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TWTRODUCTION

The nature of work hardening accompanying plastic defarmation of metais
has long bsen the suwbject of speculation, As early as 1925, Becker(1) suggested
a thermodyaamical process to explain slip based on the statistical probability
for the occurrence of local glide steps, The theory that plastic glide was due
to the presence of lattice defects known as dislocations was first introduced
in 193k by Taylor (2), Orowan(3) and Polamvi(l‘). Taylor presanted a rather com-
plete analysis of the bohavior and interaction of dislocations, He assumed a
certain type of stress field to be associated with a single dislocation, and
postulated that work hardening would result from plastic flow in two ways,
First, dislocations following one anothcr across a slip plane might encounter &
barrier \rhich\would impede their movement, thereby gradually diminishing and
eventually stopping plastic flow on that plane, The seccnd mechanism invclved

the concept of dislocations traveling in opposite directions on nearby planes

attracting one another to form a metastable lattice, The interaction of disloca-

tione in such an array was shown to be large enough to require an increase in

stress before plastic flow would continue,
Kochenc}b'x-fer(S »6) extended the concept of work hardening invclving & back

strese due to an accumulation of like dislocations on a slip plane, He suggested

that the formation of a new dislocstion is hindered by thcse dislocations already

present, The hardening resulting from the interaction of mewly forming dislocsa-
tions with brund dislocations was designated as "formative hardening®, and irdi-
cated to be the only type of hardening necessarily comnected with the slip

process, In another detailed pictire of work harderming, Mott and Nabarm”)
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assumed that sufficient dislocations are primarily present in the crystal as

a consequence of growth irregularities (mosaic structure) to initiate slip,

Work hardening resulted from the interaction of migrating dislocations with
localized internal stresses produced during deformation. More recently, however,
Hott(s) has modified his treatment to include the generation of dislocations at
Frank-Read sources and to account for the hardening Ly the formation of sessile
dislocations,

It has been widely accepted that metals of hexagonal structure, usually
possseasing only one set of glide plianes, exhibit mechagical behavior markedly
different from those having cubic structures, However, the differences in
behavior of the two classes may be less fundamental than suggested. Rohm and
Kochenddrfer(9) have shown that a single crystal of aluminum subjected to approxi-
mately simple shear gives the type of stress-strain curve associated with the
hexagonal metals, Similar behavior has beer. demonstrated for gold and silver
cryatal; by Andrade and Henderson(lo). Thus when glide in cubic metales is
restricted to one plane, the strain hardening characteristics closely resembls
those of the hexagonal metals, It would appear therefore, that an investigation
of some of the strain hardening properties of single crystals sheared in simple
glide might provide a more complete understanding of the pheromenon of work
hardening. Thie report relates a number of recent observations made on single
crystals of copper, zinc and cadmium tested in simple shear. In additiorn,
pertinent observation of effects accompanying stress-induced movement of dis-

location boundaries are reported,

EXPERTMENTAL PROCEDURE AND RESULTS

Datails of the producticn and advantages of the type of single crvstal shear

specimer employed for the following tests have been presented in a previous pub-

lication(ll). The method of testing makes possible the awplication of a shear
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‘stress accurately aligned with a crystallographic slip plane and direction and

results in an unusually uniform shear straii, Spt;erical crystals were grown

in 8 helium atmosphere by a modified Bridgeman technique and acid mazhined to
final specimen contour; The gage section of the crystels used in these experi-
ments was a cyli;nder having a height of one-eighth inch and a cross-sectional area
of approximstely one-third of a square inch,

Stress-induced motion of small angle boundaries ropresents ore of the simp=-
lest kinds of plastic deformation. The tecnniques previously described for
forming and moving the boundaries in zine crystals were utilized(lz). Whereas
tne behavior of single dislocations may never be observed directly, these small
angle boundaries apparently consist of an arvray of' edge diglocations of like
sizn whose movement through a crystal may be cbserved and controlled, The ex-
perimentel observations on this localized plastic deformation sc far have been
consiztent with the plastic behavior of crjéit:als deformed in simple shear, For
example, the shear stress nescessary to cause boundary motion is the same as
the yleld stress in single ciystels, Results of other boundary motion experi-
ments will be compared with results obtained from simple shear defomtions.

Strain hardening in simple ghear is directiona‘l. Fig, 1 represé.nts ths
strain hardening curve for a zinc crvstal of 99.35% purity sﬁﬁaréd in eimple
glide at -196°C, At a sirair of 0,08, the direcction of straining wss reversad,
Two effects on the path of the curve mzy te dlscéernsd. First, plastic flow

begins at a stress much lowsr than that sccompanying ths cnset of siip in the

original direction, Secc;ud, although the crystezl was held continuwously at a

temperature of =196°C, the level of the siresz-szirain cwrve was appreclably
lowered by the strain reversal ("strain scftening"). The identical behavior
deronstrated by a high purity cadmium crystal under the same experimental condi-
tions is shown in Fig., 2. A similar situation was anccuntered wﬁan the direc-

tion of the stress~induced movement of a dislocation houndary wae roversed.
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Fig. 3 s'ows a load displacement curve for a boundary of this type in a zinc
crystal, In both directions of movement, the rate of motion was held aprroximately
coiistant, The critical load for a constant rate of movement was decreased wher

the direction of movement was reversed.

Macroscopic substructure in a crystal hacs a marked effect on plastic X

propertica(l3). Fig. L shows stress-strain ocurves for a crystal with and with-
out ctuch a network of small angle boundaries. The presence of these subboundaries
affec's the stress-strain curve in two ways, First, the sharp break in the curve
at the yield point characteristic of the nearly perfect crystal is replaced by a
more grzdual bending over of the curve, Second, the stress level of the curve is
raised no%iceably. At larger strains, the rates of strain hardening for the two
cases are almost identical,

Duplex .lip in two directions on the same slip plane (Fig. L) results
in a much higher rate of strain hardening. The yield point was about the same
for a crystal sheared along a single slip direction., In agreement with this
result is the observation that hardening in a latent slip system may exceed that
in the active system. Fig. 5 shows the effects on the stress-strain curve of a
zinc crystal tested in simple shear of shifting to a rew »2ip direction 60° from
the first after a strain of 0,044 in the original direction. Tre stress required
to gause slip to occur in the new direction was sharply increased relative to
that which would have been required to continue slip in the original direction,
The test was performed at -196°C to avoid the complication of recovery during the
test, This behavior for zinc was in contradiction to the finding of KochendSrfer(6)
on aluminvm deformed in simple shear. He found that hardening in the active sys-
tem excecded hardening in all latent systems., However, his experimental techniques
were much more comnlex than those exployed for zirnc.

The presence of subtboundaries in copper crystals tested in simple shear

alters the strain hardening characteristics in 2 manmer consistent with ttat

B |
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5.

observed for zinc crystals, Stress-sirain curves for copper crystals with vary-
ing degress of intérnal perfection are presented in Fig. 6. The subboundaries

of 'l':he @ansively polygonized crystal were formed by. subjecting the crystal to

a bending momenf, and subseéuantly amnealing at 900°C, That polygonization had
cczurred was verified by the splitting of reflection spots in x-ray back-reflection
ér rh The stress-8irain curves for the three crystals form a homologous
series, with tt;e level of the curves rising as the asxtent of the internal bounda-

ries "increase.‘ -The resultdi of a shear test of a polycrystalline copper- specimen

are prese}ie’dffbr purposes of comparison.

DISCUSSION OF HESULIS

Hork 'haréiening of zinc crystals subjected to simple shear on a single glide
system can be completely removed upon annealing(ll)a An additional feature of
easy glidfa‘is thgt it ‘does not involve local distortions‘o_f & type which give
rise to asterism, A thecry proposed by Seitz.(lh) advances the possibility that
hardening ma,,v be caused by production of iarge numbers of lattice vacancies by
moving dislochtidns, thus impeding the further motisn of dislocation., All cur-
rent theories require the trapping of dislocations within the crystall i‘n one way
or another during plastic flow. .

Direct experimental support for the concept that dislocetions are obstructed
in their movemsit acroas a 8lip plane is providec} by observations accompanying
the stress induced movement of a disliocation boundary through a zinc crystal at
room temperature, Careful measurement cf the magnitude of the boundary angle
ghows that there is a significant decrease in the angle as the houndary moves
threoogh the crﬁstal. The implication is that écme of the edge dislocstions of
vhich the boundary is composed are trapped locally by internal imperfections and
prevented from continuving freely with the toundary.

Turther sxperimental evidence for the idea that some of the dislocations
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moving through a crystal during slip become piled vp against barriers is afforded
by the tests in which straia direction was reversed. Dislocations piled up
against a barrier produce a back stress which is proportional to the number of
piled up lislocations, The magnitude of the stress concentration for n piled-up
dislocationmis given by:

= nGbh
(back) 2 v (7)

where G is the shear modulus, b is the Burgers vector and r is the distance from
the barrier, The gx‘uernalh applied stress necessary to start slip in the reverse
Mrection should be reduced in nroportion to the magnitude of the vack stress,
There seems to be good evidence for the trapping of dislocations at internal
barriers during plastic straining of a crystal, and for the existence of back

stresses associated with such bound dislocations. However,.the view of Kochendtr-
fer that this Lack streecs is the primary cause of strain hardening may not be

justified, particularly in view of the fact that latent slip directions are har-
dened more than the active system in zinc, .

A.ﬁ A scussion of strain hardening is incomplete which ignores the lamelar
miure of slip. 7The macroscopic strain hardening measared when a test section
of ordinary size is employed must be interpreced to mean that formation of each
olomentary slip line across the crystal makes growth .of the next line a little
rmore difficult, Ruling out the possibility of exhaustion hardening, this implies
that the stress concenirations produced by pile-up of dislocations at darriers
are sufficiently long range to account for hardening when the spacing cf slip
lines is many thousands of interatomic distances., For this to be possible the
slip linss must contain clusters of dislocations of like sign. Such clusters
would tend to align themmelves to form dislocation boundaries.

The scale of the clustering is probably influenced by the ccnditions of
defoermation. For simpls shear strain in hexagonal metals the clustering must

be on a small sczle because of the lack of asterism, With lees uniform strain
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large scale dislocation boundaries may build up during the strain as a result of
macroscopic or microsconic inhomogenieties in applied stress(ls). In these cases
strain hardening e more rapid ilhan during simple glide due to an increasa in the
Jumber and effectivenecss of barriers,

= Ri‘cbnlly, Gay and Kell ar(16) have found that cold working of
polycrystalline metals resulted directly in the fermation of subbound-ries within
the grains, These subboundaries apparently result from the tendency of edse dis-
locations to align themselves in stable arrays. Since it w3p indicated by these
investigators that the average size of the subgrains decreased as work hardening
increased, the progressive nature of work hardening secems to be due to the mores\
effective trapping of moving dislocations by the pro;'essively developing 3ub-
boundaries,

The stress-induced movement of dielocation bourdamies may provide an ad-
ditional mechanism for increasing the effzctiveness of barriers during straining,
From Fig. 7, it may be seer that the critical stress required to move a disloca-
tion bounlary at a constant rate through a zinc crystal increases as the magnitude
of the boundary angle increases, Furthermore, when two such moviig boundaries
unite, the load required to move the newly-formed boundary is sharply increased
(rig. 8). Thus the stress-induced merger of subboundaries, creating bounda:ies

of larger angular megnitude, increases the effectiveness of the barriers in

blocking dislocation rovement,
CONCLUSTONS

A study of single metal crystals tested in simple shear and of stress-
induced movement of dislocation boundarias, has lead to the following conclusions
on the nature of work hardenings

1. The movement of dislocations through a crystal is impeded by intecrnal

barriers, even duvring simple shear,
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2. Duplex slip in single crystals axd the more complex deformation in
polycrystalline specimens are accompanied by a progressive formation
of dislocation boundaries, These sutboundaries act as herriers in the
path of moving dislocations,

3. Stress-induced movement of dislocation boundaries leads to union of

adjacent boundaries and increased effectivensss in blocking movement

PRSP M v . o e oo WD ENTR 2efa BT T4

of active dislocations,
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