 0.7773 0.7459 0.9568
Z0 0.9497 0.8762 0.8245 0.7846 0.7530 0.9680
25 0.9710 0.8951 0.8415 0.8007 0.7682 0.9910
- 30 0.9885 0.9103 0.8555 0.8138 0.7808 1.0094
35 1.0032 0.9232 0.8674 0.8253 0.7921 1.0250
490 1.0157 0.9346 0.8781 0. 8355 0.8021 1.0385
45 1.6270 0.9446 0.8876 0.8450 0.8114 1 9508
50 1.9371 0.9538 0.8965 0.8535 0.8199 1.0614
. 60 1.6549 *7| 0.9701 0.9123 0.8691 0.8355 1.0807
70 1.0700 0.9846 6.9264 0.8827 0 8495 1.0978
80 1.0834 0.9973 0.9388 0.8957 0 8622 1.1129
90 1.0959 1.0091 0.9504 0.9074 0.8743 1.1265
100 1.1071 1.0201 0.9615 0.9184 0.8853 1.1391
. 200 1.1906 1.1038 1.0462 1 0049 0.9729 1.2356
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Table [V Collision integral! Functions continued

o«L=12
T 7(2, 2) zt2. 3 712, 4} 202, %) 7(2, 6) 7 (4. 4)
0 1.1947 1.3951 1 0221 0 9706 0.9193 1.0927
.1 1.1983 1.1002 1.0231 0 9750 0.9323 1.1062
.2 1.2098 1.1094 1,0401 0 9770 0.9188 1.1119
-3 i.2065 1.0936 0.9978 0.9129 0.8381 1.0843
1 1799 1.0471 0 9367 0.8453 c.7711 1.0360
5 i.1421 0.9974 0.8835 0 7953 0.728¢ 0.9870
.6 1.1028 0.9538 0. 8428 0.7614 0.7017 0.9450
o 1.8667 0.9185 0.8133 0.7391 0.6862 0.9111
.8 1.0352 0.8907 0 7923 0 7249 0.6775 0.8847
.9 1.0084 0.8692 0 7775 0.7160 0.6731 0.8642
1.0 0.9859 0.8528 0.7673 0.7108 0.6716 0.8488
1.2 0.9520 0.8309 0 7561 0.7075 0.6736 0.8282
1.4 0.9290 0.8189 0.7525 0.7093 0.6790 0.8170
1.6 0.9137 0.8i30 0 7531 0 7139 0.6860 0.8120
1.8 0.9039 0.8111 J 7560 0.7198 0.6936 0.8107
2.0 0.8978 0.8116 0 7604 0. 7263 0.7014 0.8119
2.5 0.8930 0.8189 0 7742 0.7435 0.7202 0.8207
3.0 0.8963 0 8300 0 7891 0 7600 0.7374 0.8331
3.5 0.9033 0.8423 0.8035 0.7752 0.7529 0.8466
4 0.9122 0.8546 c.8171 0.7892 0.7668 0.8599
5 0.9313 0.8778 0.8415 0.8135 0.7906 0.8849
6 0.9503 0.8987 0. 8623 0.8339 0.8105 0.9072
7 0.9681 0 9172 0.8806 0. 8516 0.8275 0.9269
8 0.9845 0.9339 0 8967 0.867G 0.8424 0.9445
9 €.9995 0 9488 0 9110 0 8808 0.85E9 0.9602
10 1.0133 0 9624 0.9241 0 8935 0 8678 0.9745
12 10381 0.9862 0 9469 0 9153 0.8891 2.9998
14 1.6598 1.0068 0 9664 0. 9341 0 9073 1.0213
16 1.0788 1.0248 0.9838 0 9508 0.9236 1.0404
18 1.0958 1. 0409 0.9993 0.9658 0.9383 1.0575
20 1.11132 1 0857 1.0134 ¢ 3756 6.5516 1.0731
25 1.1448 1 0878 1 0441 1.0095 0.9812 1.1070
30 1.1729 1.1145 1.0703 1 0353 1.0067 1.1357
35 1.4976 1.1382 1.0935 1 0582 1.0294 1.1608
40 1.2193 1.1593 1.1143 1 0787 1 0499 1.1832
15 1.2393 1.1786 1 1332 1 0976 1.0688 1.2041
50 1.2573 1.1962 1 1509 1 1152 1.0863 1.2228
60 1.2901 1.2283 1 1826 1. 1469 1.1180 1.2572
70 1.3189 L. 2571 1 2113 1.1756 1.1468 1.2878
80 1.345] 1.2828 1 2370 1.2014 1.1730 1.3157
2 90 1.3690 1 3068 1 2609 1 2257 1.1973 1.3413
100 1.3915 1.3292 12835 1 2481 1 2198 1.3649
200 1.5600 1 4988 1 4547 1 4208 1.3939 1.5470
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Table IV. Collision Integral Functions continued 3%

®=13
e | z(L D | 22 | 21 3 | L4 | L5 | 23 3
0 1.1870 1.0551 0.9672 0.9027 0.8572 1.1178
.1 1.1813 1.0447 0.9528 0.8846 0.8305 1.1020
.2 1.1618 1.0150 0.9084 G.8217 0.747¢G 1.0718
.3 1.1275 0.9619 0.8389 0.7429 0.6681 1.0250
-4 1.0851 0.9071 0.7807 0.6893 0.6236 0.9787
i) - 1.0436 0.8617 0.7400 0.6575 0.6011 0.9383
.6 1.0068 0.8268 0.7129 0.6393 0.5904 0.9048
.7 0.9756 0.8009 0.6953 0.6294 0.5862 0.8780
.8 0.9498 0.7818 0.6841 0.6244 0.5855 0.8569
) 0.9285 0.7678 0.6772 0.6226 0.5871 0.8405
1.0 0.9112 0.7577 0.6732 0.6229 0.5897 0.8279
1.2 0.8854 0.7454 0.6710 0.6266 0.5970 0.8111
1.4 0.8684 0. 7400 0.6729 0.6326 0.6052 0.8022
1.6 0.8573 0.7386 0.6770 0.6395 0.6136 0.7981
1.8 0.8503 0.7396 0.6823 0.6468 0.6219 0.7974
2.0 0.8461 0.7421 0.6881 0.6542 0.6299 0.7987
2.5 0.8436 C.751% 0.7032 0.6715 0.6483 0.8073
3.0 G.8472 0.7637 0.7181 0.6875 0.6643 0.8193
D, 0.8535 0.7757 0.7320 0.7617 0.6785 0.8323
4 - 0.8614 0.7874 0.7446 0.7145 0.0910 0.8454
5 0.8782 0.8091 0.7671 0.7365 0.7121 0.8700
6 0.8550 0.8282 0.7862 0.7547 0.7296 0.8922
7 0.9107 0.8451 0.8024 0.7702 0 7441 0.2118
8 0.9253 0.8601 0.8166 0.7836 0.7568 0.9294
9 0.9389 0.8734 0.8292 0.7954 0.7678 0.9453
10 0.9514 0.8855 0.8404 0.8059 0.7777 0.9596
12 0.9736 0.9065 0.8599 0.8240 0.7948 0.5847
14 10.9927 0.9245 0.8765 0.8394 0.80%4 1.0063
16 1.0096 0.9399 0.8907 0.8528 0.8223 1.0250
18 1.0247 0.9537 0.90324 0.8648 ©.8337 1.6417
20 1.0384 0.9659 0.9147 0.8754 0.8440 1.0569
&5 1.0674 0.9922 0.9392 0.8987 0.8664 1.0895
30 1.0913 1.0139 0.9596 0.9184 0.8855 1.1166
35 1.1118 1.0328 0.9775 0.9357 0.9027 1.1403
46 1.1296 1.0492 0.9933 0.9510 0.9179 1.1616
45 1. 1456 1.0643 1.0076 0.9651 0.9318 1.1806
50 1.1602 1.0778 1.0208 0.9783 0.9447 1.1983
60 1.1861 1.1023 1.0447 1.0017 0.9682 1.2297
70 1.2087 1. 1239 1.0659 1.06230 0.9894 1.2577
80 1.2287 1.1431 1.0849 1.0422 1.0085 1.2830
90 1.2469 1.1608 1.1025 1.0598 1.0267 1.3063
100 1.2639 1.1774 1.1193 1.0762 1.0434 1.3277
200 1.3892 1 3027 1.2456 1.2042 1.1723 | i.4915
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Table V. Collision Integral Funections continued

o =13
T * Z(Z’ 2) Z(zx 3) Z(z; 4) Z(Zs 5) '7(2: 6) Z(‘i’ 4)
0 1.1947. 1.0951 1.0221 0.9706 0.9193 1.0927
.1 1.1985 1.0994 1.0269 0.9709 0.9265 1.0986
.2 1.2052 1.10990 1.0376 0.9783 5.9247 1.1116
.3 1.2056 1.0977 1.0077 0.9278 0.8562 1.0944
4 | 1.1862 1.0602 0.9549 0.8664 0.7934 1.0526
.8 1.1549 1.0164 0.9059 ‘| - 0.8190 0.7519 1.0076
.6 1.1207 0.9766 0.8676 0.7866 0.7267 0.9681
.7 1.0882 '0.9436 0.8395 *0.7653 0.7120 0.9360
.8-.{ 1.0594 0.9175 0.8196 0.7519 0.7043 0.9110
-9 1.0346 0.8972 0.8957 | 0.7439 0.7009 0.8917
1.0 1.0138 0.8820 0.7965 0.7398 0.7005 0.8775
1.2 0.9824 0.8618 0.7870 0.7382 0.7044 0.8590
1.4 0.9613 0.8514 0.7850 0.7418 0.7118 0.8499
1.6 0.9475 0.8471 0.7871 0.7481 0.7206 0.8466
1.8 | 0.9391 ' 0.8465 0.7916 | 0.7557 0.7299 0. 8469
2.0 0.9344 | 0.8484 0.7976 0.7638 0.7392 0.8496
2.5 0.9327 0.8590 0.8148 | 0.7844 0.7615 0.8617
3.0 0.9388 0.8731 | 0.8326 0.8040 0.7817 0.8771
3.5 -1 0.9485 | 0.8880 0.8497 0.8219 0.7998 0.8931
4 0.9597 0.9027 0.8658 0.8381 0.8161 0.9087
5 0.9831 0.9303 0.8944 0.8668 0.8443 0.9378
6 1.0058 0.9548 0.9191 0.8911 0.8679 0.9637
7 1.0270 0.9769 0.9408 0.9121 0.8885 0.9867
8 1.0464 0.9964 0.9600 0.9309 0.9066 1.0072
9 1.0643 1.0143 0.9773 0.9477 0.9230 1.0257
10 1.0809 1.0306 0.9929 0.9628 0.9377 1.0425
12 1.1105 1.0592 1.0207 0.9898 0.9641 1.0725
14 1.1363 1.0843 1.0449 1.0133 0.9871 1.0984
16 1.1595 1.1064 1.0662 1.0342 1.0076 1.1216
18 Y. %883 1.1264 1.0857 1.0530 1.0262 1.1422
20 1.1991 1.1448 1.1033 1.0704 1.0432 1.1611
25 1.2406 1,1847 1. 1423 1.1085 1.0812 1.2027
30 1.2758 1.2187 1.1757 I.1416 1.1138 |~ 1.2382
35 1.3066 1.2486 1.2052 1.1709 1,1430 1.2694
40 1.3344 1.2757 1.2320 1.1975 1.1694 1.2974
45 1.3595 1.3004 1.2565 1.2217 1.1937 1.3230
50 1. 3826 1.3232 . 1.2792 1.2444 1.2165 1.3466
60 1.4243 1,3644 1.3202 |- 1.2854 1. 2577 1 3896
70 1.4615 1.4015 1. 3569 ©1.3224 1.2945 1.4280
80 1.4951 1.4348 1. 3906 1.3559 1.3282 1.4628
90 1.5262 1.4656 1.4215 1.3869 1.3595 1.4948
100 1.5546 1.4942 1.4500 1.4161 1.3885 1.5248
200 1.7718 1.7128 1. 6699 1.6376 1.6114 1 7518
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Table IV. Collision Integral Functions continued
35
X =14
T z(1, 1) z(1, 2) z(1, 3) 2(1, 4) 2 (1, 5) z{(3, 3 .
—
0 1.1870 1.0551 0.9672 0.9027 0.8572 1.1178
.1 1.1727 1.0382 0.9481 0.88i4 0.8237 1.0987
.2 1.1575 1.0146 0.9115 0.8281 0.7571 1.0729
.3 1.1286 0.9684 0.8497 0.7566 0.6836 1.0308
.4 1.0914 0.9191 0.7963 0.7069 0.6420 0.9891
.5 1.0542 0.8776 0.7585 0.6773 0.6214 0.9524
.6 1.0208 0.8455 0.7336 0.6608 £.6121 0.9218
ol 0.9924 0.8217 0.7176 0.6521 0.6091 0.8974
.8 0.9688 0.8042 0.7076 0.6483 0.6096 0.8781
.9 0.9495 0.7917 0.7018 0.6476 0.6121 0.8633
1.0 0.9337 0.7827 0.6989 0.6488 0.6157 0.8519
1.2 0.9106 0.7724 0.6984 0.6542 0.6246 0.8373
1.4 0.8956 0.7686 0.7019 0.6617 0.6342 0.8300
1.6 0.8863 0.7687 0.7074 0.6700 0.6440 0.8273
1.8 0.8808 0.7710 0.7139 0.6784 0.6534 0.8277
2.0 0.8780 0.7747 0.7208 0.6868 0.6625 0.8300
2.5 0.8784 0.7871 0.7385 0.7068 0.6836 0.8406
3.0 0.8843 0.8011 0.7557 0.7252 0.7022 0.8545
3,5 0.8928 0.8152 0.7716 0.7416 0.7188 0.8692
4 0.9025 0.8288 0.7863 0.7565 0.7335 0.8840
5 0.9228 0.8539 0.8125 0.7824 0.7587 0.9121
6 0.9426 0.8764 0.8349 0.8042 0.7796 0.9376
7 0.9612 0.8962 0.8543 0.8229 0.7974 0.9605
8 0.9784 0.9140 0.8715 0.8391 0.8129 0.9812
9 0.9944 0.9300 0.8867 0.8536 0.8266 0.9999
i0 1.0092 0.9445 0.9005 0.8606 0.8390 1.0169
12 1.0358 0.9701 0.9245 0.8893 0.8606 1.0468
14 1.0588 0.9918 0.9450 0.9086 6.8792 1.0726
46 1.0794 1.0110 0.9629 0.92558 D, 8054 1.0983
18 1.0978 1.0280 0.9789 0 9408 0.9101 1.1157
20 1.1143 1.0436 0.9931 0.9546 0.9235 1.1339
25 1.1501 1.0766 1.0244 0.9844 0.9526 1.1737
20 1.1802 1.1044 1.0507 1.0097 0.9772 1.2070
35 -1 1.2060 1.1281 1.0736 1.0320 0.9992 1.2359 .
40 1.2286 1.1494 1.0940 1.0520 1.0191 1.2615 -
45 1.2491 1.1685 1.1125 1.0703 1.0372 1.2848
50 1.2678 1.1862 1.1296 1.0871 1.0538 1.3063
60 1.3008 1.2176 1.1604 1.1179 1.0844 1. 3446
70 1.3297 1. 2455 1.1877 1.1450 1.1115 1.3789
g0 1.3555 1.2708 1.2125 1.1699 1.1363 1.4095
96 1.3789 1.2938 1.2354 1.1926 1.1595 1.4377
100 1.4009 1.3150 1.2568 1.2141 1.1809 1.4637
280 1.5626 1.4758 1.4185 1.3768 1. 3452 1.6611
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Table IV. Collision Integral Functions continued
36

o= 14
T Z(Z. 2) Z(Z: 3) Z(Z: 4) Z(Zs 5) Z(Zl 6) ' z(4= 4)
] 1.1947 1.0951 1.0221 0.9706 0.9193 1.0927
.1 1.2017 1.1027 1.0301 0.9742 0.9296 1.0990
N 1.2090 1.1128 1.0416 0.9831 0.9309 1.1098
.3 1.2109 1.1046 1.0168 0.9391 0.8695 1.0965
.4 1.1947 1.0716 0.9690 0.8825 0.8109 1.0607
.5 1.1670 1.0317 0.9235 .0.8382 0.7718 1.0206
.6 1.1359 0.9948 0.8878 0.8076 0.7481}) 0.9846
.7 1.1060 . | 0.9641 0.8615 0.7877 0. 7346 0.9549
.8 1.6794 | 0.9397 0.8428 0.7754 0.7277 0.9315
.9 1.0564 0.9209 ¢.8300 0.7682 0. 7249 0.9135
1.0 1.0370 0.2066 0.8215 0.7647 0.7250 0.9001
1.2 1.0078 0.8882 0.8132 0. 7641 0.7299 0.8829
1.4 0.9885 0.879¢ 0.8122 0.7686 0.7380 0.8746
1.6 0.9761 0.8756 0.8151 0.7756 0.7476 0.8729
1.8 0.9688 0.8759 0.8205 0.7840 0.7580 0.8731
2.0 0.9649 0.8785 0.8271 0.7930 0.7683 0.8764
2.5 0.9651 0.8910 0.8464 0.8162 0.7937 0.8905
3.0 6.9729 0.9069 0.8666 0.3385 0.8172 0.9081
. 3.5 0.9844 0.9239 0.8862 0.8594 0.8384 0.9267
4 0.9973 0.9409 0.9048 0.8785 0.8575 0.9449
5 1.0244 0.9729 0.9384 0.9121 0.8908 0.9790
6 1.0507 1.0015 0.9675 0.9408 0.9188 1.0092
7 1.0785 1.0274 0.9882 0.9656 0.9428 1.0361
-8 - 1.0982 1.0504 1.0154 0.9875 0.9639 1.0600
9 1.1192 1.0712 1.0357 1.0068 0.9827 1.0816
10 1.1385 1.0902 1.0539 1.0244 0.9996 1.1013
12 1.173) 1.1237 1.0859 1.0554 1.0293 1.1359
14 1.2034 1.1526 1.1136 1.0818 1.0550 1.1656
16 1.2302 1.1781 1. 1379 1.1051 1.0777 1.1917
18 1. 2540 i.2007 1.1596 i.iz261 1.0980 1.2153
20 1.2758 1.2213 1.1792 1.1452 1.1168 1,2364
25 1.3229 1,2659 1.2222 1.1868 1.1576 1.2826
30 1.3622 1.3034 1.2583 1.2222 1.1925 1.3217
35 1.3963 1.3363 1.2902 1. 2535 1.2231 1.3559
40 1. 4266 1.3653 1.3185 1.2816 1.2510 1.3863
45 1.4543 1.3917 1. 3445 1.3070 1.2766 1.4141
50 1.4793 1.4161 1.3684 1.3308 1.2999 1.4396
60 1.5239 1.4596 1.4115 1.3735 1. 3427 1.4856
70 1.563 1.4983 1.4497 1.4118 1.3806 1.5263
. 80 1.5990 1.5332 1. 4846 1.4463 1.4156 1,5633
90 1.6314 1.5656 1.5165 1.4782 1.4474 1.5972
100 1.6612 1.5950 1.5461 1.5079 1.4771 1.6289
200 1.8858 1.8198 1.7713 1. 7344 1.7043 1.8674
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Table 1V. Collision Integral Functions coatinued
37

=15
T* z{1, 1) z(1, 2) z(1, 3) z(1, 4) z(1, 5) z(3, 3)
0 1.1870 1.0551 0.9672 0.9027 0.8572 1.1178
D | 1.1722 1.0378 0.9477 0.8810 0.8285 1.1007
.2 1.1577 1.0163 0.9153 0.8343 0.7655 1.0765
.3 1.1320 0.9750 0.8594 0.7687 0.6970 1.0392
.4 1.0984 0.9300 0.8099 0.7221 0.6579 1.0012
.5 -1.0645 0.8916 0.7747 0.6944 0.6388 0.9672
.6 1.0337 0.8618 0.7514 0.6792 0.6306 0.9387
o7 1.0075 0.8397 0.7367 0.6715 0.6285 0.9158
.8 0.9857 0.8235 0.7278 0.6687 0. 6299 0.8978
.9 0.9678 0.8121 0.7230 0.6687 0.6333 .0.8840
1.0 0.9533 0.8040 0.7208 0.6707 0.6378 .0.8735
1.2 0.9323 0.7954 0.7218 0.6777 0.6484 0.8605
1.4 0.9191 0.7931 0.7266 0.6867 0.6596 0.8548
1.6 0.9112 0.7944 0.7335 0.6G64 0.6708 0.8535
1.8 0.9070 0.7979 0.7412 0.7063 0.6817 0.8554
2.0 0.9054 0.8028 0.7494 0.7159 0.6921 0.8593
2.5 0.9083 0.8179 0.7699 0.7389 0.7160 0.8734
3.0 0.9167 0.8344 0.7896 0.7597 0.7372 0.8903
3.5 0.9273 0.8507 0.8078 0.7783 0.7558 0.9077
4 0.9389 0.8662 0.8245 0.7953 0.7725 0.9245
5 0.9627 0.8951 0.8541 0.8245 0.8012 0.9558
6 0.9856 0.9203 0.8796 0.8494 0.8250 0.9836
7 1.0069 0.9430 0.9017 0.8708 0.8458 1.0086
8 1.0268 0.9632 0.9214 0.8895 0.8638 1.0308
9 1.0449 0.9816 0.93%0 0.9063 0.8800 1.0514
10 1.0619 0.9981 0.9549 0.9216 0.8946 1.0699
12 1.0922 1.0277 0.9829 0.9483 0.9205 1.1032
14 1.1188 1.0530 1.0070 0.9715 0.9428 1.1321
16 1.1426 1.0756 1.0284 0.9921 0.9628 1.1579
is i.1040 1.6957 1.0475 1.0104 0.9805 1.1812
20 1.1834 .1.1140 1.0648 1.0273 .0.9970 1.2026
45 1.2257 1.1537 1.1029 1.0642 1.0333 1. 2494
30 1.2614 1.1872 1.1353 1.0957 1.0642 1.2897
-35 1.2923 1.2167 1.1637 1.1234 1.0620 1.3254
40 1.3199 1.2429 1.1890 1,1486 1.1169 1.3574
45 1. 3446 1.2666 1.2123 1.1718 1.1397 1. 3869
50 1.3675 1. 2886 1.2339 1.1929 1.160¢9 1.4141
60 1.4083 1.3280 1.2726 1.2316 1.1996 1.4631
70 1.4443 1.3630 1.3073 1.2660 1.2340 1.5072
80 1.4766 1.3945 1.3389 1.2974 1.2654 1.5471
%0 1.505%9 1.4235 1.3675 1.3267 1.2946 1.5837
100 1.5331 1.4505 1.3945 1.35324 1.3217 1.6180
200 1.7372 1.65338 1.5991 1.5596 1.5291 1.8773
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Table IV. Collision Integral Functions continued

ol =15
T z(2, 2) z{(2, 3) 2(2, 4 2(2, 5) 2(2, 6) 2(4 4
0 1.1947 1.0951 1.0221 0.9706 0.9193 1.0927
R | 1.2016 1.1025 1.0306 0.9736 0.9290 1.1061
.2 1.2081 1.1114 1.0403 0.9828 0.9325 1.1150
.3 1.2107 1.1061 1.0211 0.9465 0.879¢ 1.1029
.4 1.1978 1.0783 0.9791 0.8952 0.8252 1.0705
.5 1.1739 1.0426 0.9374 0.8536 0.7879 1.0333
.6 1.1462 1.0088 0.9039 0.8247 0.7654 0.9996
.7 1.1191 0.9803 0.8791 0.8060 0.7529 0.9718
.8 1.0945 0.9575 0.8617 0.7946 0.7470 G.9499
.9 1.0734 0.94C0 0.8498 0.7883 0.7454 0.9331
1.0 1.0555 0.9268 0.8423 0.7858 0.7466 0.9209
1.2 1.0285 0.9102 0.8359 0.7872 0.7535 0.9057
1.4 1.0110 0.9027 0.8365 0.7936 0.7637 0.8992
1.6 1.0003 0.9009 0.8412 0.8024 0.7751 0.8982
1.8 0.9944 0.9027 0.8481 0.8124 0.7868 0.9007
2.0 0.9920 0.9067 0.8562 0.8227 0.7986 0.9054
2.5 0.9953 | 0.9223 0.8786 0.8488 0.8266 0.9222
3.0 1.0059 0.9409 0.9013 0.8734 0.8521 0.9419
[ 3.5 1.0196 0.9602 0.9229 0.8960 0.8750 0.9622
| 4 1.0345 0.9790 0.9431 0.9169 0.8958 0.9819
5 1.0651 1.0139 0.9796 0.9533 0.9318 1.0187
|6 1.0943 1.0452 1.0111 0.9844 0.9623 1.0514
L1 1.1213 1.0733 1.0389 1.0115 0.9887 1.0805
'8 1.1462 1.0985 1.0634 1.0356 1.0121 i.1064
i 9 1.1691 1.1212 1.0856 1.0570 1.0332 1.1300
10 1.1904 1.1421 1.1059 1.0766 1.9523 1.1515
12 1.2283 1.1791 1.1416 1.1i15 1.0860 1.1895
14 1.2616 1.2111 1.1727 1.1416 1.1154 1.2225
15 1.2011 1.2207 1. 2002 1. 1483 1.1417 1.2518
18 1.3179 1.2655 1.2250 1.1925 1.1656 1.2781
20 1. 3423 1.2887 1.2477 1.2148 1.1873 1.3020
25 1.3954 1.3399 1.2975 1 2634 1.2353 1.3544
30 1.4406 1.3835 1.3400 1.3054 1.2768 1.3992
35 1.4802 1.4219 1.377% 1.3425 1.3138 1.4382
40 1.5152 1.4561 1.4114 1.3759 1.3471 1.4737
45 1.5474 1.4874 1. 4424 1.4067 1.3776 1.5057
50 1.5769 1.5163 1.4710 1. 4352 1.4060 1.5353
60 1.6298 1.5684 1.5225 1.4865 1.4575 1.5889
70 1.6768 1.6150 1.5687 1.5326 1.5034 1.6365
! 80 1.7190 1.6569 1.6107 1.5747 1.5453 1.6757
E 90 1.7580 1.6952 1.6491 1.6132 1.5841 1.7194
{100 1.7938 1.7312 1.6850 1. 6489 1. 6200 1. 7562
1260 2.0647 2.0026 1 9572 1.9227 1.8945 2.0351
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the transport coefficients.
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The function f

(

3

T* ® =12 o =13 o= 14 o= 15
0 1.0017 1.0017 1.0017 1.0017
.1 1.0019 1.0018 1.0018 1.0018
.2 1.0017 1.0021 1.0021 1.0020
.3 1.0012 1.00:4 1 0015 1.0016
.4 1.0003 1.0005 1.0006 1.0008
.5 1.0001 1.0001 1.0002 1.0003
.6 1.0001 1.0000 1.0000 1.0001
.7 1.0002 1.0001 1.0000 1.0000
.8 1.0002 1.0001 1.0000 1.0000
.9 1.0002 1.0001 1.0000 1.0000
1.0 1.0001 1.0001 1.0000 1.0000
1.2 1.0001 1.0001 1.0001 1.0001
1.4 1.0001 1.0002 1.0002 1.0003
1.6 1.0003 1.0004 1.0005 1.0007
1.8 1.0005 1.0007 1.0008 1.0010
2.0 1.0008 1.00i11 1.0012 1.0015
2.5 1.0017 1.0020 1.0022 1.0026
3.0 1.0025 1.0029 1.0031 1.0035
. 3.5 1.0032 1.0036 1.0039 1,0043
4 1.0037 1.0042 1.0046 1.0050
5 1.0045 1.0050 1.0055 1.0058
6 1.0050 1.0055 1.0061 1.0064
7 1.0052 1.0058 1.0066 1.0067
8 1.0054 1.0060 1.0667 1.0070
9 1.0055 1.0061 1.0068 1.0071
10 1.0056 1.0062 1.0069 1.0072
12 1.0057 1.0062 1.0069 1.0073
14 1.0057 1.0063 1.0069 1.0073
16 1.0057 1.0063 1.0069 1.0073
18 1.0087 1.0064 1.0069 1. 0875
20 1.0057 1.0064 1.0068 1.0073
25 1.0057 1.0064 '1.0068 1.0073
30 1.0057 1.0065 1.0068 1.0074
35 1.0057 1.0065 1.0068 1.0074
40 1.0058 1.0066 1.0068 1.0075
45 1.0058 1.0067 1.0068 1.0075
50 1.0059 1.00568 1.0068 1.0075
60 1.0060 1.0069 1.0069 1.0077
70 1.0061 1.0071 1.0070 1.0078
80 1 6062 1.0072 1.0071 4.0079
90 1.0063 1.0073 1.0072 1.0080
100 1.0054 1 0074 1.0073 1.0082
200 1.0074 1.0084 1.6081 1.0G91




Table V. Functions for calculating the higher approximations to
the transport coefficients. continued
The function f;\3)

T* =12 =13 = 14 =15
0 1.0027 1.0027 1.0027 1.0027
.1 1.0029 1.0028 1.0029 1.0028
2 1.0027 1.0032 1.0033 1.0032
.3 1.0020 1.0023 1.0225 1.0026
.4 1.0006 1.0009 1.0011 1.0013
.5 1.0002 1.0002 1.0003 1.0005
.6 1.0002 1.0001 1.0001 1.0001
.7 1.0003 1.0001 1.0000 1.0000
.8 1.0003 1.0001 1.0000 1.0000
.9 1.0003 1.0001 1.0000 1.0000
i.0 1.0002 1.0001 1.0000 1.0000
1.2 1.0002 1.0001 1.0001 1.0002
1.4 1.0002 1.0003 1.0004 1.0005
1.6 1.0004 1.0006 1.0008 1.0010
1.8 1.0008 1.0011 1.0013 1.0016
2.0 1.0013 1.0016 1.0019 1.0022
2.5 1.0026 1.0031 1.0034 1.0039
3.0 1.0038 1.0045 1.0048 1.0054
3.5 1.0049 1.0056 1.0060 1.0067
4 1.0058 1.0065 1.0071 1.0077
5 1.0070 1.0078 1.0085 1.0091
6 1.0077 1.0085 1.0094 1.0099
7 1.0081 1.0090 1.0105 1.0105
8 1.0085 1.0093 1.0104 1.0109
9 1.0087 1.0095 1.0106 1.0111
0 1.0088 1.0097 1.0107 1.0112
12 1.0089 1.0098 1.0109 1.0114
14 1.0089 1.0099 1.0108 1.0114
16 1.0089 1.0099 1.0108 1.0115
i8 1.6088 1.0100 1.0108 1.0115
20 1.0089 1.0100 1.0107 1.0114
25 1.0089 1.0101 1.0106 1.0115
30 1.0089 1.0101 1.0106 1.0115
35 1.0090 1.0102 1.0106 1.0116
40 1.0090 1.0103 i.0106 1.0116
45 1.0091 1.0104 1.0106 1.0117
50 1.0092 1.0105 1.0107 1.0118
60 1.0093 1.0108 1.0108 1.0120
70 1.0096 1.0111 1.0109 1.0122
80 1.0097 1 0112 1.0119 1.0124
90 1.0099 1.0114 1.0113 1.0125
100 1.0101 1.0116 1.0114 1.0127
200 1.0115 1.0132 1.0127 1.0141
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Table V. Functions for calculating the higher approximations to

41

The function fD(3)
T* =12 =13 = 14 =15
0 1.0020 1.0020 1.0020 1.0020
.1 1.0017 1.0017 1.0018 1.0018
.2 1.0010 1.0012 1.0613 1.0014
.3 1.0002 1.0004 1.0005 1.0006
.4 1.0001 1.0001 1.2001 1.0002
.5 1.0002 1.0001 1.0000 1.0000
.6 1.0003 1.0001 1.0000 1.0000
.7 1.0003 1.0001 1.06000 1.0000
.8 1.0002 1.0001 1.0000 1.0000
.9 1.0002 1.0001 1.0000 1.0000
1.0 1.0001 1.0000 1.0000 1.0001
1.2 1.0001 1.0001 1.0002 1.0003
1.4 1.0001 1.0003 1.0004 1.0006
1.6 1.0003 1.0005 1.0007% 1.0009
1.8 1.0006 1.0008 1.0011 1.0013
2.0 1.0009 1.0012 1.0015 1.0017
2.5 1.0017 1.0020 1.0024 1.0028
3.0 1.0024 1.0028 1.0032 1.0037
3.5 1.0030 1.0035 .1.0039 1.0044
4 1.0035 1.0041 1.0045 1.0050
5 1.0042 1.0049 1.0653 1.0059
6 1.0047 1.0053 1.0059 1.0064
7 1.0049 1.0057 1.0062 1.0068
8 1.0051 1.0059 1.0065 1.0070
9 1.0052 1.0060 1.0066 1.0072
10 1.0053 1.0061 1.0067 1.0073
12 1.0053 1.0061 1.0068 1.0074
14 1.0053 1.0062 1.0069 1.C075
16 1.0052 1.0061 1.0068 1.0075
18 1.0052 1.0061 1.0068 1.0075
20 1.0051 1.0060 1.0068 1.0075
25 1.0050 1.0059 1.0068 1.0075
30 1.0049 1.0058 1.0067 1.0075
.35 1.0048 1.0058 1.0066 1.0075
40 1.0048 .1.0058 1.0067 1.0075
45 1.0047 1.0058 1.0066 1.0075
50 1.0047 1.0058 1.0067 1.0076
60 1.0047 1.0058 1.0067 1.0077
70 1.0047 1.0058 1.0068 1.0077
80 1.0047 1.0059 1.0069 1.0078
Q0 1.0047 1.0959 1.0070 1.0079
100 1.0048 1.0060 1.0070 1.0081
200 1.0053 1.0067 1.0077 1.0088
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Table VI. The reduced thermal diffusion ratio, [kT* JZ ; 19" Juneikdoo
for calculating isotopic thermal diffusion. e
axr M -M
ko ko _M. *Ei_ X, X,
T* x=12 «=13 =14 a=15
0 0.3133 0.3133 0.3133 0.3133
.1 0.2844 0.2865 0.2887 0.2887
2o 0.2047 0.2264 0.2401 0.2468
.3 0.0738 0.1110 0.1369 0.1545
.4 -0.0271 0.0157 0.0484 0.0727
5 -0.0829 -0.0389 -0.0037 0.0229
.6 -0.1038 -0.0616 -0.0256 0.0020
5 -0.1031 -0.0623 -0.0270 0.0005
.8 -0.0902 -0.0509 -0.0162 0.0105
=9 -0.0690 -0.0317 0.0023 0.0287
1.0 -0.0456 -0.0088 0.0244 0.0498
1.2 0.0071 0.0419 0.0734 0.0981
1,4 0.0580 0.0923 0.1226 0.1466
1.6 0.1050 0.1386 0.1680 0.1911
i.8 0 1476 0.1797 0.2083 0 23i0
2.0 0.1841 0.2161 0.2438 0.2665
2.5 0.2570 0.2883 0.3145 0.3380
3.0 0.3103 0.3404 0.3658 0.3890
3.5 0.3469 0.3786 0.4035 0.4270
4 0.3744 0.4060 0.4313 0.4544
5 0.4111 0.4437 0.4679 0.4931
6 0.4312 0.4643 0.4911 0.5134
7 C.4414 0.4778 0.5044 0.5283
8 0.4494 0.4358 0.5131 0.5358
9 0.4531 0.4889 0.5181 0.5427
10 0.4536 0.4911 0.5208 0.5446
12 0.4536 0.4917 0.5233 0.5494
14 0.4512 0.4919 0.5225 0.5495
16 0. 4469 0.4887 0.5209 0.5496
i8 0.4441 0.4866 0.5187 0.5485
20 0.4387 0.4826 0.5190 0.5479
25 0.432!] 0.4764 0.5140 0.5452
30 0.4245 0.4713 0.5106 0.5427
35 0.4188 0.4681 0.5066 0.5429
40 0.4161 0.4648 0.5058 0.5426
45 0.4118 0.4641 0.5038 0.5426
50 0.4093 0.4616 0.5035 0.5429
60 0.4051 0.4598 0.5032 0.5443
70 0.4048- 0.4590 0.5044 0.5460
80 0.4034 0.4583 0.5071 0.5474
20 0 4022 0.4584 0.5093 0.5505
100 0.4024 0.4586 0.5095 0.5534
200 0.4110 0.4703 0.5277 0.5727
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Table V1I1. Functione for calculating the transport properties 19 June 1953
of mivtures. 43
The function A
1

T+ % =12 : =13 o= 14 A= 15
0 1.0065 1.0065 1.0065 1.0065
.1 1.0060 1.0146 1.0247 1.0251
e 1.0374 1 0374 1.0445 1.0435
3 1.0731 1.0693 1.0729 1.0695
.4 1.0976 1.0932 1.0946 1.0905
.5 1.1108 1.1067 1.1070 1.1028
.6 1.1170 1.1131 1.1128 1.1088
.7 1.1193 1.1154 1 1145 1.1108
.8 1.1194 1.1154 1.1142 1.1104
.9 1.1185 1.1143 1.1126 1.1091
1.0 1.1173 1.1126 1.1106 1.1071
1.2 1.1146 1 1096 1.1067 1.1032
1.4 1.1126 1.1070 1.1037 1.1000
1.6 1.1114 1.1052 1.1013 1.0978
1.8 1.1111 1.1044 1.0999 1.0964
2.0 1.1111 1.1044 1.0990 1.0956
2.5 1.1130 1.1056 1.0987 1.0958
3.0 1.1161 1.1081 1.1002 1.0973
3.5 1.1193 1.1113 1.1026 1.0995
4 1.1226 1 1141 1.1050 1.1018
5 1.1284 1.11i%94 1 1101 1.1064
6 1.1335 1.1238 1.1147 1.1103
1 1.1377 1.1277 1.1189 1.1136
8 1.1417 1 1309 1 1224 1.1163
9 1.1449 1.1336 1.1255 1.1189
10 1.1477 1 1361 1.1281 1.1210
12 1.1532 1 1406 1 1326 1.1246
14 1.1583 1 1447 1.1366 1.1276
16 1.1625 1 1485 1 1397 1.1300
18 1.1665 1.1517 1.1423 1.1322
20 1.1702 1.1548 1.1449 1.1343
25 1.1790 1 1623 1 1502 1.1385
30 1-1865 1.1691 1.1542 1.1421
35 1.1938 1.1752 1.1578 1. 1454
40 1.2005 i 1813 1.1612 1.1480
45 1.2067 1 1867 1.1643 1.1508
50 1.2123 11917 1 1668 1.1531
60 1.2230 1 2008 11715 1.1573
70 1. 2226 1 2092 1 1789 1.1610
80 1 2416 1 2168 1 1796 1 1642
90 1 2492 1 2240 1.1831 1.1674
100 1.2569 1 2300 1 1858 1.1700
200 1.3103 1.2754 i.2068 1.1885




Table VII. Functious for calculating *he transport properties
of mixtures. continued.
The function B*

T* o=12 o= 13 o= 14 o= 15
0 1.1851 1.1851 1.1851 1.1851
.1 1.1988 1.1955 1.1926 1.1928
.2 1.2528 1.2407 1.2328 1.2268
.3 1.3028 1.2895 1.2788 1.2698
.4 1.3127 1.3019 1.2922 1.2840
.5 1.3003 1.2922 1.2844 1.2768
.6 1.2808 1.2737 1.2668 1.2609
ol 1.2601 L.2539 1.2476 1. 2424
.8 1.2403 1.2346 1.2289 1.2238
.9 1.2239 1.2172 1.2125 1.2074
1.0 1.2079 1.2025 1.1973 1.1930
1.2 1.1837 1.1780 1.1733 1.1689
.1.4 1.16062 1.1612 1.1561 1.1523
1.6 1.1536 1.1490 1. 1440 1.1392
1.8 1.1458 1.1394 1.1347 1.1298
2.0 1.1387 1.1324 1.1279 1.1226
2.5 1.1288 1.1222 1.1174 1.1119
3.0 1.1250 1.1167 1.1113 1.1057
3.5 1.1217 1.1136 1.1084 1.1024
4 1.1211 1.1128 1.1067 1.1002
5 1.1225 1.1126 1.1048 1.1001
6 1.1242 1.1131 1.1059 1.6585
7 1.1252 1.1155 1.1067 1.1006
8 1.1278 1.1176 1.1079 1. 1009
9 1.1298 1.1185 1.1094 1.1025
10 1.1317 1.1203 1.1103 1.1026
12 1.1351 1.1225 1.1127 1.1050
14 1.1376 1.1247 1.1135 1.1056
16 1.1384 1.1259 1.1149 1.1066
18 1.1405 1.1271 1.1153 1.10706
20 1.1404 1.1274 1.1178 1.1077
25 1.1426 1.1282 1.1176 1.1070
30 1.1426 1.1281 1.1178 1.1058
35 1.1427 1.1279 1.1162 1.1055
49 1.1427 1.1268 1.1159 1.1050
45 1.1418 1.1270 1.1148 1.1035
50 1.1407 1.1255 1.1142 1.1023
60 1.1388 1.1236 1.1119 1.1003
70 1.1378 1.1218 1.1106 1.0G680
80 1.1365 1.1198 1.1096 1.0950
30 1.1350 1.1180 1.1077 1.0940
100 i.1331 1.1154 1.1049 1.0922
200 1.1206 1.1021 1.0911 1.0779
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Table VII. Functions for calculating the transport properties 45 June 1933

of mixtures. continued. 45
The function C't

TS o=12 o =13 =14 o= 156
() 0.8889 0.8889 0.8889 0.8889
.1 0.8835 0.5844 0.8853 0.8853
.2 0.8697 0.8736 0.8765 0.87719
.3 0.8463 0.8531 c.8581 0.8613
4 0.8279 0.83560 0.8421 0.8467
.5 0.8172 0.8257 0.8325 0.8376
.6 c.8128 0.8212 0.8283 0.8337

B | 0.8127 0.8209 0.8280 0.8334
.8 0.8151 0.8231 0.8301 0.8354
.9 6.8193 0.8269 0.8338 0.8291
;1.0 0.8240 0.8315 0.8383 0.8434
Z1.2 0.8348 0.8419 0.5482 0.8532
1.4 0.8453 0.8521 0.8582 0.8629
1.6 0.8549 0.8615 0.8673 0.8718
1.8 0.8636 - 0.8698 0.8753 6.8797
2.0 0.8709 0.8771 0.8823 0.8867
2.5 0.8855 0.8913 0.8961 0.9005
3.0 0.8959 0.9014 0.5059 0.9102
3.5 0.9031 0.9088 0.9131 0.9174
4 0.9084 0.9141 0.9183 0.9226
5 9.9155 0.9213 0.9253 0.9298
6 0.9195 0.9254 0.9298 G.9337
7 0.9216 0.9280 0.9324 0.9365
8 0.9232 0.9295 0.9342 0.9381
9 0.9241 0.9302 0.9352 0.9394
10 T 0.9242 0.9307 0.9359 0.9299
12 0.9245 0.9311 0.9366 0.9409
14 0.9243 0.9313 0.9367 0.9412
14 08,0237 0,9210 0.9344 0.5414
18 0.9234 0.9307 0.9364 0.9413
20 0.9226 0.9302 0.9366 0.9414
25 0.9218 2.929% 0.9361 0.9413
30, 0.9209 0.9291 0.9358 0.9412
35 0.9203 0.9289 0.9354 0.9415%
40 0.9202 0.9288 0.9355 0.9417
45 0.9198 0.929¢ 0.9355 0.9420
50 0.9197 0.9290 0.9356 0.9423
60 - 0.9196 0.5293 0.9360 0.9430
70 0.9202 0.9298 0.9367 0.9437
0 0.9205% 0.9303 0.9375 0.9444
L) 0.9208 0.9309 0.9383 0.9453
106 8.9214 0.9316 0.9387 0.9461
200 0.9271 0.9377 0.9445% 0.9520
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Table VIITA. Temperatuze indexes for viscosity, therma.] concuctivit v,
46
and self-diffusion
Index for v, and A Index f{or ,D-“ 1
L i 4 !
S O ) (R T mey) g S USSP
TRY | 12 12 14 i5 2 13 14, 15 - g
, '. i
0 0.833 | 0.833 | 0.833 | 0.833 {' 0.833 "d'8§ﬂ'”“§;§3§;"0'833“ .
1 | 0.827 | 0.831 | 0.830 | 0.830  0.850.| 0.847 | 9,844, O0.844 ‘
2| 0832 | 0819 | 0.818 | 0.820 | 0 891 0.879, | 0,870, 0.866 ;
.3 | 0.874 | 0 858 | 0,851 | 0.846 0.961.[ 0.941 | 0.926,| 0.916; .
.4 | 0.950  0.925 | 0.912 | 0.399. 1.016 | 0.992 %?3540 0;960 ;
.5 | 1.007 | 0.980. | 0.964 | 0.947 1.049 | 'L.023 | 1,003, 0.987. ‘
.6 | 1.040 | 1.014 | 0,997 | 0.979 1.062 | 1.036 | 1.Q15,] 0.999,
.7 1.056 1.03;‘},1ﬂ013 G.996 1,062 | 1. 037‘ ;$qé60 1, 000,
.8 | 1.058 | 1.03p | 1.018 | 1.001 1.055 | L.031 | 1,010, 0.994
.9 | 1.052 | 1.03] | 1.013 | 0.997 1.042 | 1.019' | 0,999,| 0.983,
1.0 | 1.040 | 1.020 | 1.003 | 0.988 1.028 | '1.005 | 0,985, 0. 97q)1
1.2 | 1.009 | p.991 | 0975 | 0.960 0.996 | 0.974 | 0,955, 0.94l |
1.4 | 0.974 p,953;.;q'943 0.928 0.964 | 0.944 | 0,925, 01911 i
1.6 | 0.941 | p.924° | 0.912 | 0.897 0.935 | 0.915 | Q.898,| 0.885; |
1.8 | €.911 g.894vj 0,884 | 0.869 0 909 | 9.891 | 0,874, O: 861 :
2.0 | 0.884 .86b}jf0:858 0.844 | 0.887 | 0.869 | Q8533 0’8400 i
2.5 | 0.832 | p.81p | 0,807 | 0.793 0.844 | 0.826' | Q.812,| 0:799. L
3.0 | 0.796 | p.78D | 0.771 | 0.758 0.812 | 0.796' | Q. p82,| 0,769,
3.5 | 0.770 .755.1 0,746 | 0.733 0.791 | Q.774 9€%210 0. 748, E
4 0.753 | 0.738'°| 0.726 | 0.715 0.775 | 0.758 | 0.745.| 0.732 |
5 0.730 | p.715 1 0.7C1 | 0.692 0.753 | 0.736 | 0,724, 0,711 |,
6 0.717 | p.703"] 0,687 | 0.679 0.742 | 0.724) | Q711 | 0.699 |,
7 0.710 g.695 1 0.678 | 0.671 0.735 | 0.716) | 0,703 ,| 0.690
8 0.706 | 0.693 | 0.674 | 0.666 0.730 | 0.711 | 0,697,| 0.686 |
9 0.703 | b 688 | 0,672 | 0. 664 0.728 | 0,709 ",égg(, 0,682 |
10 0.701 ués,viﬂo 670 | 0.662 0.727 |.0. 708. 04692 ,| 0/ 680 |o;
12 0.700 685 || 0,669 | 0.660 0.727 | 0,707 | G890 4 0,677 |,
14 0.700 .683 | 0,669 | 0.660 0.727 | 0,706i | G.,890 4| 0,676 |,
16 0.700 683, 0.669 | 0.659 0.729 o 707 | 0,690 o 0,676 Iy
18 0.700 g 68¢°°1°0.670 | 0.659 0.730 | 0.708] q;§§15 0,676
20 0.700 681 10,671 | 0.660 0.732 | 0.710" | 0.69) 4 0,676 |,
25 0.700 .680 | 0.672 | 0.659 0.735 | 0,711 | 6.692 | 0}676 | -
30 0.699 1679’1 0,673 | 0.659 0.737 | 0,713 | Q, 93 5| 0,676 |y
35 0.698 67§ || 0,672 | 0.658 0.739 | 0,713, | 0.494 ol 0,676 |o;
40 0.697 676 [.0.672 | 0.656 0 740 .|. 0, 714i 0. %3 o| 01675 |01
45 0.696 .672;‘ 0.672 | 0.655 0.741 | 0,713 | Q684 4 0,674 |o;
50 0.694 | 6. 72).0.671 | 0.654 0.741 |0, 713‘ 0.693 ;| 0l673 |
60 0.692 2.663;’ 0.669 | 0.651 0.741 | 0,712] | 0,682 5| 0l671 |,
70 0.687 654 ] 0.667 | 0.647 0.739 | 0,710’ 0.690 -| 0.669 |
' 80 0.685 | 0.661 | 0.665 | 0.645 0.739 | 0.709 | 0.688 .| C.667 ;4
90 0.682 | 0.659 | 0.661 | 0.643 0.738 | 0.707 | 0,685 | 0.664 |
100 0.679 | 0.655 | 0.659 | 0.640 0.736 | 0.705 | 0.68 .| 0.662 |,
200 0.657 |0 633 | 0.640 | 0.620 D 719 | C.687 | 0.667 | 0.644 |05
t




WIS-ONR-1

19 June 1953
Table VIIIB. Sutherland constants for viscosity, thermal conductivity,

e v

47
and self-diffusion.
s/t for "‘L and A S/T for Dll
TR | 12 13 14 15 12 | 13 14 15
0 0.500 | 0.500 | 0.500 | 0.500 0.500 | 0.500 | 0.500 | 0.500
.1 | 0.487 | 0.494 | 0.491 | 0.492 0.537 | 0.531 | 0.525 | 0.524
.2 | 0.497 | 0.469 | 0.467 | 0.471 0.642 | 0.611 | 0.588 | 0.578
.3 10.598 | 0.558 | 0.541 | 0,528 0.856 | 0.788 | 0.742 | 0.713
.4 (0,819 | 0.739 | 0.701 | 0.664 1.067 | 0.969 | 0.900 | 0.852
.5 [1.028 | 0.922 | 0.865 | 0.810 1.215 | 1.096 | 1.010 | 0.950
.6 |1.176 | 1.059 | 0.988 | 0.921 1.281 1.157 | 1.063 | 0.996
.7 | 1.251 1.135 | 1.054 | 0.985 1.283 | 1.161 1.066 | 0.999
.8 | 1.264 | 1.154 | 1.073 | 1.003 1.246 | 1.131 1.040 | 0.975
.9 1.233 | 1.133 | 1.054 | 0.989 1.184 | 1.080 | 0.994 | 0.933
1.0 1.174 | 1.084 | 1.012 | 0.952 1.118 | 1.022 | 0.942 | 0.886
1.2 | 1.036 | 0.965 | 0.904 | 0.852 0.983 | 0.902 | 0.836 | 0.787
1.4 [0.901 | 0.843 | 0.796 | 0.750 0.866 | 0.797 | 0.740 | 0.699
1.6 | 0.788 | 0.736 | 0.700 | 0.660 0.771 | 0.710 | 0.661 | 0.625
1.8 [ 0.697 | 0.651 | 0.622 | 0.584 0.693 | 0.641 | 0.597 | 0.565
2.0 [0.623 | 0.583 | 6.558 | 0.524 0.632 | 0.584 | 0.545 | 0.515
2.5 | 0.497 | 0.462 | 0.443 | 0.415 0.524 | 0.484 | 0.453 | 0.426
3.0 | 0.420 | 0.389 | 0.372 | 0.349 0.454 | 0.420 ! 0.393 | 0.369
3.5 | 0.370 | 0.343 | 0.326 | 0.304 0.410 | 0.376 | 0.353 | 0.329
4 0.338 | 0.312 | 0.292 | 0.273 0.379 | 0.347 | 0.324 | 0.303%
5 0.298 | 0.274 | 0.252 | 0.238 0.339 | 0.309 | 0.289 | 0.267
6 0.277 | 0.254 | 0.230 | 0.219 0.318 | 0.288 | 0.267 | 0.248
7 0.266 | ©.242 | 0.2i8 | 0.207 0.307 | 0.276 | 0.254 | 0.235
8 0.259 0.236 | 0.211 | 0.200 0.299 0.268 | 0.246 | 0.228
9 0.255 | 0.231 | 0.207 | 0.196 0.295 | 0.265 | 0.241 | 0.222
10 0.251 | 0.226 | 0.204 | 0.194 0.294 | 0.262 | 0.238 | 0.220
12 0.250 | 0.227 | 0.203 | 0.191 0.293 | 0.261 | 0.235 | 0.215
14 0.250 | 0.224 | 0.203 | 0.191 0.294 | 0.260 | 0.234 | 0.214
16 0.250 | 0.224 | 0.204 | 0.189 0.297 | 0.261 | 0.235 | 0.214
18 6.256 | 0.222 | 0.205 | 0.189 0.299 | 0.262 | 0.235 | 0.214
20 0.250 | 0.221 | 06.206 | 0.189 0.302 | 0.265 | 0.235 | 0.214
25 0.250 | 0.220 | 0.208 | 0.189 0.306 | 0.268 | 0.237 | 0.214
30 0.249 | 0.218 | 0.209 | 0.188 0.311 | 0.270 | 0.239 | 0.214
35 0.248 | 0.216 | 0.208 | 0.187 0.314 | 0.271 | 0.240 | 0.213
40 0.245 | 0.214 | 0.208 | 0.185 0.315 | 0.272 | 0.240 | 0.212
45 0.244 | 0.211 | 0.208 | 0.184 0.317 | 0.271 | 0.240 | 0.211
50 0.241 | 0.208 | 0.206 | 0.182 0.317 | 0.271 | 0.239 | 0.209
60 0.237 | 0.202 | 0.203 | 0.177 0.318 ' 0.269 | ©.237 | 0.206
70 0.231 | 0.197 | 0.200 | 0.173 0.315 | 0.257 | 0.234 | 0.203
80 0.227 | 0.192 | 0.197 | 0.169 0.313 | 0.264 | 0.231 | 0.200
90 0.222 | 0.189 | 0.192 | 0.167 0.312 | 0.261 | 0.227 | 0.196
100 0.218 | 0.184 | 0.190 | 0.162 0.308 [ 0.258 ! 0.225 | 0.193
200 0.186 | 0.154 | 0.163 | 0.137 0.280 ! 0.23c | 0.200 | 0.168
I \ i
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Fig. 4. A. Temperature indexes for viscosity and thermal conductivity;
B. Sutherland constants for viscosity and thermal conductivity. Seclid
lines: Buckingham potential; broken lines: Lennard-Jones (12-6) potential.
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APPENDIX I. HIGHER APPROXIMATIONS TO THE TRANSPORT COEFFICIENTS

The quantity fYl appearing in Eq. (6) is given by the series

fYl =14y & ¥+ ] (35)
where
<
v - by
1 b” bu - bl‘; ?
2
Y = bu(bpzbzs’bz b;a)
= a IZ i
. (b b”_'b,sz” 22 33 +2b b:lbzs-b23°l3-b33b'°~)

" I.l 13 2.3

and
(2,2) %
=+ 0
(2,2)% (2,3)%
b= 78 -80 ,
3 AV (23)% 24y ¥
b, .= = TR 13,
137 8 O 180y~ +i0L. )
. 30! 2,2)% (a, 3)* (2,4)%
b,,* Tz 284} 200 7

. 1365 (Q2)x 32 __@»d* 125 _ (a9 (3,52 %
b23 32 ) = TQ + =0 - 30}

- 25137 (@) '7 <-7,3)* 1905 (:4—)* (3,5)% (3.6} (4u)*
b33 a25¢ 9 Q g—vQ' 350’ +'%5.Q, s raly ’ .

The quantity f , appearing in Eq. (7) is given by the series

f =148 4+ 5 +---, (363

bS 1
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where "2
g 12
vl - " " i a// 2 N
a'n an 12
¥ I3 ;.
2 o v _ //2\
. <0- o, LN a a:uasa*:zo“ R e N N Y
and
"
a =bh , a_=b , a’ =b
11 11 12 12 13 13
X 77 (3,3)% 28&(:,3)* (23) ¥
L - + 20.0)
2227 4 v ?
. (2,5) %
L1 uE Rx 2ol (A%, L5 oM _a00
23.7 32 i ?

w4553 JOAX_ 215

(@3)% 565 (AD¥E (2,5) # . (2,6)% (CXOL
33 " Tase g T g +H0)

\()' -,350 +‘E's\;[,

The third approximation to the quantity fl’) appearing in Eq. (8)
is expressed in the determinant notation of Chapman and Cowling as
. @
(3, Hw
00 .,}4 (V] ? (37)
where «f f2) s a fifth order determinant vhose general element is @y 0
with i and j ranging from -2toc 2. The term‘ed&ﬁ is the minor of

g (2) obtained by deleting the row and column containing agg The

elements a;; are functions of the collision integrals, the molecular weights,

and “he <elative con:entritions of the gases in the diffusing mixture. In general,

a3y = esis andif 1. ) # 0 a1 has the same {orm as aj; except that the
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subscripts 1 and 2, reterring to the molecuiar species, are interchanged

in the expression for aij . The aij necessary for the evaluation of Eq. (37)

are as follows, where x1 and x2 are the mole fractions, and N[1 and M

2
the molacular weights of species 1 and 2, respectively:

MM

(L) *
0 :8 i ’

2

@i m

2 __5_ o) % o3 _anx
O“Ol g (M‘+M1)§, X Y Qm 2 'Q'm ] )

|
i)
. (2M,)2'M1 [éﬁ ('1')"‘_.2_| 0,2) % (3%
% i L3 G "o, rel ]

12 12

@ =l + =t q (38)

- 8M, 5 2 a2 an* 5 a2 Ik 2 _(1,9)% (2,2)%
o (M.+M1)3[ §(GMI+SM2)‘Q’|1 -EMIQ +6M1 ‘Q':n +2MM, L) P

ia [} 13

an% / oM. \2
R O ( 2 ) [
v
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X 54
&1: CL-':L+ -;: a‘m.
«
am> | 3 i
£ Y2 ‘£ ‘. G ﬂ Coa G20 % 5_"' 2 . 0,3%
* (M,»fM,L)nF .’LKIQM' +5M1)Q|1 :e(l'Ml”"‘zm’ua * 2 MO, 3
(38)
2 Lk * cont.
-5 M:l‘ﬂ"u 7lezﬁ' -8 M.MQ -\“(.19:3) ( !
L ]
' (r) °
. My N2 @ (a3 % ][ )
a ( i—) [70 -3, 1
12 MI+M1 n ) (rm)_, 3
1
3
8 (MM,) " [ 55 _anx IS S
a=-————————‘——- ’-._ o, LA
" (Mem) |8 s Q Q, -2y, |
£ 2 -
6 & 8M," M,. { 595 _anx _ YA (|,;\)*4. 51 ‘Q‘u,a)* UR)*
2 (M,+f‘?,)4 32 n 6 2 a1 - 1 )
“ 2
- R * (2,3)%
- 8 :
l Iﬂll ¥ Qm
- ’ xl .
021- a22+ X CLJ.’). 5
a' 3M ‘_ 35 'S 2 ant  aIM 0,0% _]l
: == (4oM +168M, M, ‘4 35M S4M, L 35M |
RN RIS ag 10+ 168M, )Q ( 0,
P
5, .4 2 a 03 0,)% b5 %
*;Mz(ro8M,+133MQ)QI " 1o, Q risM Q]
TR sty A (22) 2 (%)
*5’“.”1\”". +/M2)&L, -56MM U, +40MM ﬂ
(3,3)
+ 12 M M ﬂ *
1 = p -~
.
,:2 ( g-Mi ).’L[_rlQ(a:)* 28@‘2'3)*+Q0Q(2'4)*Jj (m)“ ]
= \
M|+M2 + " n 1 : (rm)a
3 u3x (1,4 ,8)#
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=1 (M) | a8 "t o "2 LOEE 7
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The a'ij above are the same as those defined in connection with the thermal
conductivity, but now it is necessary to specify, by sukscripts on the

&) (L, ape , which molecular interaction is under consideration; for
example, ail refers to an interaction between two molecules of species 1,
‘whereas ail-l refers to species 2. The above expression for the aij were
calculated by the method of Chapman and Cowling(34) 2

The expression for fD may be considerably simplified for the

cases of tracer diffusion and self-diffusion. For tracer diffusion where

x,.—> 0, we obtain

1

£D = ) ? (39)

where

2 2 * 2

o az: ) Mz(GC -5)
’ 5 2

1 a0 30 M7+ 25M3 - 1215 8"+ 1M M A"

7 /
A (Qma'm-a'ozan)
2‘ ’ ’ / i -3 ,
Qg @ (0}, 09 - A75%)

The quantities A*, B*, and C#* are defined in Eq. (11). The result for

x, —> 0 is obtained from the above by changing the signs of all subscripts on

the a.., or what has the same effect, interclianging M’l and MZ . The

1
: A n)x
expression for self-diffusion is obtained by setting Ml = MZ i Q,m =

L

,mx* (,n)*
J=Q,, ., and (r 2 = )i = s

(34) Reference (4), Chapter 9.
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The general expressicn for the thermal diffusion ratio given by
Eq. (9) involves the a5 defined above. For a binary mixture of heavy
isotepes, the dimensionless quantity k.’;, , defined in Eq. (10) is given

to a first approximation by

{\: 1 I5 &, \ [Sﬂu,v)*+ Qnm,a)*]
N T‘I = \aln Q’:‘ /ll. J

15 (6c* -5) (2A"+5) (40)
2 A (LA -12B" +55)

and to z second approximation by

* E ]
s 21y - -
K] - 3Ix-xY-xY,], (41)
2
where
o '’
X. = 3ap., 85,7524 @)y
1 - all ] all 2 }
- ] Q2a~ 12
/ ’
= Gh.p Qo3 ~Qg., Q.
}\2 = ' ' _ 72 L
Gy Qg7 Oy
’ f 4
X = Qo.p &)~ 0o &2 ,
3 i ’ a-/ _ a/z
Oy Gy 1Y
" "
_Ci8yp -CoQy
Y’l . '1” - 7N 2
. Qy Uy - 4y
/i "
Y = Ca Qyy ~C3%yy
2 - " O.” _ Ql/l ?
@y 23" %2
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and
45 G0 45 (% (1,30
c.= 3 - O 8D
1 ‘ < >
_ 1295 Q0% g0y L GANR 235ﬂu,3>ﬂ_ 75&0&)»
7405 ~ (LD* 5439 (LA* 239 (L3 ga5 ()% 225 _(,5)#
o s il e + . - =2 Q + Q
3 52 = o Q e n
(2,d)% (2,3)% (Qwx (3,3)#
= 3?5 Q S w100 +30)

In the abtove expressions for k;. the a; are to be calculated as if
M, =M,, inasmuch as the deviations from this equality have been explicitly
allowed for in deriving Eq. (10) . It is interesting to note that for rigid
spheres [k;] 2 is 8.8 percent larger than [k’.;.] 1

The above expressions for the higher approximations to the
transport coefficients were calculated by the method of Chapman and Cowling(35),
and their form depends on a particular approximation scheme for obtaining
solutions to an infinite set of simultaneous equations. The scheme used by
Chapman and Cowling is not unique, and indeed Kiha.ra.(36) has developed an
alternative scheme and from it obtained the following second appreximations

to viscosity, thermal conductivity . and self-diffusion, and the first

approximation to the thermal diffusion ratio for isotopic mixtures;

D . \'q_ﬂ‘“)* 7] 2
= + — —_——
&n ] 49 | Q3 ) 7 (42)




WIS-ONR-1

19 June 1953
58
- (2,3) % =
g v R . 2 VO ]
J?\ l 21 Q(;',;)* D j ? (43)
2 (we™-5)"
| milE ==,
D (LAY + 40 (44)
. 15 (@E"=5)
[K.,.]l o A¥ ' (45)

Kihara's expressions are considerably simpler than the corresponding
Chapman and Cowling expressions, and are known to be more accurate for
the special case of a Lorentzian gas (a binary mixture in which one cocmponent
has 2 much smaller molecular weight than the other, and collicions between
molecules of the light component need not be considered). It is, therefore,

of interest to compare the expressions of Kihara and of Chapman and Cowling
for the more realistic potential given by Eq. (1), and to estimate their
relative accuracy by comparison with the still higher approximations
evaluated in the present paper.

- - - -

(33) Reference (4), Chapter 7.
(36) T. Kibara, Imperfect Gases {originally published in Japanese in 1949,
and translated into English by the U. S. Air Force), Secs. 23, 26, 27,
31, 32; "“Virial Coefficients and Models of Molecules in GasBes",
University cof Wisconsin Report OOR-7, June 5, 1953, to be submitted
to Rev. Mod. Phys. for publication.
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The two methods yield answers for the potential of Eq. (1) which
are appreciably different only for the case of the thermal diffusion ratio;
Bome selected values for isotopes are given in Table IX below. The overall
accuracy of Kihara's expression scems to be somewhat bettzr. In view of
this and of their greater simplicity (fewer different collision integrals are
required), Kihara's expressaions for the second approximation to viscosity
and thermal conductivity and the first approximation to tLe thermal diffusion
ratio would seem to be definitely preferable to Chapman and Cowling's
corregponding expressions. It is for this reason that we have avoided expressing
our results for isotopic thermal diffusion in terms of the usual quantity RT s
defined as the ratio of kT to the first approximation to k T for rigid spheres.
Since the first approximations to kT for rigid spheres according to Chapman and
Cowling and to XKihara are different, RT involves an uncertain numerical
factor, and the quantity k; defined in Eq. (10) seems preferable from a

theoretical standpoint.

B
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Table IX. Comparison of the approximations of Chapman and Cowling {(CC)

and of Kikara (K) to the reduced thermal diffusicn ratio for

isotopes, k,’;

¥ ik;}l [k;] 2
CC K CC
o =12
0 0.3062 0.3104 0.3133
0.5| -0.0828 -0.0819 -0.0829
1 -0.0465 -0.0469 -0.0456
2 0.1860 0.1903 0.1841
10 0.4349 0. 4455 0.4536
20 0.4197 0.4291 0.4387
100 0.3852 0.3942 0.4024
& =15
0 0.3062 0.3104 0.3133
0.5 ¢.0217 0.0216 0.0229
1 0.0505 0.0511 0.0498
2 0.2668 0.2739 0.2665
10 0.5189 0.5348 0. 5446
20 0.5204 0.5357 0.5479
100 0.5253 0. 5422 0.5534




WIS-ONR-1
19 June 1953

61
APPENDIX II. COMPARISON WITH AMDUR'S SEMI-CLASSICAL
cALCULATION OoF s¢4)(k)

(

Amdur has devizsed an approximate method = for the calculation
of gascous transport properties which is capable of handling very complicated
intermolecular potential functions with relatively little computation, and has
applied his methad ic the calculation of the transport properties of the rare
gases at low temperatures. The procedure, however, involves assumptions

which require further justiﬁcation‘38)

, 8o that it is of interest to provide a
test of the assumptions by comparing the results of the present calculatione
with those obtained by applying Amdur's method to the same intermolecular
potential.

In the approximate procedure the transport crose sectione are not
calculated directly, but instead the total classical collision crose section is
firet obtained, and the transport cross sections are then assumed to be in the

®
same ratio to the total collision cross section as in the case for rigid spheres.
The total collision cross section is infinite if calculated by cempletely classical

means, %0 a semi-classical approximation is used, in which only scattering

through angles greater than a certain critical angle, X , is considered. The
' Cc

(37 1. Amdur, J. Chem. Phys. 15, 482 (1947); 16, 190 (1948); 17, 100
(1949). —

(38) 4. 5. W. Massey and E. H. §. Burhop, Electronic and Ionic Impact
Phenomena (Oxford University Press, Lordon, England, '1352), pp. 35i-
382, 385.
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tctal coliision cross section, S(K) , is then given by
S(K) = = bg : (46)

where bc is that value of the collision parameter which, for a given value of
‘he energy K , will produce a deflection equal to X oG The velocity
dependent cross sgections for viscosity and diffusion are thea taken to be two-
thirds and one-half, respectively, of S{K), as for rigid spheres. The collision
integrals are obtained from the cross sections by essentially the same procedure
as used in the present paper.

Amdur's method was applied to the potential given in Eq. (1) to
calculate approximate values of the velocity dependent transpert cross sections

for comparison with the accurate values obtained in this paper by direct means.

The critical acattering angle was taken to be(39)
”~, /‘x
K= 2y Ki ’ (47)

1/2]

where /\ is the dimensionless group h/ [rm(.?.,u, e ) » his Planck's
constant, and the other quantities are as previously defined. Following Amdur,
X was represented by Eq. (16) with the second term neglected; use of this
c

equation restricts the range of the results to K > 1 . The results are expressed

According to the approximation,

in reduced form, S*(K) = K} /(1 rrzn)

S*(K) = S('L )(K) for all values of £ ; however for K > 1, it is actually found

(39)

H. S. W. Massey and C. B. O. Mokr, Proc. Roy Soc. (London) Al41,

434 (1933). l

e e e e
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that S(Z)I_K) is always larger than S“)(K} , by as muck us 49 pexr~ent.
In Fig. 5. S*(K} is shown for /\ =0.05 and 2, wherc the potential
parameter o = 12. The small value of /\ corresponds to a heavy gas with
strong intermolecular attraction, such as xenon; the large value to a light gas
with weak attraction, such as hydrogen. Also shown for comparison are
S(l)(K) and S(Z)(K) for ¢ =12. The resul*s for other values of & are quite
similar. It is seen that although S*(K) does not change rapidly erough with
K , it may be nearly correct over a small range of K . This fact would
account for Amdur's numerical results on the rare gases (except helium),
where he found fair agreement between calculated and experimental values of
the viscosity, but the calculated temperature variation was too small. The

calculated values of the self-diffusion coefficients of neon and argon were,

1(40)(41) (1)

however, rather too smal as might be expected since S' (K} is

really smaller than S(Z)(K) . The agreement for helium was somewhat better,
but this was perhaps due in part to the use of a potential which is no longer
considered very accurate(42’).

The approximation scheme 13 thus seen to give results which are
valid over a limited range, and hence may still prove useful because of its

ai:ility to handle very complicated potential functions.

40
(40) E. B. Winn, Phys. Rev. 80, 1024 {1950).

(41) F. Hutchinson, J. Chem. Phys. 17, 1081 (1949).

(42) Reference (36). p. 378.
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