20

e A L9 M VB | B

g aery SOOI | o P

"oyr ey

ON SUBSONIC FLOW OF A COMPRESSIBLE FLUID

BY
P. R. GARABEDIAN AND M. SCHIFFER

TECHNICAL REPORT KO, 12

JUNE 19, 1953

PREPARED UNDER CONTRACT Nonr-225(11)
(NR-041-086)

FOR
OFFICE OF NAVAL RESEARCH

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANVORD, CALIFCRA




-

OGP PR

Y

ON SUBSONIC FLOW OF A COMPRESSIBLE FLUID

by
P. R. Garabedian and M. Schiffer

1. Introduction.

The results presented here were motivated by a desire to give a simple
treatment of the non-linear elliptic partial differential equaticn governing
the steady irrotational subsonic flow of an ideal compressible fluid. For

tno independent space variables x and y, the stream function Y of such a

flom satisfies an equation
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where F-F(“Vi" \Vj) is an analytic, increasing, convex function cf
1/2

q= (\Pi"‘ \Iv’;) / whose explicit form depends on the equation of state of the

fluid in question. Our analysis of (1) will be based on the fact that it is

the Euler-Lagrange equation for the double integral variational problenm
(2) ff F(‘f’i" \fi)dxdy = minimum.

We shall introduce several devices for analyzing (2) which prove to be
particularly successful for the case P= (1+ \}’i*’ ‘f';)l/z of the Plateau problem.
Shiffman [5] has given a proof of the existence of subsonic compressible
fiows vased on {2). His work is part of an extsnsive litcrature cn the caleulus
of variations and on non-linear elliptic partial differential equations of which
the contributions by Haar [2) and Radd (4] come closest to the point of view
of our paper. The deduction of a priori estimates on the derivatives of the
solution ¥ of (2) and the discussion of the analyticity of ¥ are key develop-

ments in the theory. and it is in these two directions that our analysis applies.
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In the second section of the paper, we study the minimum problem (2) by
the method of interior variation [1].
H for which we can derive a second order partial differential equation from the
existence of the first derivatives of ¥. In the case of the Plateau problem,
H satisfies an elliptic Monge-Ampére equation which ties in with Radb's proof
of the analyticity of a minimal surface.

As a preparation for the application of interior variations, we take up
in the third section a construction based on symmetrization which yields for
the Plateau problem a minimal sequence satisfying a uniform Lipschitz condition.
For this construction, our assumption on the boundary data is more general than
that usually required for the analogous conclusion using the three-point
condition, and we are therefore able to discuss the Plateau problem in non-
parametric form for a domain which need not be convex. Furthermore, the

symmetrization method applies equally well for any finite number of indepen-

dent variables.

2. Interior variation and the integral H.

In a plane domain D with boundary curves C, let ¥ be a solution of the
minimum problem (2), with, for example, prescribed boundary values on the
curves C. We shall assume merely that V¥ satisfies a Lipschitz conaition in D,
8o that the first derivatives pr and k?y exist almost everywhere and are
bounded. Instead of trying to derive the Euler-Lagrange equation (1) by the
classical method of varying ¥, we study (2) in this section by performing
infinitesimal transformations on the independent variables x and y and by
considering the shift of Y thus generated.

We let'f be a continuous complex-valued function in D, with piece-wise

continuous first derivatives, which vanishes on C. It is convenient to use the

This leads in a natural way to an in‘egral
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complex notation 21‘2- fx'ify’ 2f_z_- ’A,“lt‘;-, z= x*iy, for derivatives. For
snmall values of the complex parameter €, the transformation

(3) 2 =z+€EL , z.-x'*iy' ;

performs a one-to-one mapping of DU onto itself. We define a new function \\f
in D by the formula

(4) Y - ey

and we compare the values of the integral in (2) associated with the tmo
neighboring functions ¥ and \P’.

Clearly

* »
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whence by elementary calculation

% * » *
(6) f £ Pty nedey' - j Dj FLy, Y. )axdy

=2 Re %ff[(?- q?'F’)fz- u"?i f.z.ldxdy +o(leP)
D

2). In the

where q”--aq»z\y_ and where F and P/ stand for F(qz) and F(q
z
nsual fashion, we conclude from (6), from the extremal property (2) of LP,

and from the arbitrary nature of € that
(7) ‘u[(?- qzr')rz- I.F’\-Vz fE]dxdy = 0

for every continuous piece-wise continuously differcontiable function f in D
which vanishes on C.

Let €2 be a closed subdomain of D, let w be a continuously differentiable
function in D which is identically 1 inC) and which vanishes on C, let t be an
interior point of (), and let © >0 be so small that the circle [z-t| < P is

contained in the interior of 2. We define
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for lz-t| < @ and we define

R
(9) f~-"%

in D for lz-tIZ(o We can substitute this function f into (7) to obtain

(10) -P_z S§F'\/2dxdy --j‘f F—-ﬂ'z'dedy*A( ),

K (z-¢

where K denotes the circle lz—t |é e and where A(t) is the analytic function

w
(11) A(t) = ff (F- qzr')[z—_‘; . (—-’é’-)—zldxdy
z-t
in Q).
Letting P-)O, we find almost everywhere in Q
(12) TR = ” I(’;“—- axdy+ &(8)
=

where the integral on the right is to be interpreted in the sense of the Cauchy
principal value. In the case of the Dirichlet problem, I-“.:"q2 and the formula
(12) shows immediately that q'i is an analytic function. Thus we obtain in

the simplest situation, corresponding to an incompressible fluid, a quite
elegant proof that the sclution of the minimum problem (2) is a regular function.

In order to study the general non-linear problem, we introduce the integral

(13) H=- ;ﬁ- ” (P- qzl?') log [2z-t| dxdy + B ,

where B is a real harmonic function in ) such that TTBtt--A(t). By (12)
and by standard lemmas on the second derivatives of a logarithmic potential,
we find almost everywhere in {2

2
- F-
(14) Ht}: q

(15) Hyy = -AF'\l'i , H = -ur'\{f_z.

tt t

?l




RPN ¥

e i

-

-y

MCETD SO WW VRN, appy a0 IR STT) TRIY VT SOy

This gives in turn

(16) HyH_-H-_ = 2°FF/ - F°
tt tt

We can eliminate q from the equations (14) and (16) to obtain for the real

function H a partial differential equation of the form

(17) OH = Q(H A - !ﬁy) » QH =B +H ’

where Q is a real analytic function of its real argument which is completely
determined by F. For the most general function F corresponding to an srbitrary
equation of state, (17) is a non-linear equation equivalent to (1) which
involves only very special combinations of second derivatives of the auxiliary
function H. The significance of this second ordar partial differential equation
is that its derivation requires only a Lipschitz condition on the stream

function V.

The form of (17) suggests finding those integrands F for which it reduces
to the Monge-Ampdre equation

(18) AH = BB - By

This reduction takes place, according to (14) and {16), when F satisfies the

ordilary differential equation

(19) 2°FPF - F = 2A(°F-F)
for a suitable value of ths constant A . We check immediately that {19) has
the general solution

(20) O FERNER

whence the Honge-&mpére equation (18) is seen to correspond to the case in

’

which (2) is the Plateau problem.

We arrive in this way at a proof of th:c analyticity of & minimal surface.

For we can apply the Legendre transformation
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(21) h+H=ux+vy , wu-E , ve-E

to (18) in order to obtain the linear elliptic juation

(22) S L ;

the solution h of (22) is evidently an analytic function of u and v, whence H
is an analytic function of x and y, and by (14) and (15) we can conclude that
the function Y is also analytic in x and y. The Poisson equation (22) yields,
furthermore, a procedure for constructing flow patterns explicitly according to
the formulas of this section in the case where the equation of state of the

fluid leads to an integrand of the type (20).

3. Symmetrization and the Lipschitz condition.

The analysis of the preceding section exploited formal manipulations in
order to demonstrate, in certair important special cases, the analyticity of
solutions of (2). In this secticn, we complete our discussion of the Plateau
problem by constructing a minimal sequence which fulfills a uniform Lipschitz
condition.

Along the curves C bounding the domain D, we assign boundary values which
generate in space a system of smooth closed curves 7. The problem is to cpan
through the curves r a non-parametric minimal surface over the domain D. For
this problem of the type (2), we can clearly find a minimal sequence of surfaces
whose areas approach the minimum value in question. There is no loss of
generality if we assume that each of these surfaces lies in ths comvex hull
of the system of curves r’, since when this is not true for a given surface,
we can diminish the area of the surface by replacing portions of it by sectionsa
of planes tengent to the convex hull of r. Furthermore, it is permissible to
diminish the area of any of the surfaces of the minimal sequence in a similar

manrer by replacing portions of them by simply-connected sections of catenoids,
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or of other specific known minimal surfaces, which do not intersect r.
Thus we may suppose that all menmbers of our minimal sequence lie in the
largest closed region E projecting onto D which contains the curves r', but
which does not intersect in a simply-connected surface element any plane or
catenoid not meeting ['. This latter condition means that E cannot be
diminisbed irfinitesimally by cutting off a volume element with a plane or
catenoid which does not intersect ['.

We now make the assumption on the boundary curves [" that the closed
set B is so situated that, for some € > 0, all lines making an angle smeller
than @ with the normal to the plane domain D and intersecting | have only
one point in common with E. This assumption restricts the curvature of [,
but does not imply that D is a convex domain, since in some cases D can even
be multiply-connected.

We consider any rectangular coordinate system in which the z-axis makes
an angle less than © with the normal to the plane of D. In this coordinate
system, any element of our minimal sequence has a non-parametric representation
z= z(x,y) which may be multiple-valued, with branches z= zl(x,y),z- zz(x,y),...,
z = zzwl(x,y), 2,52, ... =%z, .. We symmetrize such a surface by
replacing it with the surface whose non-parametric representation is the

single-valued expression
2m+]

(23) z - k§ ;1 s zk(x,y)

It follows from the basic raesults of Steiner, or, more directly, from

Minkowski's inequality [33, that the symmetrization process (23) diminishes
or leaves unchanged the area of the surface. FPFurthermore, if symmetrization
in one such coordinate system is followed by symmetrization in arother; the

resulting surface still has a single-valued non-parametric representation in
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the first coordinate system. This can be checked by making en affine transfor-
mation such that the directions of the two symmetrizations becoms perpendicular,
a case in which the result is evident. Finally, and most important of all, the
symmetrjzation procedure {23) does not alter the boundary curves M of any of
our surfaces, since the surfaces lie in the set E, which has the property that
if any line parallel to one of our z-axes intersects r’, then it intersects [
and E in only one single point.

These considerations show that we can assume without loss of generality
that each surface of our minimal sequence has a single-valued nun-parametric
representation in every coordinate system whose z-axis is inclined at an angle
less than © with the normal to the plane of D. But if we denote by z= WY(x,y)
the representation of such a surface in a coordinate system such that D lies
in the (x,y)-plane, then this result implies that WV satisfies the Lipschitz

condition

2
(24) [W(xy,7,) = Wixy,yy) | € ML (xymxg )2+ (yz-yl)zll/

’

with M= cot 8. Thus we obtain a minimal sequence of surfaces satisfying
the Lipschitz condition (24), and from the lower semi-ccntinuity of the
area integral [2) we can deduce the existence of a solution of (2) satisfying
the same Lipschitz condition, for F= (1+ q2)1/2.

4 combirnation of the techniques of this section and of the previous
section yields a solution of the Plateau problem in nor-perametric form for
a domain D which is not necessarily convex, but for z system ¢f smooth boundary
curves F’ satisfying the above geometrical coadition relative v certain
planes, catenoids, and projections. Cur method for developing such a condition
is a generalization te non-linezar elliptie equations of the majorization
princirles of the therry of lirnecr elliptic partial differential equations

based on the maximum principle.
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A point of interest in the symmetrization construction presernted in
this section is that it yields estimates of precisely the sare nature in space
of any number of dimensions. In particular, we can treat the variational
problem
(25) S‘If(l*vz’ﬂ’z*‘i’z)vzdxd dz = minir
25 - y 5 ydz = m un,
which has applications to the study of three-dimensional flow of a

Karmin-Tsien gas.
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