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ABSTRACT

»

The second virial coefficient has been calculated for gases obeying a

modified Buckingham potential, (Exp-Six),
€ ¢ «Ci=v/y  [r\©
@(r) - e {“ c "(-r—) J

The results are tabulated over the temperature range kT/z from 0.40 to
4060., and for seven values of the parameter « , from 12. to 15. The
treatment was entirely classical, and no corrections for quantum effects
were made.

A separate paper will present the evaluation of the parameters for
specific substances and applications of the results, together with applications

of the calculated transport properties given in the preceeding paper.

* This work was supported by Contract N7onr-28511 with the Office
of Naval Researckh.

Preseat address: Experiment Incorporated, Richmond, Virginia.

——




WIS-ONR-2
22 June 1953

L INTRODUCTION

The equation of state oi any gas may be written in virial form,

-p—v-'..-b(_'r).p 9_(—1\).’....
RT v V3 ; (1

where B(T) is called the second virial coefficient. According to classical
statistical mechanics, the second virial coefficient for molecules with
central forces is directly related to the energv of interaction between pairs

of molecules, ( (r), by the integral

20N 7 dq(n /

- — - Q) /T

B(T)- qu T e e (2)
0

Up to the present time, the second virial coefficient has been
evalusted!? for Lennard-Jones type potentials, and, in a few special cases,
for patemtials containing an exponential repulsion term. The Buckingham
potential is more reasonable from a theoretical standpoint than is a potential
haying an hw?rse-povex repulsion, and is more flexible since it contains
three parameters instead of two. Therefore, we have compiled a complete
table of the secoad virial coefficient using the Buckingham potential.

We have taken the Buckingham peteniial in the following modifiad

form (which we shall henceforth refer to as "Exp-Six") :

€ ¢ ali-r/r ) r\¢
(0= I—L/a.[ a "- (’2) ],r"mx ' (3)

r

@y o, r< rmdx . (4)

{1 An extensive table of second virial coefficients for the Lennard-Jones
(12 - 6) potential is given by R. B. Bird and E. L. Spots, University
of Wisconsin CM - 599 (1950).
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The constants € , T’ and g characterize the molecular interaction. [ 3
Here € is the maximum energy of attraction; rm is the separation at the
energy minimum; and o is & measure of the steepness of the repulsive
potential. Fig. 1 shows the behavior of @ (r) . The position of zsexo potential
is O ; its value as a function of o« is given in Table 2. The functidbn defined
n Eq. (3) would pass through a maximum &t r and then approach - «

as r — 0 . The location and height of the maximum for each o is given in
Table 2.

Table 2
Reduced separation G #* at which the Buckingham potential
is mero, location (r %) and the height of the maximum,

and separation { taken as the lower limit of the numerical

integration.

o a* “:,,,, P (r ax) i’
12.0 0.8761 0051 0.3024 7469 1705. 4129
12.5 0.8798 2937 0.2730 3685 3518. 3635 .
13.0 0.8831 9813 0.2469 7188 7110.0863 0.2784
13.5 0.8862 7341 0.2238 1785 14114.558 0.3186
14.0 0.8891 0396 0.2031 8787 2 7585.192 0.3442
14.5 0.8917 2672 0.1847 5586 53170.123 0.3620
15.0 0.8941 7037 0.1682 4550 10 1221.60 0.3844 .
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Q)

Fig 1. The Buckingham potential,

¢ ¢ a(=r/Ty) (rm)‘
q’(r)‘l"é/at[%e r J)

as a function of intermolecular separation. The magnitude of
@ (rmaxl relative to € is much reduced in the figure.
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Fortunately the height of the maximum is sv large for all practical cases that
very little error is produced by the anomalous behavior of our modified é
Buckingham potential in the neighborhood of T ax The original Buckingham
potential corresponds to the use of £q. (3) for all separations. Instead of our
madification (Eq. 4) to avoid the anomalous behavior for small separations,
Buckingham and Corner(z) use Eq. (3) for separations larger than ro

hat is r < r < % and the following expression for separations less than r :

m m
fm 3
€ [(, eot(l—r‘/rm) rm‘e”( r ")
P el - ('r—\) (5)
This relation makes the potential unduly complicated. We have found tha: the A
effect of the maximum in the potential manifests itself only for very high -
temperatures and for small values of the parameter o
It is convenient to introduce the following reduced quantities:
r* = x'/x'm . (6)
. . Q(r) | ¢ a(1-r*) 1 . .
o) e l-c/u,[ot r““] 1 Tonar, ST S {7
”® »
@ (r*)s oo, 0% CProx (8)
T . *T/é . (9)
B (,™- B(TVb, , b 3NN’ (10)
) m

(2 R. A. Buckingham and J. Corner, Proc. Roy. Soc. Al189, 118 (1947).
According to private correspondence Buckingham and Corner were primarily

concerned with interpreting high energy molecular beam scattering which
is sensitive to the potential energy for small separations.

e
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In terms of (Exp-Six} potential, values of B*( o« , T*) are given in Table 1

for the range 0.40 < T#* < 400. and 12.0 ¢ « < 15.0 .

iI. GENERAL FORMULAS
The integral for the second virial coefficient in reduced form is

” S LN PR 3 »
B (a, T")=- LT- fr” 4G e,-(p(r e de ™ | (11)

-«
A dr

Following the procedure of Buckingham and Corner(z) » We have divided
the range of integration into two regions of r* separated by the arbitrarily

chosen value of the separation, M(a) ;

M () d .(f“) -Q(r® .
BQ(“'Tc).__TL' I réJ __(:Jr_._ e ¢ )/T dr®

o

~ do®crhy  -9*(rty /e
-L' r" -iT)— e r’. (lz)
T Ma) dr

Since M( o) is taken to be almost equalto (¢ (a), the two regions of
integration correspond roughly to a separation between the large separation
where the energy of attraction is dominan* from the small separations where
the energy of repulsion prevails. Different sorts of math;mtical techniques
are used to evaluate the integrals in the two regions. . We shall employ the
symbol-K( o , T#) for the integral from zero to M{x ) in Eq. (12) , and

[ ( o, T*) for the integral from M(a) to oo . Then,

B (o, Ty e - K(a,T*) + (2, ") (13)
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In the range M(x) < r* & oo , |q)*(r*)| <1 and T#* varies from 0.40
to 400., the exporential function, exp(- ¢ *(rt)/T*) , can be expanded in
powers of the argument and the series converges rapidly. This expansion is
used in evaluating [' ( o« , T*) and permits the removal of the reduced

temperature from under the integral sign:

n

[ (e, T%) =~ T T s (—%.) J ),

n=o (14)
where
= dg"(r") n
. *3 » r
Il J A dr® [(P’(f‘ )] L (15)

M(x)

For 12.0 < a < 15.0, the expansion converges sufficiently rapidly for
the 'pnle;it purposes when M(«) is the largest integer muitiple of 0.005
less than 0 #%(x) . This choice of M is convenient in preliminary hand
computations because it avoided interpolation in the numerical tables of the
exponentiad I@ctbn. The coefficients J (« ) have alternating signs so that

Eq. (14) can be rewritten in the form:

os J, ()
F(N'TO)‘,_Z i n | T'—ﬂ‘l
mo n! ’ (16)

It is in the range of integration of K( « , T#) that our modification of the
Buckingham potential enters into the calculations. K( « , T#) may be
rewritten as

. Q"(r')/r'] b -0t (MY

Ma) 3
K(az,'l")s-ag r”[n-e de* + M [a-e -
° (17)
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Setting the potential equal to o for separations smaller than T nax '

* M (x) -CP"V")/'T"
a \
K(d,T’)--3§ et et —SS r*l-e ) ar*
o r*
max

(18)

N VA
be\'_l-e i ]

OI. NUMERICAL INTEGRATIONS
In evaluating K(a , T*), it is certainly satisfactory to ignore the

quantity exp [- ¢ ‘(r‘)l'l“] in the integrand for separations smaller than
r*, where this exponential function is equal to 4 x 10°7 for .T* = 400 .
For 13.0< o < 15.0, the function actually is this small for certain
separations, ’rl*(or.)r. In  actual practice,., the lower limit of numerical
integration of the complete integrand was Y (), which is a separation
smaller than rl*(a(). such that (M - ) ) is an integer multiple of 0.0032 .
This value of )} was chosen so as to facilitate preliminary hand computations.
For o =12.0 and 12.5, the complete integrand was used for the entire range
between r__ * and M, sothat) and r_ __* are the same. The separations

X are given as a function of o in Table 2. Having introduced X («),
in order to shorten the range of numerical integration, we may write:

M

- @ /e -9 (r*y/re
K(a,T=-2%"+M’[1-e @ eass ]-3f réfi-e T ldr™,
A (19)

\
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The eight-strip Newton-Cotes quadrature formula of the closed type
was used to evaluate the integral appearing in K( a , T*) in the following
temperature ranges.

12.5 € T* < 400 . Sixteen integration strips covering the range of separations

trom X {a}) to M{o) were taken for T* = 400. , 200. , 100. , 50. , 25. ,
and 12.5. The error arising in the course of this integration was estimated by
repeating the integration with strips of half the usual width. The errors for
several pairs of values of « and T#* both within and out of this temperature
range are shown in Table 3. The error taken to be maximum for the present

temperature range i8s 6 x 10-5 .

Table 3
Error of the sixteen-strip integration of K( « , T*), the small-separation

part of the integral in the second virial coefficient, B#*{ o , T*).

" 12.0 15.0
T# Bx* error B* error
400. 0.1444 | 8.7x 10"

12.5 0.3610 | 0.000057
6. 25 0.1688 | 0.00013 0.2681 | 0.00023
3.125 -0.1295 | 0.00025 C.0050 | D.00045
1.5625 -0.8806 | 0.00029 -0.6578 | 0.00057
0.78125 | -2.937 | 0.00019 -2.468 0.00050
0.390625 0.000016 0.000022
0.40 -10. 347 -8.953

1.5625 < T* < 8.

3.125, 2.

neglected through the first 16 atrips, with no error resulting except at T* =8.,

, and 1.5625 .

Thirty-two strips were taken for T*

= 8.

, 6.25, 4.,

The exponential function in the integrand was
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8 out of a total

where the maximum error (at o« = 12.0) was 6 x 10~
B*-value of 0.2215 .

0.80 < T* < 1.50 Thirty-two strips were taken for T* =0.80 to 1.50
by steps 0f£ 0.10. The exponential in the integrand was neglected in the
iirst 24 strips, with a maximum rélulting error, at T* = 1.50 and

o =12.0, of 3.5x 10”° out of B* = -0.9509 .

0.40 < T* £ 0.75 Sixteen strips were taken for T* = 0.40 to 0.75 by steps

0of 0.05 . The exponential was neglected in the first 14 strips, with a maximum
resulting error of 0.00033 for T#* slightly above the range (0. 78125) and
& =12.0, where B* = .2.937.

In the four temperature ranges, the errors in K( o:. , T#*) which are
quoted abeve are maximum values, which are taken to be typical for the
respective ranges in estiniating the total error in B*( o« , T*).

For the range of o mentioned above, and for all n, it was found that
no significant error (less than one part in 107) is introduced in evaluating
the coefficients In (¢ ), by neglecting the repulsive part of the potential for

separations larger than A () = M( ) + 2.48 . The integrand formed from

the attractive potential alone is then integrated analytically and Eq. (15) becomes:

-3-6n

dr*

A %
do"¢r”
*‘( UL )[(p'(r')]ndr',
M (20)

n
Jn(ot)‘(") . 5

o . e
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The eigat-strip Newton-Cotes quadrature formula of the closed

type was used to evaluate the integral in Jn(oc) . Beginning at M(a),
32 strips of width 0.005, then 32 strips of width 0.01, and finally 40 strips
of width 0.05 were taken. The greatest error for any set of eight strips
was 5.4 x 10| in the firat eight strips for « =12.0 and n =0, outof a
total Jo(lZ.O) =0.9657716 . This error was taken to be typical for Jo(tx ) ;
the exrors for other values of n were too small to be apparent in the eight -
digit arithmetic employed in these calculations. The corresponding error in

B* is 5.4:10‘7 et

K{ ©x , T*) and Jn(oz) having been computed for various arguments,
it was necessary anly to perform a summation to obtain B¥*( x , T#¥), which
was to be tabulated. [ ( « , T*) was evaluated upto n = 10 . For
T* =0.390625 and % = 12.0 the tenth term in [ was larger than for any
other set of parameters, =ing 2.4 x 10°4. A rough extrapolation indicated
the eleventh term to be about 5x 10°° . For T#=0.78125 and x = 12.0,
the tenth serm was :.2 x 10° ' . Thus, the largest errors in B* introduced
by cutting off the summation at n = 10 are found in the lowest temperature
range, where they are an order of magnitude smaller than the errors in
K{ « , T*) . The errors arising from the numerical integration employed

in evaluating J’n( «) are likewise smaller than the errors in the K-function,

even where the former exrors are at their largest.
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IVv. INTERPOLATIONS

The numerical integrations described above afforded values of B#*
(x, T¢) for T* =0.40 to 0.75 by steps of 0.05, 0.78125, 0.80, to 1.50
by steps of 0.10, 1.5625, 2., 3.125, 4., 6.25, 8., 12.5, 25., 50., 100.,
200., and 400 . For other values of T* , various interpolation schemes
were uscd to determine B* , with the aim of producing a more complete
table, in which an uncertainty of about one part per thousand was desired.

The values of B* for T* = 300. were found by linear interpolation,
with logl-o'r* being considered the argument of the function B* . The
corresponding error for the Lennard-Jones {12 - 6) potential was 0.067% ;
a slightly greater computational error would be expected for the present
potential, because of the greater curvature of B* as a functionof T* in
this temperature range.

The values of B* for T* =90., 80., 70., 60., 40., 30., and
20. were interpolated by Everett's method, with argument logloT* . The
corresponding error in B#*(20) for the (12 -6) potential was 0.014% and the
largest of the other errors was 0.0056% for T* = 70. The resulting B#*(20)
values were averaged with those found by a curve-fitting method described
below.

The values of B* for T* in the range 1.60 to 20. were found by

fitting the formula,

LA ’ (21)

o —
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to several sets of known points in the range T* = 0.78125 to 2003., excluding
the evenly- spaced points between 0. 80 and 1.50 . For a = i2Z 0, the
coefficients ki were computed for several sets of known points, as indicated
in Table 4. The interpolated values obtained from various sets of starting
voints are compared in the table (* ir.dicates that the interpolated point is in
an interval adjacent to the middle point of the range of known points; ** indicates
the B¥*(20) computed by Everett's method). The discrepancies for o« = 15.0
were found to be about the same as those for & = 12.0 shown in the table.
Following a scrutiny of Table 4, it was decided to use the known set T* = 3.125
to 50. for interpolating B* for T* = 7, to 20. The known set 1.5625 to 12.5
wap employed for interpolating in the range 3.2 to 6.0 , and the known set
0.78125 to 6.25 for interpolating in the range 1.60to 3.1 . The B*-value
obtained in this way should be accurate to one in the fourth decimal place.

The values of B* for T* =0.85to 1.55 by steps of 0. 10 were found
by curve-fitting the formula,

= i
Bx = 22 k(T*)", (22)

to the five points in each of the two known ranges: T#* =0.8 to 1.2 by steps
oi 0.1, and T* = 1.2, 1.3, 1.4, 1.5, and 1.5625 ; and interpolating the
unknown points within these ranges. Wben the formula was fitted to all
possible five-point ranges including T* = 0.95 and 1.25, for the extreme

values of « , each of the unknown points was an interior point of four

different ranges. The discrepancies among the four calculated values of

&

B¢ for each of these pairs of values of « and T* were at most 3 x 10~




e e e e et 8 it e e

22 June 1953

WI1S-ONR-2

- *
Pt
1
MTLIN T~ HOBTHR T~ ofsty° 1~ f69th 1~ oR* 1~ 2°1
G28G0.L°0- | «h02GO0L°0~ gl160l°0~ 21260l °0- Lwol o~ Gl
19ln62°0~ | «6TL00€°0- | of9l00L°0~ | 8floOL°0- 0800£€ *0- 161662°0- G2
266650°0~ | «896660°0~ | 4GL66G0°0- .| Ll966S0°0- | GC00B0°0- G¢
659101°0 HIOT O ol9HTOT°0 «£GHhTOT 0 101°0 632H0T°0 {4
g8t #61°0 264661°0 226661°0 «0£6G661°0 «126661°0 0THs61°0 °l
g21€62°0 050HG2°0 186€G2°0 h30KG2°0 8214G2°0 °0t
(ee8L£62°0 °30) 660982°0 16€h62°0 #66€62°0 «816€62°0 ‘02
(%2 449 G2°9 ] G°2t °G2 *0S *002 ol
(1} (1) (1) (11 (11 (11 (11
62906£°0 6218l°0 i 6296°1 2 Getf G2°9 .

*squiod WASTY JO 6408 TUIGASS (W SOUTEA OUY WOIZ ([J-0AnO ®w £q pouUTEsqe
‘0°2T = o I9F AUSTITI080 TEIITA PUGDSS PEOUDPEI oYL Je senTe; pegeyedrequy

h o1qeg




L e e P S

—

WIS-ONR-2
22 June 1953

17
At higher temperaturey. the error of interpoiatiou was iess (6 x 10-7
discrepa.cy between two interpolated values of B* for T* = 1.45),
whereas for T#* = 0.85, (he low-temperature boundary of the range, the
greatest discrepancy among three interpolated values was 1 x 104 .

To summarize the computational errors present in the final values
of B*( o« , T*): For 0.40 < T* < 0.75, the error (which arises in K
is 0.000%; for 0.80 < T* < 400., the sum of the interpolation errors and

the errors in K( « , T*) may be as great as 0.0002; except that, at T* = 300.,

the larger error of interpolation may raise the total uncertainty to 0.0003 .
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