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The spcectral anatysirs of 1eif adjoint and erormal
opesrators 1n ¢« Hilbert space 1 es essentially (il the
infermation whichis usually needed aboul taekehuavior
of the operator. However., :n casc of general linear
operators (even bounded) fer which thereis no speciral
anaiysis available, one mustlook to zome other nicthods
to dezcride the struciure of the operator.

The specific consideration of iilh2est apaces which
is of such helr in the investigation of szlf adjoint and
normal vgperators does not seem Lo he of special im-
pertance when non-normal operaters are considered
It is becoming /:are and more an acceptrd apinion that
for suchoperators a general theory should be developed
within the [ramework of Banach spaces.

One manner of attacking this problem is by the ine
vestigation of invariant subepaces. This method pre-
sents :rany diff:culties which have vet to be overcome.
The basic prodblem of (he existence of such subspaces
is not scttled 1o genera!.

The present reportis a corniributionto this problem
of existence {or the speciaiclags of completely continu-

ous operators in generai Banich spaces.
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Let T be a linca~ bounded --perator in a Banach space B, T(B)c B
A closed lingar aubspice L < P is said to be 4n invariant subspace of T
i Ty L. £ is a proper inrzaviant subspace if (0} ¥ L # B. U =
is a Hilbesrt space and T is a self adjoirt operator, an invariant subspace
reduces T and hence the invariant subspaces comcide with the spectral
subspaces. However, if T is omnl; assumned to be a normal opesator in a
Hilbert space B , then there rnay be invariant saubspaces which do not
reduce T.

At the present time the invastigation of invariant subspiaces :s not very
advanced and seems to fresent ersential difficulties. Jn recent years interest
in tlus study has tncreased since the subspaces appear in a natural way in ,
connection with predicticn theory [sec A.N. Kolmogoroff Eé] and N. Wiener
[5]). and its interpretation in terins of unitary opsrators in a Hilbert space.
Eesides those cagses which can be ccduced essentially to the treatmant of
operiters in a finite dizosional space, or self adjoint cperators in a Hil-
ter: space, there arc very fcw fo. wiich the invariaat sabepacecs have been
completely described. Such:. dcsuristion was given by A.Beurling [2] in
cise of special 1sometric operator: in a Hilbert gpace. For general bounded
operatcrs, even in a Hilbert space, it is not as yet known that there always
exists a proper invariant subspace.

Some years ago, J. von Neamann informed the first autkter of thia paper
i2at \n the early tairties he proved the existence ol proper 1nva.ant subsjaces
for compietsly continunus operators in a Hilbert space; the proof wies never
publiehed. In 1950, the firet autlor found a proof of the theorern in this case
which used orthogona! projecuiovs and hence ¢covid noi e s <Tervied direcily
to Ban~ch spaces. According to . conversation with J. von Neumann, this
was eascatially the same proof th.t ae found earlicr. Cuite recently, the
. 1ot author was able to give a proc{ fcr reflexive Ban.:ck spaces {which waw

1 Work dome in partisl fulfillment of Contract Noar-58304 with Office of
Naval Reasearch and University of Kansas.
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oot pablished). In the present paper the iast proof 15 extended to general
Barach spaces. .

Since the criginal proc! for & i:lbert spuce differs in many aspecte
from the gene- . procf, and zince 1t was never publisbeu, it w:ll be brief-
ly indicated _t ihe conclusion of this paper.

THFEOR M. iec 5 be a Banach space and T a completely con-

- e o — -

tiaucas ope-tor D . There exist proper invariint subagaces of T.

i - s &=

Proof. “ve shali lizuit ourselves ‘o an iniinite dimansional space
since in [inite dimensicnal spaces our theorem is a simple consequence
of the classical thoery of elecinentary divisora.

Consider an ariodtraey { 4+ 0 1a B . The closed subspace [Tni](:
generated by f and its succeseive images, Tf, Tzf.'l'3(. ...« is clesriyan
invariant subspace of T. We can there{cre limit curselves to the case wherc
(1) [r“:]‘: =B .

This foru.ula 1mplies the {oliowing propertieu:

{2) R j_s_:-carabl ’
(3) 211 the clements T?f are 4 C and are lincarly independent.

The proof of (2) is immediate. To prove {(3), suppose that we have the

" "2 5
relaiion o, T f+a,T "f+... 40, T "{ 0 with ali the coefllicients 4 0, and
a
0< B <N, <.Sn. It would {ollow thas Tnkf ® %L(QIT xf‘i énk-lTnk-l()

K
and hence all the T"f's would lic in the subspace generated by those with

ivdicas n < n, which is 1n contradiction to (1) and the infinite dimension of B
la the proof we shail no’ need the weak topology in 5, hence couver-
gence will mean strong comvergence in 3 . We understand complete con-

tinuity (Banach’s totul continuity) in the sensc that any bounded set is transformed

1. In view of the theory of completely zontinuous operators as developed by
S. Banach [l]. this theorem odvioualy gives a new result only for com-
pletely continuous opervsters which are quasi-uilpotent (i.e. with ppectrum

reduced to the single point 0). A simple case of such an operator is given
rx

oy ibe integral operator of Volterra type 1f = j i dx .
0
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by T into a reiatively compact set {: st with compact closure ).
.Gimce tn tvery scparahle Banach space we can dofine ap eguivaient

etrictly convex norm: {i.e. such that if x $y and Jxf = Eyf 2 0. then

Bx+y§ < 8x§ 4 §y{ (see J.A. Clarkson [3]) we shall suppose, in view of
{2} tiut the norm in B _§._s_ etricily coavex.

Consider an arbitrary linite dimxnsiuna& subkspace =B . For svery
£ 7T  we can consider ibe mini:nnl distance P(x, Ly trom x tn .;f_
Since £ i1 of finite dimension, the shoriest dintance is cenii‘}y attaimed

apd in view of the strict convaexiiy ol the norm it is ::nmedutely proved
that there exists a unique point Px € which realizes this minimal
distance, i.e.
{%) Ex=Px? - s{x, &)= minfx=y] .

T o ’ yeLl
Px represents an operater i 3 . in geonerzi non-licear, We ehall call 2
the metric projection on .2 , or briefly, {when this is not misleading) the
projection on L . We list bers a fow properﬂc:‘a of this projection which are
immediate consequsencea of irg delinition. |

a-1}=-P 18 idempotesss P= P.
&-2) P is bomogeneous: Plox} =aPx Aic:.- every o,

a-3} P 33 quasi- additives Piy#x}ny*i': fqr very y& o .

a-4) JPx-xj < §xt. l?xﬁ < ZE:Q

=5} | jx-Pxi - 1y-Pyj | < Qx-v‘{.

'
a6} _ﬂ_f.e:..!f and P is the projection on -ay

, then Jx~-Px}f < fx~Pral,

Clearly a-5) is the general properiy of the shoriest distance plx, A)
from x to.a lixed set £

Considar now a ssquence of closed subspaces L, c B . We introduce
the limit inferior of the sequence L K 38 follows:

{9 lim {kxﬁo_g_a}l_ x €2 such that for some zkg-_-(k. £ > X

1. A more claasical definstion is: weak convergence of x, to x implies
atrong coavergeace of Txn to Tx. Iu reflexive spaces, the twe
definitions 2re equivalent, but ir non-reflexive Banach spacer the

former immplies the latter, the converse S2ing i geaeral {alse.
T4 F
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We now list two propertics of this Limit which can be imimedistely verified.

b-1) lLim ,{.‘ is a closed subsoace.

b-2} i every "k 1z finite dimensional, then x & lim "ik _i_f_a only if

— i

F’kx ~> x, where P, is the projection on L~

We pass now to the actual proof of the thecrem

With { satisflying (1} we construct the k-dimerns.onal subspace
iy K=l
16) Pt r*1,

We denote by P‘k) the metric projection on _z:‘k). By (1) it is clear that
im L™ « A or that {see b-2))

XH P(klx—-;» x foral xeB .
We consider then the cperator Tk in a:‘k) defined by

{8) T

" :'P(k)"fx for x¢& o‘C(k).

k-1 .
Ve prove taat T.k is linear. In fact, if x nZ_, §i’l‘1£ » then
: 0

kel o T
PO NI s Y~ S ) T i+l K)ok, |
T x = PXx = P Z 4T - Z_‘O et Mrag,  PMTNE

we use here the properties a-3) and a-2). This shows that ‘Ik is linear,

{
Tk bzing 2 lincar operator in the k-dimensional space o(_‘k). we can
use the classical result that it may be represented by a triangular matrix,
which gives that there existe an increaeing sequence of subspaces,

0 k,1) ¥,k
(9 toyn LN ptlle oM. g
where ‘C(k'i) is an invarian subspace of Tk of dimension i.
We dencie by F(k"’ the projection on .t(k'i),
LEAMA. ! Let j X !l and gi { be sequences of lutagsras auch
M) cee— M) % -
that = P @ end U<i_ <k _. Further, let x sl = ™., I
—— ¥33 p— = o, < m S anioans m anm—
(ki)
Tx ~-y them ye&lUmL :
1. The corstruction of subpaces {3) 2vnd the lemma 2re valid {or any

lingar operator T (even not contiguous).
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in fact, we hove 2 ix T oo sl = o the oiber hand,
wfl & ia
by a-5 and (1) &
{x )} ' {3
4 - S ¢ - -~
§Tx P “¥x_ Y iye® Tyl Tz v}~ 0
ie ) {k_)

» f s 23 1 E £ m 4 ~
Tr-F T e §3iy-Tx 4 1Tx P Trx 0,

which yroves (he wwmma,

Corcliary i. Y Far iay segucnw» tk and {‘mé satisfying the
oo ditions of the lemma, :.m. Jdu su invariant subspace ot T.

fod ) {k }
ia fact, if x:Elim-i WM gie. if iox some x &-’C_ m’ m &

X _~=>- X, we have by continuity of T, Txrr-—‘sv- Tx, and by the lemma,
TeGlim<L ™ T

2 ‘km’i'u)

Corollary 2.7 If the lim of every aubseqx_mace of {.Zf : g
3 )

iz = (0}, then for <ny bounded 1equence {xm‘(‘ j aC )’ T we have

Tx ~or [

By complete continuity of T, ine ssquence {xmi is transformed inlo
a relatively compact scquznce. ;Ix t .+ Therefore ;t is enough iz prove that
4f any subsequence ht*m,} converges to same y, thes y = 0. But this

3 . LI
follows frewr our hypsthesis, simce by the lemmz, £ lm 3y
We chuoss now an zxbitrary 1eal o with
(19} O C s ks 2%l >aff TR 41§ .
§m¢t 4 €. ,AQ‘ we nave by (9} and a-t)
g ~ Je-p % > gropt ey s proptMeg - g

Thevs exists tharefors for cach % - 1 %,..., & uaique index i{Kk),
0 < ¥k} < &, such that

{33 aizp“’ﬁﬂk”’! gniiﬁ - gt_p(kv“k“n(g .

Lat u,. k=},2,..., be an 2lcmaent of i‘k‘“khu such that

e——

i This coroilary &3 ¥velid for any ou=ded linear T.
ot o

1 is anly inthis corallary the! caxplete continmty is easential for our proof.
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11 2) i..kf ) ?‘ ! c’)uk-‘-c

Such an 2lement can be obtained irom ap a-hitrary eiement
(¥ ik 1) 333 5 o - w,ild
v(i'.u:'t{‘} .ll__’,;:_(k.ti. 7o by pulting 4,7 fv-P "(‘))Vg I(V_P(s.k(t))v) :

sropeity {12) is then proved by asing a-<) and a-l}.

Since the dimensions of XX L4 5(_“' AR gigter by 1, every

tlemant ,ij*«i(ﬂﬂ) is represcntable io & wnique vay ia the form y » x4 am
with x = P‘k‘“k” Corrvespondingly, we shall put

FRIEIPSY i{k) 4 ., it k))

We have, by a-4)

(i4) TR Phll S it PRV T R M PR LY B

kﬂ

We prove now the following staterneunts:
e Wik )
I. For every stquence k_ r o, lins L ! "_ 4 B,
(ke 80 18D o
FTUERY

m

1I. For some nequence k' M w, hm.l,

Li. If ior every sequence um/ @, limdé
(k' .x(k' J+1)
seouence k'm/ w0, iim.‘,

AR itk D) (k_.itk_j)
Procf of I. I lim J Hhem =R, thenby b-2) P ™ ™

which contradicts {li).

= {0}, then for every

-1

Proof of . 1If our _tatement were aot true, we would have vy Corollary 2

that the bounded sequance {P“‘*uk“n{} {see 2a-4)) ia tr nsforized into a
ssquence 2‘1‘?”'“””’!} ;:on.verging to 0. 3Since 1{ = ’:if—?‘k““k““ﬁ 4
rplk Rl Lo et §T) - timTU-PU B g b iy ins Ty groplReiR gy
which, by (i}, gives ETI] <ol TH §f in contradictiod .. (10)

e k' x(k i)y
Proci of lil. Suppose that {or some &k'mg A @, hr'.f =

(k' k)i (S 3NTE SRR

2

Ry B2 o have P T dempe f and PP T Tf{amTe iy
{13} we have thea 3 -hm(xk, ML }o TEf= us-.(x' T “k. }); bpeme,
m Irn

TS nlixn(’rrx.6ﬁk, T:.xk, ) 2nd T ¢ = Lm(Tx', bﬁ'k,'i‘u.x, }oo Ay {14) and
L. m

m
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Coroliary 2, it fuilow; Tf = limﬁ.‘ Tuk, ; Tzf - lim 8’ ,Tu.k, . Hence
m m m m

y
o', / ﬁ’, converge tn some Y and T"f = v Tf in contradiction to (3).

We :chieve the prool of ~ur theorem is follows. If there is any se-
ik ik _))

- g
quence % > .o :nch that 2 = L el 4 {9), tlen in view of

Staterment 1 and Corollary 1, & is & proper invariant subspace 1f there

] bl
18 no nuch sequence ¢k ' then by Statement il we choos= a sequence
o (e’ k' _)el)
mn m

’m A~ ® sothat O lim 4 (0). By Statement 11l and

%
! . .
Corollary 1, O is ther : proper invariant subspace.

Proof \n case of « Hilbert 1pace B . In this proof we use weak and

string convergence of elements sad operartors in B, denoted by the symbols
~» and —5~ . The simplifyiag feature in the present case is t":ut the me-
tric projections coincide with usuai orthogonal projection; and hence are
linear. Thre .t(k) can now he amy increasing sequence of subpsace - with

union dense in 3: { may be any element 4 0 aud dbelonging to .(“). The

operater Tk {a now the restriction of P(k’TP(k) to .((k). The subspaces
_("k'" are datined os before. (x i)
The lemma is replaced by the following: If P m M __ Q, then

QTQ = TO (*'~ opsrator Q 1s mecessarily positive with beund <1).

in the proof tre fact iz used that P(k'i)‘r?(k'” = P(k)TP(k") and that

plad ¢
As Caroliaty, we obtain that: I{Q(®)ec:S where S is the closed

subapace of all x's with Qx - x Hence [ 12 a proper invariant zibapace
except when Q « 0 or Q -1, or ¢lse when G4 QA and T var e on
the range of Q. In the last case co~ry one-dimensinnal subspace ~{ Q(B)

is clearly an irivariant subspace.

The pvoof is coalinued by defring i{k) az an (11); the n: ~L .r a need

not be reairicted by the sccond part of {s3). Ve then choose a subseyuence
(k_vilk 1)

{k } so that for some G and Q°, P - Q, an

(K7 ke )+ d)

pm = —~3~ Q' 1ln view ofthe coroilary, il remains onlv *>. ‘avest:-

gate the case when botk Q and C' are € or I. Here we ua. ¢ jcneral

lamma that: M projections converge wveakly to a projection, they ¢ ..iverge

uronglz.
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We then prove the feliowing stateprgats: 1) O 4 1; f-’:ﬁ Q 4T
DI} M G =0, then Q' # 1.

Tbe procfs of 1} 2rd L) are {romediste, For tha iarioft.xi Y we

natice et ctherwise ! Q'-0G, and mce 1 would be the utro:g iiratt of
2 ‘ (kg4 m)m (k i
the one -dimensionai proractions P © =D emich ia

irmpsesi®le, This complates the proof.
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