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THE RESPONSE OF SIMPLE STRUCTURES TO DYNAMIC LOADS

I. INTRODUCTION

A. INTRODUCTORY STATEMENT

The response of an engineering structure to a dynamic disturbance de-
pends upon the characteristics of the impulsive excitation and upon the physical
properties of the structure itself. If the accuracy of the results is to be in
keeping with the accuracy of the analytical procedure, the use of rigorous
methods of analysis in calculating responses requires precise data describing
the load and the structure Iinvolved. However, there are always certain in-
accuracies present in estimating the load on a structure. Additional uncertainty
exists in determining the magnitude and distribution of the mass of a structure
and the load-deformation charadteristics of the material from which the structure
is made. No matter how "exact" is the analytic procedure for determining re-
sponse, these inaccuracies in the parameters lead to an unreliable prediction
of the behavior of the structure.

In order to interpret the significance of calculated responses, it
is necessary to ascertain to what extent variations in these factors affect
the response of the system. A broad understanding of the response of a struc-
ture to various patterns of impulsive load is required before one can investi-
gate the effect on the response of deviations in the forcing function parameters
and in the properties of the structure. The objectives of this investigation

are to study the response of a simple structure to dynamic disturbances and to
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determine the effect on that response of variations in the parameters of load
and in the characteristics of the structure.

For this fundamental study the force functions and the structure con-
sldered are ones which can be defined by simple mathematical expressions. The
impulsive load pattems include those blast and impact disturbances described
by a step-pulse function or a triangular-pulse function. The structure under
study is one which can be represented by an undamped, single-degree-of-freedom
system with elasto-plastic resistance to motion.

The descriptions of the load and the structure involve a number of
parameters. For a specific impulse pattern the average applied force and the
duration of the load are the force parameters considered. The mass of the
structure, the rigidity, and the elasto-plastic properties of the material from
which the structure is made comprise the characteristics of the structure. Com-
plete investigation of the problem requires consideration of the entire range
of these parameters. To this end, the results of the analysis used are pre-
sented in dimensionless form.

The problem described lends itself to classical methods of analysis.
To avoid errors introduced by numerical procedures, an analytic procedure is
employed for determining the response of the system, its maximum response, and

the influence of the problem parameters on that maximum response.

B. NOTATION

The terms used are defined when they first appear in the text. They
are assembled here for convenience in reference.

K

spring stiffness

M mass



X = displacement of mass

X = maximum displacement of mass

Xg = "static" displacement of mass = P/K

X, = P /K

>4
#

yield displacement of spring = Qy/K
X = velocity of mass = dX/dt
X = acceleration of mass = d2X/dt2
Q(X) = spring force-displacement function

Qy = yleld strength of spring

T = period of system = 2x{M/K

@ = circular frequency of system = {K/M = 2x/T
P(t) = force-time function

P, = average applied load

Py = maximum applied load

t = time

t; = duration of applied load
at] = time of peak load

ty = time of maximum displacement

t., = time of first yielding

T
1]

ratio of yield strength to average applied load = Qy/Pl

4 Xy /Xy, = relative change in maximum displacement

AK/K = relative change in spring stiffness
AM/M = relative change in mass
At1/t, = relative change in duration of load

relative change in average applied load

AP, /Py



-

A Q,y/Qy = relative change in yield strength

Cx» Cm» Cy» Cps CQ = influence factors

II. RESPONSE OF THE STRUCTURE

A. DEFINITION OF PROBLEM

1. Governing equation of motion.

Physically, the undamped, single-degree-of-freedom system represents
a mass supported by a spring which has no mass as shown in Fig. 1. When sub-
Jected to a dynamic disturbance, the structure behaves according the equation
of motion:

MX + Q(X) = B(t), (1)
where M 1s the mass; %, the acceleration of the mass; X, the displacement of
the mass; Q(X), the resisting force in the spring; and P(t), the impulsive
load function. In this study the mass i1s considered to be at rest with no
initial displacement when the load is applied:

at t=0,X=X=0, (2)
where t denotes time and i is the velocity of the mass.

2. Resistance of structure to motion.

The spring of the structure has "ideal" elasto-plastic characteristics:
an initial linear resistance to motion before yielding, followed by a constant
resistance until maximum displacement is reached. (Fig. 2). The elastic re-
sisting force of the spring is directly proportional to the displacement:

Q(X) = KX for x £ Xys (3-2)
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where K 1s a constant spring stiffness and Xy is the yield displacement of the
spring. When tle response 1s greater than the yileld deflection, the spring
resistance is constant:

AX) =KXy =Qq , forX2Xy. (3-b)

3. Forcing functions.

The response of the system to several patterns of impulsive loads is
investigated. In order to compare the response of a particular structure to

different types of exciting forces, the total impulse is held constant:

P(t) dt = Pt; , (&)
o}
Pl being the average applied load and tl, the duration of the applied load.

First, study is made of the response due to a step-pulse function:

P(t) =P , for o £ t Sty ; (5-a)

1

P(t) =0 s for t; St . (5-b)

(Fig. 3-a). Next, consideration 1s given to the response of the system to
a triangular forcing function with an initial peak force:

P(t)

2Py (1 - t/ty) , for o€t <t (6-a)

1 ¢

P(t) 0 , for t; S, (6-b)

(Fig. 3-b). In addition to these two impulse patterns, the triangular forc-
ing functions with a terminal and an intermediate maximum force are considered.

(Figs. 3-c and 3-d). The terminal-peak exciting force is defined:

P(t) 2P (t/t7) , for o St £14; (7-a)

P(t)



The intermediate-peak impulsive load represents the general triangular forc-

ing function:

P(t) = 2Py (t/aty) , for oSt<at, ; (8-a)
P(t) =2P; (t; - t) / (L -a) t; , for ot} St£t,; (8-v)
P(t) =0 , for tl.St; (8-c)

where at, defines the time at which the maximum load occurs (0O€a<1). The
patterns of force described above are considered to represent simplified

blast and impact disturbances normally encountered.

B. SOLUTION FOR RESPONSE

1. General response.

With the analytic procedure the general solution to the governing

differential equation of motion (equation 1) is found:

X/Xy = Acosa)t + Bsinwt + P(t)/BP;, for XSX, and P(t) linear; (9-a)

where A, B, C, and D denote constants of integration determined from the
initial conditions of velocity and displacement, w represents the circular
frequency of the system, and P is the ratio of the yield strength to the
average applied load:
K/M ; (10)
= Qy/Pl . (11)

The solution appears in dimensionless form. The guantities w, tj, and B
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together with the pattern of the forcing function are sufficient to determine

the behavior of a range of structures with respect to the yield deflection.

2. Maximum response.

By setting the velocity of the mass equal to zero, the time, t_, at

m
which the response is a maximum is found. Substitution of t, 1n the response
equation yields an expression for maximum deflection in terms of the yield
displacement. These analytic formulae of maximum deflection for each type
of load considered appear in the appendix.

The graphs (Figs. 4-7 inclusive) which represent the maximum re-
sponse furnish a better picture of the system's behavior. For various ratios
of yield strength to average applied load, B, the maximum response with re-
spect to the yield deflection, xm/xy, is given in terms of the duration of
load and the period of the structure, tl/T. These charts show the relations
between the duration of the load, t;, the time to attain yielding, ty, and
the time of maximum deflection, b An accurate estimate of the maximum re-
sponse of a simple structure to specific types of load 1s directly obtain-
able from these response graphs provided the forcing function and the
characteristics of the structure are known.

The type of impulsive excitation may, or may not, affect the maximum
response of the structure. In the so-called impulse region when the duration
of load 1s short in comparison with the period of the structure, it is of
interest to note that the pattern of load does not significantly affect the
maximum response, other things being equal. (Fig. 8). 1In contrast to this,
the impulse pattern may greatly influence the maximum deflection when the

load is applied very slowly relative to the system's period. (Fig. 9).
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Of the forcing functions studied, the triangular pulse with an inltial peak
force produces the most critical response in the long-duration region; the
response to a step-pulse function is the smallest in magnitude.
The maximum displacement curves pictured in the graphs also illustrate

to what extent a change in one parameter, the duration of load t., for instance,

1
affects the maximum response. In Fig. 5-a, which represents the response of
the structure to an initial peak force, for B equal to 1.0 a twenty percent
change in t; from O0.5T to 0.6T produces a thirty percent change in maximum
response from 3.85 Xy to 5.00 Xy. It is not unreasonable to expect an error

in certain parameters to result in an error three or more times as large in

the maximum response.

3. Approximate maximum response.

In addition to the "exact" expressions for response it is desirable
to obtain approximate solutions for the behavior of the system. Generally,
there are two cases of particular interest: one in which the duration of the
applied load 1s less than the time at which the maximum response occurs; the
other in which the load terminates long after the maximum response is attained.
The spring in the first case responds inelastically early in the
history of the system's behavior before the velocity of the mass is appre-
cigble. Hence, it is reasonable to assume that the elastic response of the
structure is negligible; that is, the spring has an initial displacement
equal to the yield deflection, and the mass is at rest when the load is applied:

at t =0 Q(X)

ny = Qy ’ (B'b)

X =X (2-a)

Yy
]
X =0. (2)
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The general solution to this problem is of the form of equation (9-b), where,
as before, the constants C and D are determined from the initial conditions
for velocity and displacement. The maximum response is found in the same
manner as previously described for the more rigorous solution. These ex-
pressions for maximum response are lncluded in the appendix. How closely
this approximate response agrees with the actual response in the impulse
region is illustrated in Fig. 10, for the case of the step-pulse function.
Similarly, for the various triangular forcing functions the agreement be-
tween approximate and exact maximum responses is quite good.

When the maximum deflection occurs long before the load ceases, the

time at which the response is a maximum may not significantly exceed the

time at which the spring first ylelds. For this reason, neglecting the elastic

response of the system is not an accurate assumption for this case. A better
approach to determining the approximate response is to take the limit of the
"exact" solutions for maximum displacement allowing the duration of the load,
tl’ to go to infinity. The expressions which result define the maximum re-
sponse for a duration of load which is long in comparison with the period of
the structure. The approximate solutions thus obtained are exact for the
step-pulse function but, at best, are only indicative of the magnitude of

the maximum response for the triangular pulse functions as shown in Fig. 1l.

ITI. SENSITIVITY OF THE RESPONSE OF THE STRUCTURE

A. DETERMINATION OF SENSITIVITY

The analytic expressions for maximum response are used to determine

the influence of the problem parameters on that response. This influence
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may be defined as the change in maximum response due to a change in the para-
meter considered. If the deviation in that parameter is reduced to an
infinitesimal, the partial derivative of the maximum displacement with respect
to that parameter represents the influence factor sought. Then the summed
effect of changes in every parameter on the maximum response is the total

differential of the maximum displacement:
_ OXp oX OXm OXm OXm
8¥n = 55, 4P1+56§* 4Qy + 35 AtL+ 3g AK + 5 AM. (12)

Dividing this expression by the maximum displacement, X, gives the dimen-

sionless relation:

AXy . AP AQy At AK aM
Xy = Cp Pr * O Qy+ct—t—11-+cKK + 0, G (12-a)

where CP’ CQ, Ce»s Cks @nd Cy are a measure of the sensitivity of the response

of the structure:

OXm Pl
c - R (13)
P P, X,

and similarly for the other parameters. These influence factors are charted
in Figs. 12-15 for the step-pulse function and the initial-peak triangular
forcing function. For each type of impulse pattern studied the analytic
expressions for the influence factors are included in the appendix. Because of
the dimensionless form of the formulae for maximum response, certain relations

exist between the influence factors: ("

Cp=1- cQ ; (14-a)
Cg=1/2C -1; (14-D)
Cy = - 1/2 C, - (14-c)

This allows the influence factors CP’ Ckx, and CM to be defined in terms of

CQ and Cy.
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B. USE OF INFLUENCE FACTORS

The influence factors represented in the graphs and in the analytic
expressions given in the appendix may be used to find the change in maximum
response, A‘xm/xm, due to a change in each parameter. For a particular
structure and a specified forcing function the magnitudes of the maximum
response and the corresponding influence factors are obtained either from
the graphs or from the analytic expressions. When substituted into equation
(12-a), these quantities and the magnitudes of the relative changes whose
effect is to be examined yield the change in the maximum response.

Although this procedure is exact for only infinitesimal changes in
the parameters, equation (12-a) may be used with a certain degree of accuracy
for finite changes in the parameters. It can be shown that the error in-
volved by considering finite variations is of a higher order than those
variations. A discussion on the limitations of the magnitude of the change
taken in the parameters is reserved to the appendix. Generally speaking, the
error involved is not significant provided the relative variatioms in the
parameters are kept in the neighborhood of ten percent absolute. Larger
changes than these can be made step-wise without introducing appreciable
error; that is, by considering the variations in ten percent steps, or less,
and replacing the old structure by the new at each step, the change in maxi-

mum response due to large changes in the parameters is found.

C. SIGNIFICANCE OF RESULTS

The graphs for the influence factors illustrate the order of impor-
tance of the changes in the various parameters. In the impulse region the

average applied load is generally the most critical in its effect on the
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maximum response with the duratlon of load second in importance. The average
applied load agaln has the greatest influence on the maximum response in the
long-duration region; there the yield strength is second in importance.

That an error in a parameter may result in an error in the maximum
response several times as large is demonstrated by the graphs representing
the influence factors. In the long-duration region the influence factor for
average load, for instance, may be as high as 8 or more. Then too, a varia-
tion in a parameter may have little or no effect on the maximum response.
The duration of load, for example, has little effect in the long-duration
regions for B greater than 3.0. The range over which the influence factors

may vary accounts for some of the discrepancies observed in practice.

IV. SUMMARY OF RESULTS

To Jjustify using rigorous methods of analysis for elasto-plastic
structures subjected to dynamic loads, it is necessary to determine accurately
the magnitudes of the characteristics of the structure and the forcing
function parameters. If thesz quantities are not precisely known, the effect
of an error in & parameter on the maximum response may be determined by the
method previously described.

Presented in graphical form, the results of the solution for the
maximum response of a simple structure to dynamic loads may be used in
practice for predicting the behavior of structures. The approximate ex-
pressions for maximum response given in the appendix are accurate for
estimating purpose in the impulse region only. In certain cases the re-

sponse in the first mode of a multi-degree-of-freedom system can be estimated
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from the results here presented. It must be kept in mind, however, that while
these exact and approximate results are accurate for a single-degree-of-freedom
system, the extension of their use to application to other structural systems
is, at best, approximate.

In design and analysis the magnitude of some of the parameters is .
often a matter of arbitrary selection. When this condition exists, the use
of a rigorous method of analysis in predicting the behavior of the structure
is meaningless. The results of this investigetion give support to the belief
that in such a case 1t is more appropriate to employ numerical or other approxi-

mate procedures which are in keeping with the quality of the data available.
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ARALYTIC EXPRESSIONS FOR MAXIMUM RESPONSE AND INFLUENCE FACTORS
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B olcot, (1~ ) Koy )2

. os«t, £, St sty
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ZXm/X.,
(5) C.z -2 A 4 [sinewt, - sinwt, +3in(1-)ad,
: "kl patgeseehe

og«t, £, <£ms£,,
O} é a(i~att; = atlwt,~coty) = (1-4) smasty + sin (woty-dat,).

(@), @ty = at, (1- Pac-a)+ | fut, (i-Ha0-0)- wty j* h
+ 2 {cos Goty-acol,) - G~ ) cosewly:

- 3 v -
@). Xm/Ky= 1 + %‘20 J(ﬂ., atty) "p:..(ﬁﬁ’ ety et {1- PaG-0}-eaty)
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(2). aty,= awl, .
(8). Km/Kyz1+ 2 “/a(qwﬁ-«l.,)’wh.(mi.-«m,)'smdg}
P awt, + @Ewt,~wt ) 1-cosaty)
= - t - ewty)? .
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B). Cp = —1 + 1 [ Cawh-coty? 1
Xm/x.’

+ (awt, ~wi,) sinwt
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(). wty,= «ot, + 2 Y/’Ld(\-d) witt + (awt,-wt.,)"';

T
potest, + (st~ wty) sinaty + 1= cosaty

(%). XM/X‘: | 4+ '/Z(a)fm- -(wf.)" - (“:_“_,_“_{*o)t
%

+ 2 | Ve (ut-wty)® + fo (awt -ty sinaty
fbddﬁ*»
+ (ot ~wty )1~ cosauity)
@“). Ce - ;L (whpyecoty ).
miny

(5) C* s -1+ _1 ~I/’~(¢0+m‘a’tq)"

K 7¥y

+ _I'a {a.wt, (whpy daty) = (n-.g)w",‘}

B. APPROXIMATE EXPRESSIONS FOR MAXIMUM RESPONSE .

. Steg gulse.

(A). Impulse region.

(O} w“m ¥ ‘L(f' '
@ Kn/¥y ¥t (g

(B). Long-duration region.
(1) cos aof.lz l-[s.

(). cotpz aut.l- hnw-l..‘ :

(b). xm /X(, e r(!ﬁ-q)

. Initial-peak triangular pulse.

(A). Impulse region.

(). why, & wit,.
/5
). XM/qu 2 0+ (‘0_;_!)"( '],L- Jiﬁ) .

-



(B),

2k,

Long-duration region.

M), wty, & wh(2-p).

().

Xm/Xc' 1+ L (apPaits
ep

3. Terminal-peak triangular pulse.

(),

).

@).

(B).
w.

Q).

Imgulse region,
why = et

Koty 2o () - o)

Long-duration region.

wty ¥ et {. + (7;;@)'-}
4
Xm/Ky¥ 1+ {(‘%ﬁbﬁ.}” {e-pif 1+ ,4/,,}.

k. Intermediate-peak triangular pulse.

(a).
(V.

(%).

(3).

Q).

(2).

Imgulse region.
wtmgag_f. .

-

Km/Xy ¥ 14 {%“I*{'/t - AL
Long-duration regionm.
wty, ¥ ot {l-— Phli=A)  + (l-ﬂla.)(l-.\)'b.}.

K/ K g g 1+ i%lg (2-p)2coit, > (2.-a)




C. ERROR INTRODUCED BY FINITE CHANGES IN PARAMETERS

If the error in an influence factor due to a finite change in a

parameter is defined as:

cC.-¢C
error = B__ P (15)

o ’
P

vhere cp-ﬁ_?i,(_}ﬁ,

and c, = 41::0 %;2({;)- :_;..x" (,xp_‘) ,

the bounds may be set on that error such that:
a & e £ v . for a = b

L
c

or a $ 22 -1%80v
Cp

a+1 S EB s b+1 . (16)
®p

This restriction limits the magnitude of the change in the parameter under

consideration to:

C

a+1:1—i5: (é-g—)sbq-l, (16-a)

vhere a and b define the desired accuracy, C' is the value for the influence

P
factor in the region under study, and AX /X, is the allowable relative

change in maximum deflection. For example, if b = - a = 0.1, Cp

Ax_/xIIl = 0.2, then:
0.1 = .%2 £ o0.12220220 .

= 108, ﬁnd
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