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By Patrick L. Donoughe and Ernst I. Prasse

SUMMARY

An analytical and experimental investigation on pressure distri-
bution about wedges was initiated because of some problems encountered
in transporation cooling; the results c*tained are of general inter-
est and application. The analytical investigation of incompressible
flow about finite wedges showed that decreasing ths tunnel-wedge
ratio (the tunnel-wedge ratio is defined as ratio of tunnel height to
maximum wedge thickness) decreased thes pressure coefficient at all
chordwise locations; an increase in wedge angle with an unbounded
stream (infinite tunnel-wedge ratio) caused a pressure cosfficient
increase in the forward region and decrease in the rear region of thz
wedge. It was also fouad that even for a wedge in an unbounded stream

- ths region of applicability of the infinite wedge-type velocity distri-
bution assum2d in the solution of laminar boundary layer equations is
approximated oaly within 10 psrcent for a limited leading-edge region.
Additional calculations indicated that use of a theoretical instead of
an experimental pressure distribution should be satisfactory for heat-
transfer predictions for regions not unduly influenced by flow separ-
ation.

Comparison of theoretical ani experimental pressure distribu-
tions about wedges in ccmpressible subsonic flow showed poor agree-
ment for a wedge angle cf 30° and a tunnel-wedge ratio of 2.8, prob-
ably because of flow separation. For wedge angles from 9° to 20° and
essentially unbounded streams (tunnel-wedge ratio of 100), the results
from a simple mapping Karman-Tsien method were in good agreement with
experiment for Mach numbers to 0.700. A hodograph method predicted
results in good agreement with experiment for an essentially unbounded
stream, even for Mach numbers close to unity.
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INTRODUCTION

The question of the influence of the tunnel wall on the pressure
distribution over a finite wedge arose in connection with some prob-
lems encountered in obtaining heat-transfer results for transpiration
cooling. Prediction of the coolant flow emitted from a porous wedge,
used as a test vehicle, necessitated knowledge of the pressure dis-
tribution about the reference solid wedge. This distribution was
obtained by placing a 30° solid wedge with a 2-inch chord in the tunnel
used for the porous wedge investigation. The resulting tunnel-wedge
ratio was 2.8 where this ratio is defined as the ratio of the height
of the tuinel to the maximum thickness of the wedge. Attempts were
made to correlate the data with analytical solutions available in the
literature.

In addition to the use for transpiration cooling analyses, wedges
may be used as the leading section of compressor and turbine blades
and wings, and are also useful in the solution of the laminar boundary
layer equations. Experimental Mach number and pressure distributions
obtained from interferometer measurements are given in references 1 and
2. A review of the different theories for the potential flow about
wedges in an unbounded stream is also given in reference 1. The theo-
retical effects of compressibility may be obtained for subsonic flow
by either the method of reference 3 or, if the incompressible pressure
distribution is known, by use of Prandtl-Glauert or Karmin-Tsien czorrec-
tions.

For leminar boundary layer solutions, the stream velocity in the
pctential flow is assumed to increase in proportion to some power of
the distance from the leading edge. This type of velocity distribution
is realized in the two-dimensional, incompressible flow about wedges
infinite in ths chordwise direction with an unbounded stream, that
is, an infinite wedge with a tunnel-wedge ratio of infinity. Such
boundary layer solutions are given in references 4 to 6; references 5
and 6 give solutions for porous surfaces with large temperature dif-
ferences between the surface and the main stream. In actual practice,
however, only finite wedges can be used. In addition, experiments
would usually be conducted in a wind tunnel, so that the influence
of the tunnel wall on the wedge pressure distribution is important.
Hence, if results of boundary layer theory are to be correlated with
experiment, it is necessary to have an estimate of the region on a
finite wedge in a bounded stream where the infinite wedge-type flow
assumed in this theory is approximately realized.

o vt e,
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In the present report, experimental pressure distributions were
determined and flow visualization studies were made for the 30° wedge
- with a tunnel-wedge ratio of 2.8 and upstream Mach numbers of the order
of 0.350. Theoretical and experimental pressure distributions for the
30° wedge were used to predict the heat transfer to the wedge by the
methods of reference 7. Analytical pressure distrlbutions for tunnel-
wedge ratlos from 2.8 to 170 and wedge angles from 0° to 40° were
calculated for incompressible flow. The region of applicability of
the infinite wedge-type pressure distribution for a finite wedge in
a bounded stream was analyzed. Since no direct comparison of experi-
mental and theoretical pressure distributions for upstream Mach num-
. bers close to unity was found in the literature, a comparison of
previously published experimental and theoretical results was also
made.

S082

APP ARATUS
Wedge

For the present experimental investigation a 30° wedge was mach-
ined from Inconel stock. The wedge had no afterbody because of space
limitations in the tunn=1. Static-pressure taps (0.020-in. diam.) were
drilled perpendicular to the surface at three different spanwise and
various chordwise locations and connected to the ends of the wedge
K with drilled passages. Into these passages steel tubing was silver-
soldered for attachment of the flexible tubing which led to the manom-
eter board. Rods on each end of the wedge held it in place and acted
as pivots for orienting the wedge at zero angle of attack. The geo-
metry and pressure tap locations for the wedge are shown in table I.
The resulting tunnel-wedge ratio for this configuration is 2.83. The
pressures on the wedge were read differentially with the upstream
static pressure, the manometer fluid being water. Pressure readings
at different spanwise locations agreed within less than 1 percent for
. the same chordwise location.

PR

Test Facility

In the test facility, laboratory air passed successively through
a standard A.S.M.E. orifice, a combustion chamber, a plenum chamber
(where stagnation temperature and pressure were measured), and the test
section and into the exhaust system. For the present investigation no
fuel was added in the combustion chamber. The plenum chamber and tunnel
sections are shown in figure 1. The inlet duct to the test section
extended into the plenum chamber to insure a uniform velocity profile in

sy lmymuwga@«‘@wfrgn P R -
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the test section. Care was taken in assembly of the entrance and test
sections so that no protuberances existed in the flow passage.

The flow passage of the entrance and test sections downstream of
the inlet duct was nominally 3 inches square with four outer walls spaced
at 3/8 inch intervals to minimize heat lcss for any high temperature
work (see fig. 1). The 3-inch-square cross section was maintained for
about 23 chord lengths (46 in.) upstream of the wedge. Stagnation pres-
sure was also measured with a total-pressure probe about 8 chord lengths
upstream of the wedge. This pressure probe was read differentially with

a wall static tap 4% chord lengths ahead of the wedge. The wall static

pressure was also read absolutely, the manometer fluid being water for
both the differential and absolute readings. These pressure readings
were used to calculate the upstream Mach number.

Flow Visualization

In an attempt to confirm the two-dimensionality of the flow about
the wedge, flow visualization studies were made. 1In these studies hydro-
gen sulfide gas reacted with a mixture of glycerin and lead carbcnate
painted on the wedge and side walls. After the hydrogen sulfide was
introduced through static taps on the wedge and side walls, its paths
along the wedge and on the walls were observed as brown traces on a white
background. More details of visualization methods for gas flow about
turbine blades are reported in reference 8.

TEST PROCEDURE

Pressure taps symmetrically located closest to the leading edge on
either side of the wedge (see table I) were used to set the angle of
attack to zero. When the pressures at these taps agreed within 0.1 inch
of water, the pressure readings on the wedge were taken for the following
upstream conditions:

My Po> P'-Pos T,

in. water abs/| in. water| °R

0.266 435.0 21.9 560
.286 466.9 27.3 552

.328 421.7 32.6 560

.403 444 .2 5¢.5 558

.464 513.0 81.7 555

Symbols are defined in the appendix.
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ANALYSIS

Analytical methods to determine the static-pressure distribution for
flow about finite wedges are given. The static pressure on the wedge is
incorporated in a pressure coefficient which 1s defined by

p > (1)
Po Vo
2

ST
Q
]

s082

o ewwEe e

For isentropic incompressible flow, the pressure coefficient is related
to the velocity by

B N P

2
Cp,i =] - (%) (18.)

For 1sentropic compressible flow, the pressure coefficient is related to
the Mach number by

IS R S S S A -

I
(v-1)M°

(r-1)M2

-1 (1v)

ol o)~

The pressure gradient in the direction of flow is given in dimensionless
form by the Euler number which is defined by (ref. 9)

=_. %X dp xdU
mE-ru i@ (2)

The last equality results from Bernoulli's equation.

The usual corrections for the effects of compressibility (Prandtl-
Glauert and Karman-Tsien methods) which apply for subsonic flow are given;
in addition, the theory of reference 3 for flow over a finite wedge in an
unbounded stream 1s utilized.

Incompressible Flow
Infinite wedge, unbounded stream. - For an infinite wedge in an

unbounded stream, the velocity variation on the wedge surface is given
by (ref. 4)

) U= cxm (3)

I el S S AR EY 4 S PRI B R s 1]
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Differentiation of equation (3) and use of equation (2) show that ;
m = Eu. By a conformal transformation of the region outside the wedge, '
it may be shown that the exponent m or the Euler number is related to .

the wedge angle by

2]
Eu = 4
21'[-9 ( ) o
S
for T
0<6<rn

This result has already been given in reference 10.

The velocity distribution given by equation (3) has been used
extensively in solution of the laminar boundary layer equations under the
assumption that the Euler number is constant for a given solution.

Finite wedge, bounded stream. - In actual practice, only finite
wedges can be constructed and experiments with them would probably be
conducted in a wind tunnel. Hence the pressure distribution about a . l

finite wedge in a finite, bounded stream must be determined. For the

case of incompressible flow about a finite wedge in a bounded stream,

recourse is made to the mapping theorem of Schwarz and Christoffel for the
theoretical approach. A general discussion of the Schwarz-Christoffel

theorem is given in reference 11. To obtain the pressure distribution

about a wedge centrally located in a rectangular tunnel, it is necessary

to consider only the upper half of the wedge because of flow symmetry.

The region to be analyzed is shown schematically in figure 2. The wedge

is assumed to have an afterbody of infinite length to simplify the anal-

ysis. The theory, of course, precludes any separation of the flow. By

a Schwarz-Christoffel transformation the boundary of the flow region of .
the physical or =z-plane is transformed into the real axis of the -
{-plane, z and { being complex variables. The following points may

be specified: R

1. The leading edge E in the z-plane shall map into the point (t,0) i
in the {-plane. :

2. The trailing edge D in the z-plane shall map into the point (1,0)
in the {-plane. "

5. The infinite point BgCe, 1n the z-plane shall map into the point
(0,0) in the {-plane.

4. The infinite points A, and F, shall map into negative and
positive infinity, respectively, in the {-plane.
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The transformation from the géplane to the z-plane for this configuration
can be obtained from the theorem of Schwarz and Christoffel as

S
2n
dz s [t -1
f=3<-9 (5)

where S and t are constants to be determined.

In the physical or 2z-plane the flow is from a source of output
Uoa/2 at Ay to a sink of intake Uya/2 at By In the {-plane this

requires a sink of strength an/2n at the origin. The flow induced by
the sink in the {-plane is characterized by the complex potential

an
w=——-—ln§ (6)
2n

The complex velocity in the z-plane, being the derivative of the poten-
tial, is obtained from equations (5) and (6).
6 1

dw dw df Uo2 £ - &
a=@u=ﬁ§Q-J (1)

As {— (Fo‘> in the z-plane), the derivative of the potential must
give the upstream velocity Uj

dw
= =U
Qiz)z__*“’ °

and the limit of the term in parentheses in equation (7) is given by

6
2n
limg_)m (%T—i) = 1

so that S =a/2n. At § =0 (B, in the z-plane), continuity consid-
QE'= an

dz a-b’
derivative and of € = O into equation (7) gives

erations require that Substitution of this value for the

2n

t.-.(aa_l)—é- (8)

A ot
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Thus the constants S and t are determined as functions of the wedge
angle and tunnel-wedge ratio.

The real velocity on the wedge surface is evaluated by obtaining
the absolute value of dw/dz on the wedge surface. This surface corre-
sponds to the segment DE (fig. 2) of the real axis of the {-plane where

C:G,.
9
2n
dw a - t
U=13 =Y l(a-l)l
6 (9)
an
t -
vy (B 1)
for
1<a<t

Equation (la) is used to find the pressure coefficient for a finite wedge
in a bounded stream

14
n
t -
Cpg =1 - (a - 1) (10)

for

1<a<t

Cp,i may be evaluated, therefore, when the relation between o and x

in the {- and z-planes is established. This relation is obtained by
numerical integration of equation (5) as follows.

Since the flow over the wedge surface in the z-plane, which maps into
the segment DE of the real axis of the {-plane, is of interest, points
appropriately spaced between o =1 and a =t are chosen. On this
segment, |z =x and { = a; so that from equation (5),

LA 8
en 2n
d(x/L) 1|dz __§_(a.-l) la (@-1y _, 8 11)
da "~ T TI|a T T Ia \t - a =" 7 ba (t a) S103 (

S082
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from which
a ]
R G if" & (12)
1
for
1<a<t

Then x/L may be obtained with the aid of equation (12) and the finite
difference integration formula (ref. 12, p. 243).

'@y +nh 6
2n 2
/2= 40 a nh(l 0, 0(203) 2 n(n-2) /3,
2\t - o itz 12 74
n(6n> - 45n° + 110n - 90) AL, n(2n? - 24n3 + 10502 - 200n + 144) A5 .
720 1440
6]
12n
n(12n5 - 210n? + 426n° -4725n% + 76720 - 5040) 6 , :l 1 (%
80,480 g \Er g
(13)

If accurate results are to be obtained from this numerical integra-
tion, the nature and behavior of the function d(x/L)/da must be known
for 1<a<t. In particular, for values of a in the neighborhood of a
maximum or minimum value of d(x/L)/ch, it is necessary to use smaller
values of n and h than those which may be used in other regions. At

maximum or minimum values of d&(x/L)/da, d%(x/L)/da? must vanish. Dif-
ferentiating equation (ll) and equating this result to zero yield the
quadratic equation in a

1 e t -1
il Y Coe a)] (14)

If equation (14) has no real roots, d(x/L)/de has no maximum or minimum
values. If equation (14) has real roots, say a, and az with ay<as,

then d(x/L)/da increases for 1<a<o, to a maximum at a = ay,
decreases for as<a<az to a minimum at o = %z, and finally increases
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for oaz<a<t, becoming infinite as a—»t. Hence, for a given tunnel-
wedge configuration, a, and az may be determined from equation (14),

if they exist, and appropriate values of n and h may be used in
equation (13) to determine x/L.

For the corresponding Euler number dlstribution along the wedge,
use of equations (2), (9), (11), and AaU/dx = dU/aq/hx/aa ylelds

6
z (t - 1)

x U o
Eu.mi%[(a-l)(t-a) (15)
2

b

Hence the Euler number may be calculated for each value of a by use of
the results from the finite-difference calculation. At the leading edge
(the stagnation point), corresponding to o« = t, the right side of equa-
tion (15) becomes indeterminate. It can be shown, however, by use of
L'Hospital's Rule that as o approaches t, the Euler number approaches
the value given by equation (4) for an infinite wedge of angle 6 in an
unbounded stream.

An independent check of the velocities obtained by this mapping
method was obtained for 6 = 30° and afv = 2.8 by employment of a
mechanical stream-filament method. This method uses steel wires for the
streamlines and the orthogonal lines. Upon proper alinement of the wire
network, the velocity ratio U/UO is given by the ratio of the length

of the rectilinear square upstream of the body to the length of the rec-
tilinear square on the surface of the body. Details of the method are
given in reference 13. The resulting flow pattern for the test con-
figuration is shown in figure 3. Velocities obtained from this network
agreed within 2 percent with those calculated from the mapping method.

Finite wedge, unbounded stream. - The flow about a finite wedge in
an unbounded stream can be deduced in a manner similar to that used for
the bounded stream. For this configuration employment of the theorem of
Schwarz and Christoffel yields for the wedge surface

a 6

f@=1-5¢ (%‘f%)z“ da (16)
-1

for

R T ee——y

ocnNnan

RS
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and

50 that
4
Cp,y =1 - (i = z>n (17)
. for
-1€a =1
and
¢

In this transformation, x/L = O corresponds to a = 1, that is,
% (1) = 0, so that from equation (16)

-1
1 =
n
- 1+ a\ da
1 - af
-1

o

For evaluation of this integral and for the integration of equa-
tion (16), the finite-difference formula (ref. 12, p. 243) is again used.
As in the case of a finite wedge in a bounded stream, the Euler number
given by equation (18) approaches the value given by equation (4) for an
infinite wedge of angle 6 1in an unbounded stream as the leading edge is
approached (a—1).

A linearized theory for the pressure distribution for incompressible

flow about a finite wedge in an unbounded stream is presented in
appendix B of reference 1. The pressure coefficient on the wedge surface

is given by
6 x/L
Cp = - 500 2 (29)

.
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Because of the limitations of the linearized theory, the point of zero
pressure coefficient is fixed at x/L = 0.5 regardless of the wedge
angle, as is seen by equation (19). Examination of equations (16) and
(17), obtained by the mapping method, shows that Cp,i = 0 does not

always occur at x/L = 0.5, but its location will vary depending on the
wedge angle.

S082

Compressible Flow .

Several theoretical approaches have been used to account for the
influence of compressibility on the pressure coefficient for appreciable '
subsonic Mach numbers (see ref. 14). With respect to ease of utilization,
the simpler theories are the Prandtl-Glauert and Karmén-Tsien methods
which correct the incompressible pressure coefficient for Mach number.
The Prandtl-Glauert method gives

£
®
:
3
i

C
‘ Cp = —;P':’_i—: (20)
: ‘\/_l - Mot
é and the Karmin-Tsien method gives
c_ .
. C_ = Bon (21)

p

2
/ . M C_ .
1 - MOZ + 0 251
1 +-Vl - Moz
Thus the pressure coefficient for compressible flow is obtainable

if the upstream Mach number and the incompressible pressure coefficient
are known.

g ¢ g g one

Finite wedge, bounded stream. - The Prandtl-Glauert and Karman-Tsien
corrections are, strictly speaking, applicable for an unbounded stream,
or at least where the interference from the tunnel wall is small. Quali-
tative estimates of the compressibility effects, on the other hand, may
be obtained by use of these methods. The Karman-Tsien method, rather
than the Prandtl-Glauert method, was used to investigate compressibility
effects on the experimental test configuration 6 = 300, a/b = 2.8, since
Cp,i is large over most of the wedge and the Karmén-Tsien correction is

in better agreement with experiment in this range (ref. 14, p. 246).

e i iz i - RS -

Finite wedge, unbounded stream. - The pressure distribution for a
finite wedge in an unbounded stream may be obtained quite readily by
equations (19) and (20). The result has already been given in
reference 1 as
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e x/L
oI R — ___1_7_ (22)
P -
n"l - M 2 1l - x/L

It is anticipated that equation (22) will become less valid when
Mo 1is close to unity. In this case the solution from a hodograph method

given in reference 3 also may be utilized. The series representation of
x/L on the wedge surface given by equation (53) of reference 3 is, in
the notation of the present report,

e+ ae oo

S082

: 1 2

: = £ r / raN

x/L = - zNOS N3 ) (-1) C;—“) Ko <—r:N) I, ( - O) (23)
= 3 3

)—l
loo

x/L = 1 + 2N03 N> E{: (-1)F <£5> <rnN°) I <£§§> (24)

ORAAS
H
O
L2

3 .
é where .

r = summation index %

ool

Ny = (2/3)(1 - M,°) (25)

jw

N = (2/3)(1 - M2)® / |

v:!%ﬁe J i

and Ip and Kp are modified Bessel functions of the first and second
kinds, respectively. The modified Bessel function of the second kind Kb
is related to I, by (ref. 12, p. 317)
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x Ip(arg) - Ip(arg)
Kp(arg)= 2 = sinp n

The modified Bessel function of the first kind Ip is tabulated in ref-

erence 15, so that it and the modified Bessel function of the second kind
Kp are obtainable.

- 5082

Examination of equations (23) and (24) shows that equation (23) is
for the front portion of the wedge, since here Mzs M02 so that N 2Ng;

equation (24) is for the rear portion, since there MZE:MO2 so0 that
Ng2N. With this in mind, equations (23) and (24) can be solved for x/L
by assigning values N, Ng, and v and calculating the modified Bessel
functions over the range of r.

In the so-called transonic approximation, the pressure coefficient
is approximated by the relation given in references 3, 16, and 17, which
is, in the notion of the present report,

2

P = A1 (MO2 = Mz) (lc)

¢ T+l

Since assigned values of N and Ny fix M and My by equa-
tion (25), Cp can be calculated by use of equation (lc) for the hodograph
method for the finite wedge, unbounded stream. Thus Cp is calculable
for the hodograph method, and by use of equation (22) Cp for linearized

subsonic flow may be calculated. These calculations may then be used for
comparison with the experimental pressure coefficients obtained from data
in reference 1. .

RESULTS AND DISCUSSION

Analytical results of the incompressible flow about finite wedges

will be presented and the effects of wedge angle and tunnel-wedge ratio
will be discussed. An estimate will be made of the region of applicability
of the infinite wedge-type flow (constant Euler number) assumed in bound-
ary layer theory. Predictions of heat transfer to the 30° wedge for a
tunnel-wedge ratio of 2.83 will also be given. The results of the flow
visualization studies on the 30° test configuration as well as a compari-
son of analytical and experimental pressure distributions for this wedge

Pt b 0 e
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will be shown. Comparisoh between compressible theory and experimental
pressure distributions of reference 1 will be made for subsonic flow.

Analytical

Effect of wedge angle. - Pressure coefficients were calculated gy
use of equation (10) for incompressible flow (Mg = 0) about 99, 15°,

and 20° wedge angles; the chordwise location corresponding to each coef-
ficient was obtained by equation (12). The tunnel-wedge configurations
are those for which experimental data are given in reference 1. For

each of these configurations the tunnel-wedge ratio is sufficiently large
that tunnel wall influence is relatively insignificant. The pressure
distributions for finite wedges in an unbounded stream (a/b = ®) were
also calculated using equations (17) and (16). These analytical results
for incompressible flow about finite wedges are presented in figure 4 and
table II. Figure 4(a) shows a plot of computed pressure coefficient
against chordwise location for 0°<6<40°. Note that the location of the
zero pressure coefficient moves downstream with increasing wedge angle.
Figure 4(b), a cross plot of figure 4(a), shows the variation of the
pressure coefficient at various chordwise locations. Figure 4 indicates !

that the pressure coefficient increases with increasing wedge angle over
the forward region and over the rear region the pressure coefficient
decreases with increasing wedge angle. Table II gives the analytical
results for finite wedges in unbounded, incompressible streams (a/b =,

MO=0).

The Euler numbers for the tunnel-wedge configurations were calcu-
lated by equations (15) and (18); the results are given as figure 5.
The Euler numbers must tend to the values for infinite wedges as
x/L—»0; these values may be calculated by equation (4). Only in a small
region close to the leading edge does the Euler number approximate a
constant value in the flow direction, even for this case of an unbounded
stream. Thus, if an average Euler number be taken for each wedge angle
in the range OSx/L <0.2, the deviation from this value is 10 percent
at x/L =0 and x/L = 0.2, respectively. The solutions of the boundary
layer equations given in references 4 to 6 and elsewhere assume a con-
stant Euler number in flow direction, whereas figure 5 shows that a con-
stant nonzero Euler number cannot be obtained with a finlte wedge. It
may be deduced, therefore, that for an experimental realization of an
infinite wedge-type pressure gradient, it would be advisable to adjust
the bounding walls of the tunnel to impose the proper pressure distri-
bution on the test body.

Effect of tunnel-wedge ratio. - Pressure coefficients for various
tunnel-wedge ratios ranging from about 110 to 2.8 for 6 = 20° are
given in figure 6(a) as a function of the chordwise location. To indi-
cate better the influence of tunnel-wedge ratio, a cross plot of
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figure 6(a) was made in figﬂre 6(b). For decreasing values of a/b the
pressure coefficient decreases for all x/L shown. The region of a/b
where the influence on Cp,i is small is seen to be of the order of 100

or more, at least for the incompressible flow considered here. For the
tunnel-wedge ratio of the current experiments, a/b = 2.8, the wall prox-
imity has a decided influence on the pressure coefficient.

The effect of the tunnel-wedge ratio on the Euler number distribu-
tion for a 20°'wedge is given in figure 7. The Buler number decreases
with increasing tunnel-wedge ratio. The slope of the Euler number curve
near the leading edge decreases quite markedly for appreciable tunnel-
wedge ratios; hence conditions here more closely approximate those for
an infinite wedge.

Heat transfer. - Predictions of heat transfer to a 30° wedge with a
tunnel-wedge ratio of 2.83 were made using the methods of reference 7
for an impermeable wall with small temperature differences. The results
are shown in figure 8, where Nu/q/Reo is plotted against the chordwise

location. Curves 1, 2, and 4 show the effect of using different methods
for heat-transfer prediction. Curves 2 and 3, which were obtained by
the same heat-transfer method, show the effect of using different pres-
sure distributions. The experimental pressure distribution for the test
configuration will be given later. It should be emphasized that all the
curves shown on figure 8 are theoretical, since no heat-transfer data
were obtained in the present investigation.

Of the different heat-transfer methods utilized in figure 8, the
equivalent wedge-type method is considered to be the best means of pre-
dicting heat-transfer results (ref. 7). Curve 2 in figure 8 will there-
fore be used as the criterion. A comparison of curves 1 and 2 shows
that the equivalent infinite wedge and the equivalent wedge-type methods
predict practically the same results for O sx/Lgo.S, but as x/L
increases from 0.3 the deviation between curves 1 and 2 becomes greater.
Curve 4, calculated by the infinite wedge, constant Euler number method,
differs from the criterion, curve 2, by 8 percent at x/L of 0.3 and
22 percent at 0.8. It may be concluded, therefore, that close to the
leading edge of the body (x/L ~ 0.3), use of either of the equivalent
methods gives the same results, at least for the impermeable wall case.
Aft of the leading-edge region, the equivalent wedge-type method should
be used.

Curves 2 and 3, which use theoretical and experimental pressure dis-
tributions, respectively, and the equivalent-wedge type heat-transfer
method show curve 3 deviating from curve 2 by about 6 percent at x/L.
of 0.3 and 9 percent at 0.8. This deviation is believed to be due mainly
to the influence of separation on the experimental pressure distribution.
For regions where separation is less influential (x/L £0.3), the use of
the theoretical pressure distribution should be satisfactory if accu-
racies in heat-transfer predictions of the order of 5 percent are
tolerable.

it
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Experimental

Flow visualization. - The results of the flow visualization studies
for the test wedge at an upstream Mach number of 0.410 are shown in fig-
ure 9. The support rod and pressure leads on the wedge are also visible.
To exhibit better the effect of the flow on the paint, figure 9(a) shows
the wedge after painting before insertion in the tunnel. The photograph
in figure 9(b) was taken after the visualization run was made and the dark
traces of the hydrogen sulfide which emanated from the static-pressure
taps may be seen. Note that the trace on the wall followed the wedge
contour very well and there is no apparent tendency for any secondary
flow. This is also borne out in the front view of the wedge in fig-
ure 9(c). Here it can also be seen that the flow causes the paint to
form ridges (white) parallel to the side wall, confirming the two-
dimensionality of the flow.

Pressure distribution. - The experimental pressure distributions
obtained from the 300 wedge for a tunnel-wedge ratio of 2.8 are shown in
figure 10 for different upstream Mach numbers along with the theoretical
pressure coefficients obtained from equation (10) for Mg =0 and from

equation (21) for MO f 0. The trends of the experimental data regarding

effects of chordwise location and compressibility on the pressure coef-
ficient follow those predicted theoretically. The absolute values, how-
ever, are consistently greater than predicted. This effect is probably
attributable to the influence of the trailing-edge separation on the
wedge pressure distribution. Close to the leading edge, where the influ-
ence of separation should be small, the deviation between theory and
experiment is relatively slight. Similar influences on the pressure dis-
tribution due to separation from cylindrical bodies are noted and dis-
cussed in reference 18.

From the experimental pressure coefficients Cp for the lowest test
Mach number M, = 0.266, the incompressible pressure coefficients Cp,i

may be calculated by the Karmén-Tsien method (eq. (21)). Then these
values of Cp,i may be inserted in equation (21) and My; assigned the

value 0.464, and new pressure coefficients calculated for comparison with
the data at this Mach number. The pressure coefficients so obtained are
given by the dashed line in figure 10. It is seen that the dashed line
yields smaller numerical values of Cp than the experimental data for

My = 0.464, probably because the Kermen-Tsien formula is strictly appli-

cable only for an unbounded stream, whereas the proximity of the tunnel
wall in the experiment increases the influence of compressibility.

The Karmén-Tsien formula corrects the pressure coefficlient for dis-
turbances caused by the body in the flow field. For the case of small
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tunnel-wedge ratio, however, an additional correction is needed for the
change in flow area. The effects of area change may be estimated by use
of equation (3.26) of reference 14. Because the area change is of smaller
order of magnitude than the disturbances for most investigations, a
detailed examination of this method was not made for the present exper-

iments.

Experimental Mach number distributions for various wedges are given
in reference 1 for the transonic speed range and large tunnel-wedge
ratios. Experimental pressure coefficients may be calculated from these
data with equation (1b). For the tunnel-wedge ratios used in the exper-
iments (see table II), theoretical pressure coefficients and chordwise
locations may be computed for incompressible flow by equations (lO) and
(12) (bounded stream) and extended to compressible flow by equation (21);
or, since the tunnel-wedge ratio is large, equation (17) (unbounded
stream) may be used for the incompressible solution. Results of calcu-
lations using equations (10) and (12) are presented in figure 4. Theo-
retical pressure coefficients may also be calculated by equation (lc),
the chordwise location then being given by equation (23) or (24) when
the tabulated values of the Bessel functions in reference 15 are used.
Hereinafter use of equations (10) and (12) (from Schwarz-Christoffel
mapping theorem) in conjunction with equation (21) will be designated .
the mapping - KT (Kdrmén-Tsien) method; use of equation (22) will be
defined as the linearized method; and use of equations (23) and (24)
will be called the hodograph method.

The experimental pressure coefficients calculated from the results
of reference 1 for wedge angles of 9° and 15° and an upstream Mach num-
ber of 0.824 are shown in figure 11(a). The point of zero pressure
coefficient moves downstream with increasing wedge angle, as was shown
analytically in figure 4(&). The experimental shift in chordwise loca-
tion of this point due to an angle increase from 9° to 15° is about

1
3 percent from figure 11(a), whereas the predicted shift from fig-

ure 4(a) would be about 7 percent. The locations of the points of zero
pressure coefficient shown in figures 4(a) and 11(a) differ, however,
because of the influence of upstream Mach number.

The experimental results for a wedge angle of 20° and an upstream
Mach number of 0.700 are compared with the theoretical linearized,
mapping-KT, and hodograph methods in figure ll(b). This figure indicates
that the mapping-KT method agrees best with experiment for this wedge
angle and upstream Mach number. It is to be expected that the mapping
method would be better than the linearized method, since the mapping
method considers the influence of the wedge angle on the pressure coef-
ficient whereas the linearized method does not. The hodograph method,
which provides the most accurate theoretical computation, should also

coRz ..
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be in good agreement with experiment. The fact that the experimental
values fall below those predicted by the hodograph method is possibly due
to compensating effects involving the influence of viscosity and the sub-
sequent formation of boundary layer. (A qualitative discussion of
boundary layer influence on wedge pressure distribution is given in

ref. 16.) The boundary layer would tend to make the experimental wedge
act roughly as a wedge with a slightly larger angle than the geometric
wedge, and from figure 4(a) it can be seen that this would tend to
decrease the pressure coefficient over the rear part of the wedge. Since

the mapping-KT method here predicts lower values of Cp than does the

hodograph method, the experimental data are in somewhat better agreement
with the mapping-KT method than with the hodograph method. It appears
therefore that the mapping-KT method, which is easier to apply than the
hodograph method, may be used to obtain wedge pressure distributions at
least for MO<O7 and 6<20

Only the hodograph method, however, is in good agreement with
experiment for Mach numbers close to unity, as may be seen in fig-
ure ll(c) for Mgy = 0.892. Near the leading edge, where the local Mach

number is small, the mapping-KT and linearized methods are in good
agreement with experiment. The hodograph method is lower than experi-
ment because at the leading edge (M = 0) the hodograph method yields
Cp = 0.662 Dby equation (1c). For the mapping-KT method, Cp = 1.378 by

equations (la) and (21). A pressure coefficient of unity is obtained
from equation (1b) by setting M = 0 and using the first two terms of a

X
1 AT
binomial expansion of (l + % MO) . For the linearized method, equa-

tion (22), C, 1is asymptotic to.the ordinate at x/L = 0.

p

Aft of the leading-edge region, the linearized and mapping-KT
methods do not properly predict the influence of the upstream Mach number.
The hodograph method, on the other hand, is in good agreement with exper-
iment over most of the wedge.

SUMMARY OF RESULTS

The results of an analytical and experimental investigation of the
pressure distribution about wedges in bounded and unbounded subsonic
streams are as follows:

1. The analytical solutions showed that, to properly estimate the
wedge pressure coefficient, it is necessary to make a detailed examination
of the flow with due consideration to the relative chordwise location,
wedge angle, tunnel-wedge ratio, and upstream Mach number.
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2. It was found from the analytical results for an unbounded stream i
that the region of applicability of the infinite wedge-type velocity
distribution assumed in the solution of laminar boundary layer equations
is approximated only within 10 percent for & limited region near the
leading edge. For tunnel-wedge ratios of the order of 5 or less (bounded
stream), the infinite wedge-type velocity distribution is realized only
at the leading edge.

SCe2

3. Predictions of heat transfer to a 30° wedge with small tunnel-
wedge ratio (2.8) showed that use of the theoretical pressure distribu-
tion rather than of the experimental may be satisfactory if the desired
accuracy in the heat transfer is of the order of 5 percent and the region
4 is not markedly influenced by flow separation.

é 4. The experimental pressure coefficients for the two-dimensional
flow over the 30° wedge with a tunnel-wedge ratio of 2.8 were not in good
i agreement with the theory for a finite wedge in a bounded stream, prob-

ably because of the influence of flow separation on the experimental
results.

theory in the high subsonic region for large tunnel-wedge ratios (greater
than 100) indicated that the simple mapping Karmdn-Tsien method was in

3 good agreement with experiment for wedge angles from 9° to 20° and
upstream Mach numbers to 0.700. TFor Mach numbers of the order of 0.900
and a wedge angle of 200, the hodograph method was in better agreement

.; with experiment than either the mapping or linearized methods.

5. Comparison of previously published experimental results and N !

Lewis Flight Propulsion Laboratory
] National Advisory Committee for Aeronautics
1 Cleveland, Ohio, January 6, 1953
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APPENDIX - SYMBOLS
The following symbols are used in this report:

A,B,C,D, points on fig. 2

E,F
a tunnel height
o
®
K b maximum wedge thickness
" o _P -Po
Cp pressure coefficient, p = >
Po Uo
2
1 c constant of proportionality, eq. (3)
i
: dp
-X d—x-
Euler number, Eu & >
pU

heat-transfer coefficient

width of interval in finite difference integration, eq. (13)
modified Bessel function of first kind of order p

modified Bessel function of second kind of order p

thermal conductivity

length of wedge surface

length of afterbody

Mach number, U/+/YRT

exponent in eq. (3)

3

2,2
function of Mach number, N = 2/3 (1 - M%)

Nusselt number, HL/k

number of intervals advanced from initial value in finite
difference integration, eq. (13)
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static pressure
total pressure
gas constant

UO p L

Reynolds number,

summation index, eqs. (23) and (24)
constant in transformation for finite wedge in bounded

a
stream, S = 5

constant in transformation for finite wedge in unbounded
stream, eq. (16)

static temperature
total temperature

constant in transformation for finite wedge in bounded
2n

stream, t = (;/fﬂi'z)e

velocity

function of wedge angle, v = Igi

complex potential

distance along wedge surface measured from leading edge
spanwise distance on wedge surface

complex variable of physical plane

real component of ¢{

ratio of specific heats, ¥ = 1.4

finite difference operator

complex variable of transformed plane
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wedge opening angle

e

V] absolute viscosity of fluid

p density of fluid

Subscripts:

0 condition upstream of body

i incompressible

1 initial value in finite difference integration, eq. (13)

2,3 real root

® undisturbed region, upstream or downstream of wedge
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TABLE I. - GEOMETRY AND PRESSURE TAP LOCATIONS

FOR 30° WEDGE

[A11 daimensions are in inches]

Pregsure tap
locations

y

X

Lower surface

2.42 0.37
2.42 .75
2,42 1.08
2,42 1.27
2.42 1.53
2.38 1.92
1.45 .45
1.45 .88
1.45 1.40
1.45 1.66
.48 37
.48 .75
.48 1.08
.48 1.27
.48 1.53
.48 1.92
Upper surface
2.42 0.37
2.42 .75
1.45 .49
1.50 .88
.48 37
.48 075
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TABLE II. - THEORETICAL PRESSURE COEFFICIENTS FOR
FINITE WEDGES IN UNBOUNDED, INCOMPRESSIBLE STREAMS

CALCULATED BY EQUATIONS (16) AND (17)

[a/b = =; My = 0]

X/L Cp , i
6 = 99; s/L = 0.5008

0.0000 | 1.0000 L"’/'\
.0338 | .1595 x
.0555 | .1369 ‘—\
.2651 | .0535 N
.4687 .0100
.5189 | .0000
05688 -.Oloo
09104 -.1.162
.9592 | -.1586

1.0000 | -co x/L Cp,1

6 = 15°; s/L = 034997

6 = 20°; s/L = 0.4986

0.0000 | 1.0000 0.0000 | 1.0000
.0304 .2631 .0385 . 3204
.0591 .2175 .0623 .2790
. 2747 .0874 .2830 .1149
.4800 .0165 .4896 .0221
«5301 .0000 . 5397 .0000
.5799 | -.0169 .9892 | -.0225
.1746 | -.0958 <7346 | -.0987
.9150 | -.2010 .9189 | -.2764
.9599 | -.2780 .9622 | -.3870

1.0000 | = 1.0000 | -

6 = 30°; s/L = 0.4955

6 = 40°; s/L = 0.4907

0.0000 | 1.0000 0.0000 | 1.0000
0367 4570 .0697 .4928
.0629 .3991 .2611 . 2651
. 2994 1673 4772 .0862
.4575 .0653 .5775 .0000
.5583 .0000 .7651 | -.2071
.7499 | -.1518 .8932 | -.4704
.8838 | -.3352 . 9697 -.9238
.9661 | -.6335 1.0000 | -

1.0000 -

-, ‘ﬁg&
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z-plane

D E___o— —_—

Ao = B,C (1,00 (t,0) Fo
{-plane

Figure 2. - Relation between physical and transformed planes for finite wedge in
tunnel,

ey e et ana s e




e T A v L s -

NACA TN 2942

2805
O
XIX
IR
TN/
R
S8
YA e b

(N
O
1
X
XXX
(D

(]
X

S
X
4

(N

’

X

X

X

bt
0S0S0S050 K

% 3
gq‘;v 1@ \‘ =: \‘ ‘2 Qi’z

%
PaiPSS
XXX
XXX
ROZOT0%
ROTOIOT,
@g‘Q
OTOTOT

e
e
%
X
%
e
S
X X

&
’\:d
ot
S
bl
%

X
X
D
X

4
s
!
O

e
bt
DG

NS

5
S
a
X
X

»,
),

s:‘
5
»;« ‘
%
%
f N
X
4

X
o,
2

)

IX
Js:ei
(3

2
o d
Y

V‘év {ﬁ' ‘V
l DA A‘ PN %
) o S OY
OOTOSOONS

""("I/‘r ,,///

04
4

] mg«mﬂﬂ’é?’z“

= SO
- 7IXCXORAX.

Z \
OZOTOZOOLY
SOTOZOLOLO

-vvwﬁgr
/>

XIS

OSSOSO,
O0T0Z0203070 T4
PRI,

ROZOIOIOOY

- XXX
XXX D

QQEQV

I

[
t H

i
po ’

ol

|

RIS

CORCCCCON.
;ozoxox»xom -

. 7 “'W‘.’W“‘!'iaqii;"

kv

|

[N

C-29991

|
f

|
H

- Tneoretical flow pattern obtained oy wire mesh ror wedge opening angle & of 30° and tunnel-wvedge

ratio a/o of 2.8.

Figure 3.

29



RTINS,

30

Pressure coefficlient, C

NACA TN 2942

O o
T SORT T
”».{...
HAH e H s H
HEEH20 H H
st NG HEHY B
H Vl:_ :1{ ) L‘:P:E;P
i ] 1 HH R T O T T
8 Bs o deaghas 3,238 1114 i3 4?:‘«, IV Jas Wedge Tunnel-
i i HRG R E S i angle, wedge
OF ] spcoss ’ S AT RaR AR 6, ratio,
: AR sl i3ic ! N de a/b
FHHR T B T 25 SURERY \\8 /
H i T 15 thl iasa S0 0 o
ST T T BT TR T
: i il va% H ! i1 *;*1': : 9 166.7
i S i el i
_.2.: - . - ;114 T_ T ' W'i{ ; 12 Zx 15 172.4
: FHiEH HHHL 'L’,E'sE"i RSN o9 107.5
e d e Hat e ST AL A D L0 RS Sl
2388 5 RESE LA NN EREE1 BSEER s i
T b it e
TR s0 e
4 i stiaete rifakes T
T i H HIEH -4‘: . :F‘_ *,:j—}‘ 5
: & B Y 40 ®
i HH Sasiisepdiater Intaiefet
odaashen peun s
6 egsgaNggy Sudngangs ]
0 .2 .4 .6 .8 1.0
Chordwise location, x/L
(a) Computed pressure coefficlent against chordwise location.
.4
x/L
0.2
/
.2

// L .5
0 K\

&

0 10 20 30 40
Wedge angle, 6, deg

(b) Computed pressure coefficlent agalnst wedge angle.
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Tunnel-
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Chordwise location, x/L

Figure 7. - Inf%uence of tunnel-wedge ratio on Euler number distri-
bution for 20~ wedge. Upstream Mach number, O.
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Figure 8. - Predicted heat transfer to 30° wedge.
Upstream Mach number, O.
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(a) Painted wedge and side wall prior to subjection to air flow or hydrogen sulfide. .

Figure 9., - Results of flow visualization studies on 30° wedge with tumnel-wedge ratio
of 2.8,
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(b) Hydrogen sulfide traces on wedge and side wall (side view)., .

- Figure 9, - Continued., Results of flow visualization studies on 30° wedge with tunnel-
wedge ratio of 2.8.




. : 2805

*8°2 JO OT3=I Sipom-TaUUN] U3TM SFpeM ,0¢ U0 SOTPN3IS UOTIRZIIGNSTA MOTJ JO 84TnEey °popnIouo) - ‘6 eaamBTJg

*(MeTa juUOXJ) oFpeM U0 B80BI} MOTJ PUB OpPTJINS. uadoxpfH (o)

NACA TN 2942

38




P e et A AT e e T DRI e g o R I T R LR R e L ey o v R i

NACA TN 2942 39

2805,

po—
P
pa—

—
—

|
fe-p—|——»f 7|
Y;\Z
e
I.

i '
a
b
. o .
o}
' o N
| Q
! Upstream N \ﬁ
& -.6 Mach number, X
Mg A
- + \
e
§ Experimental ANRN <
3 o 0.266 \ \\ \
L2
o ] .286 \ )
8 -1.0 o .328 N ‘T—\-B—‘
© A .403 \ \
5 v .464 NN o -
3 \ -
% Theoretical i: A
& 0
-l.4 —_— .266 v
—_—— .464 o
1
L
-1.8 ‘;.»
0 2 .4 .6 .8 1.0 )
Chordwise location, x/L ;
- Figure 10. - Comparison of experimental and theoretical pressure

coefficients for 30° wedge with tunnel-wedge ratio of 2.8.
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(a) Wedge angle, 9° and 15°; upstream Mach number, 0.824.
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(b) Wedge angle, 20°; upstream Mach number, 0,700,

Figure 11. - Comparison of experiment with theory for large
tunnel-wedge ratio (a/v>100).
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Figure 11. - Concluded. Comparison of experiment with theory
for large tunnel-wedge ratio (a/b>100).
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