E: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY LICENSING OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by

DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

UNCLASSIFIED
THE SQUARE ROOT METHOD

Prepared by:
Calvin C. Elgot

ABSTRACT: Conditions under which solution of a set of linear equations can be effected by the square root method are given. While much literature exists on the technique of this method, we have been unable to find a discussion of conditions under which this technique succeeds. A method of decomposing a large class of hermitian matrices, (sometimes requiring quaternions), also appears to be new.
This report contains the result of an investigation carried out in connection with a problem in least square fitting of a function which expresses complex yaw of a spin-stabilized projectile in terms of distance down range. This problem was resolved into a system of linear equations with complex coefficients, the solution of which is discussed here. The work was carried out under the sponsorship of ONR project NR-044-003, Numerical Analysis and BuOrd project NOL-Re3d-4252-1-53, Free-Flight Aeroballistics of Spin-Stabilized Bodies.

EDWARD L. WOODWARD
Captain, USN
Commander

H. H. KURZKES, Chief
Aeroballistic Research Department
By direction
1. Introduction

Throughout this paper \(S = (a_{ij}) \) will denote a triangular matrix, (i.e., \(i > j \) implies \(a_{ij} = 0 \), \(t \) will denote the transpose of the matrix \(A \); \(R, C, Q \) will denote respectively the field of real numbers, the field of \(\mathbb{C} \)plex numbers and the field of \(\mathbb{Q} \)ternions with real coefficients. \(M_n(F) \) will denote the ring of \(n \times n \) matrices with elements in a field \(F \).

In the square root method one solves the system of linear equations

\[AX = G \quad \text{for } X, \]

\((A \in M_n(F), X \text{ an unknown column vector}, G \text{ a given column vector}), \) in the following manner (cf. ref. (a)):

One finds a matrix \(S \) such that \(tS \cdot S = A \). Assuming \(A \) non-singular, it follows \(S \) and \(tS \) are non-singular so that

\[tS \cdot SX = G \implies SX = X \]

where \(K = tS^{-1} \cdot G \). Because of the simple forms of \(S \) and \(tS \), the calculation of \(tS^{-1} \cdot G \) and of \(S^{-1} \cdot X \) is fairly simple. For another discussion of this method and further references see reference (b).

2. The Theorems

In what follows we are given a field \(F \) and an anti-automorphism of the field such that \(\delta \cdot 1 = 1 \). If \(B = (b_{ij}) \in M_n(F) \) and \(B = (\delta b_{ij}) \) then

\(\delta \cdot B = t \delta \cdot B \). We shall sometimes interpret \(B \in M_n(F) \) as a linear transformation on the left \(n \)-dimensional vector space of \(n \)-tuples of \(F \) over \(F \). To say \(B \) is non-singular means \(B \) has an inverse which is equivalent to the requirement that the image of \(B \) be the whole space. This latter condition is easily seen to be equivalent to the requirement that the rows of the matrix \(B \) be left linearly independent.

Lemma

A triangular matrix \(S \in M_n(F) \) is non-singular if and only if

\[s_{ii} \neq 0, \text{ for } i = 1, \ldots, n. \]

(1) For \(n = 1 \), the lemma is trivial. Suppose \(\prod_{\frac{n}{i=1}} s_{ii} \neq 0, \) and \(n > 1 \). We may assume inductively that the matrix

\[S \]

is non-singular. Then

\[\prod_{\frac{n}{i=1}} s_{ii} \neq 0. \]
\[
\begin{bmatrix}
0 & s_{22} & \cdots & s_{2n} \\
0 & s_{33} & \cdots & s_{3n} \\
& & \cdots & \cdots \\
0 & 0 & \cdots & s_{nn}
\end{bmatrix}
\]

has left linearly independent rows. If the row vectors of \(S \) are dependent then there exists \(b \in F \) such that \(b \cdot s_{11} = 0 \). Since \(s_{11} \neq 0 \), \(b = 0 \). This implies the dependence of the rows of the matrix \([1]\) which contradicts the inductive assumption.

Now suppose \(\sum_{i=1}^{n} s_{i1} = 0 \). If \(s_{i1} = 0 \) for some \(i > 1 \) then by induction the rows of \([1]\) are dependent and hence the row of \(S \). If \(\sum_{i=1}^{n} s_{i1} \neq 0 \) then \(s_{11} = 0 \). The \(n \) vectors \((s_{12}, s_{13} \ldots s_{1n}), 1 \leq i \leq n \), are dependent since they lie in an \(n-1 \) dimensional space. If \(\sum_{i=1}^{n} b_{1}(s_{12}, \ldots, s_{1n}) = 0 \) then

\[
\sum_{i=1}^{n} b_{1}(s_{11}, s_{12}, \ldots, s_{1n}) = 0.
\]

If \(A \in M_n(F) \), then for \(1 \leq k \leq n \), \(A_k \in M_k(F) \) denotes the matrix obtained from \(A \) by deleting all rows and columns except rows and columns \(1 \) through \(k \).

Theorem 1

Suppose \(F \) commutative. Let \(A \in M_n(F) \) be non-singular. If there exists \(S \in M_n(F) \) such that \(\delta^rS, S = A \) then

(a) \(/A_1/ \neq 0, 1 = 1, \ldots, n;^* /A_1^t/ \) denotes the determinant of \(A_1 \).
(b) \(\delta x_1, x_1 = /A_1/, i = 1, \ldots, n \) has a solution in \(F \).
(c) \(\delta^tA = I \).

Proof

Since \(/\delta^rS/ \neq /A/ \) and \(A \) is non-singular, \(/S/ \neq 0 \) and \(/\delta^rS/ \neq 0 \).

Since \(/S/ = \sum_{i=1}^{n} s_{ii}, s_{11} \neq 0 \) and hence \(/s_{11}/ \neq 0 \). It follows that \(/A_k/ \neq 0, 1 = 1, \ldots, n-1 \), since \(\delta^rS_k, S_k = A_k \). Thus (a) is satisfied.

For \(n \geq k \), we have

\[
0 \neq /A_k/ = \sum_{i=1}^{k} \delta s_{1i} \cdot s_{1i} / /\delta^rS_k/ \cdot \delta s_{1i} \cdot s_{1i} = \delta s_{kk}, s_{kk}
\]
HNOFL Report 4.29

For $k = 1$ we have $\sigma''(x_1)_{11} = a_{11}$. Assuming $\sigma(x_0)_{11} = 1/k$, we have $\sigma(x_0)_{11} = \sigma''(x_0)_{11} = a_{11}$. (b) is demonstrated.

To demonstrate (c):

$$
\tau \sigma A = \tau (\tau S) = \tau \tau S = S = A
$$

Theorem 2

Let F be a field. Let G denote the set of $x \in F$ such that $\sigma x = x$. Suppose for every $g \in G$ there exists $x \in F$ such that $\sigma x = g$. Given a non-singular matrix $A \in \text{Mat}_n(F)$. If

(a) $A_i, i = 1, \ldots, n$ is non-singular.

(b) $\tau \sigma A = A$ (i.e., $\sigma A_i = a_{ij}$).

Then there exists $S \in \text{Mat}_n(F)$ such that $\tau \sigma S = A$.

Proof

We observe first the existence of such an S is equivalent to the existence of $a_{ij} \in F, 1 \leq i \leq j \leq n$, such that

$$
\sum_{k=1}^{n} \sigma_{ri} s_{kj} = a_{ij}, 1 \leq i \leq j \leq n, \text{ since }
$$

$$
\tau \sum_{k=1}^{n} \sigma_{ri} s_{kj} = \sum_{k=1}^{n} \sigma_{kj} s_{kj} = \tau a_{ij} = a_{ij}.
$$

For $n = 1$ the theorem is trivial. We note that conditions (a) and (b) hold for A_{n-1} (with $n-1$ replacing n). We assume inductively the existence of $a_{ij}, 1 \leq i \leq j < n$ such that [2] is satisfied. We seek now $s_{ik} = 1, \ldots, n$

satisfying

$$
\sum_{i=1}^{n} \sigma_{ri} s_{rk} = a_{ik}.
$$

For $i < n$, we need solve a linear equation the coefficient of the unknown of which is σs_{ii}. Since A_{n-1} is non-singular the lemma tells us $a_{ii} \neq 0$ and so $\sigma s_{ii} \neq 0$. It remains only to find s_{nn} satisfying

$$
\sum_{r=1}^{n} \sigma_{rn} s_{rn} = a_{nn}.
$$

We observe that $\sigma(\sigma s_{nn} s_{rn}) = (\sigma s_{nn} \sigma s_{rn}) = \sigma s_{nn} s_{rn}$.
Therefore $\delta (s_{rn} \cdot s_{rn}) \in G$. Since $\delta a_{ij} = a_{ij}$, $\delta a_{nn} = a_{nn}$ so that $a_{nn} \in G$. One sees easily that G is an abelian group so that

$$a_{nn} = \sum_{k} \delta s_{rn} \cdot s_{rn} \text{ is in } G$$

and the result follows.

3. The Special Cases

Corollary 1. Let $A \in M_n(C)$ be non-singular and symmetric. A necessary and sufficient condition that there exist $S \in M_n(C)$ such that δS, $S = A$ is that A_1, $i = 1, \ldots, n - 1$, be non-zero.

Proof

Let $F = C$ and $\delta = 1$.

Corollary 2. Let $A \in M_n(Q)$ be non-singular. Suppose $\delta A = A$ where

$$\delta (s_1 + s_2 j) = \bar{s}_1 + s_2 j, (s_1 = a + bi, s_2 = c + di).$$

A necessary and sufficient condition that there exist $S \in M_n(Q)$ such that δS, $S = A$ is that A_1, $i = 1, \ldots, n - 1$ be non-singular.

Proof

One sees readily δ is an anti-automorphism of Q. G consists of the elements of the form $b + sj$ with b real. For b, s fixed we seek s_1 and s_2 such that $(s_1 + s_2 j)(s_1 + s_2 j) = b + s j$. If $s = 0$, this is easy. Assume $s \neq 0$. s_1, s_2 must be non-zero and must satisfy $s_1 \bar{s}_1 - s_2 \bar{s}_2 = b$ and $2s_1s_2 = s$. This is equivalent to $s_2 = \frac{s}{2s_1}$ and $s_1 - (s\bar{s}/4s_1\bar{s}_1) = b$. The latter is equivalent to $4(s_1\bar{s}_1)^2 - 4bs_1\bar{s}_1 - s\bar{s} = 0$ which always has a solution, viz. $s_1\bar{s}_1 = \frac{1}{2} (b + \sqrt{b^2 + \bar{s}\bar{s}}) > 0.$

We supplement corollary 2 with the remark that if $A \in M_n(Q)$ is hermitian, and if one chooses the diagonal elements of S properly, (identifying $s + 0 j$ with s), S contains elements of a particularly simple form. If we call $s + 0 j$ a complex quaternion and $0 + s j$ a chaste quaternion then every element of S is either complex or chaste. Indeed the s_{11} may always be chosen still more simply as either a positive real number or a positive real number times j. These remarks may be verified using the equations
MAVORD Report 2609

\[s_{ii} = (a_{11} - \sum_{i=1}^{n} c_{r1} \cdot c_{r1})^{1/2} \text{ for } i > 1 \]

\[s_{ij} = (a_{1j} - \sum_{i=1}^{n} c_{r1} \cdot c_{r1})/s_{11} \text{ (} j > i > 1 \text{) } \]

\[s_{11} = (a_{11})^{1/2}, \quad s_{11} = a_{11}/s_{11} \]

and the facts: the inverse of a chaste quaternion is chaste, the product of a complex and chaste quaternion is chaste, \(\sigma \cdot s_{r1} \cdot s_{r1} \) is complex whether \(s_{r1} \) is complex or chaste.

Corollary 2 and 3 insure that a positive definite real symmetric matrix and a positive definite hermitian matrix are decomposable in the complex and quaternion domains respectively. However in these cases the decomposition is possible in the real and complex domains respectively. This is because \(s_{11}^2 = \) (positive real number) has a solution in the reals as does \(\sigma \cdot s_{r1} \cdot s_{r1} = \) (positive real number). For an interesting discussion of hermitian matrices see reference 3.

Utilizing theorem 2 and "The Principle of the Irrelevance of Algebraic Inequalities," (ref 4, p. 4), one can prove that the necessary conditions enunciated in theorem 1 for the existence of a decomposition of a non-singular matrix, (in the case of a commutative F), is indeed sufficient. The results of the above paragraph are then obtainable directly from this theorem.
REFERENCES

Aeroballistic Research Department
External Distribution List for Theoretical Mechanics (X1)
15 April 1951

No. of Copies

Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D. C.
1
 Attn: Re9
1
 Capt. W. S. Stovall, Jr., Rea
1
 Re3
1
 Ad3

Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D. C.
1
 Attn: TD-4
1
 Dr. O. E. Lancaster

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.
1
 Attn: Code 611

Commander
U. S. Naval Ordnance Test Station
Inyokern, P. O. China Lake, California
1
 Attn: Reports Units
1
 Dr. A. L. Bennett, Code 503, Michelson Laboratory

Commanding Officer
Naval Proving Ground
Dahlgren, Virginia
1
 Attn: Dr. C. C. Bramble
1

Commander
U. S. Naval Air Missile Test Center
Point Mugu, California

Commanding Officer and Director
David W. Taylor Model Basin
Washington 7, D. C.
1
 Attn: Dr. E. H. Kennard
1
 Hydromechanics Laboratory
No. of Copies

Chief of Naval Operations
Department of the Navy
Washington 25, D. C.
1
Attn: OP-61

Office of Naval Research
Department of the Navy
Washington 25, D. C.
1
Attn: Mr. J. N. Heald
c/o Science and Technology Project
Library of Congress
1
Mathematics Branch
1
Fluid Mechanics Branch

Director
Naval Research Laboratory
Washington 25, D. C.
1
Attn: Code 2021

Naval Attache for Research
American Embassy
Navy 100
c/o Fleet Post Office
New York, New York
1
Attn: Ballistic Research Laboratories
1
Dr. L. S. Dederick
1
Dr. J. Giese
1
Dr. B. L. Hicks

Commanding General
Aberdeen Proving Ground
Aberdeen, Maryland
1
Attn: Ballistic Research Laboratories

Department of the Army
Office, Chief of Ordnance
Pentagon
Washington 25, D. C.
1
Attn: ORDTU 2
No. of Copies

1 Director
Evans Signal Laboratory
Belmont, New Jersey
Attn: Chief, Service Branch

1 Commanding General
AAA and GM Center
Fort Bliss, Texas

Headquarters, U. S. Air Force
Directorate of Research and Development
Washington 25, D. C.

1 Attn: AFDRD-AC2

Director of Intelligence, AFOIN-T/PV
Pentagon
Washington 25, D. C.

1 Attn: Dr. Frank Genevese

1 Chief, Armed Forces Special Weapons Project
P. O. Box 2610
Pentagon
Washington 25, D. C.

1 Atomic Energy Commission
Division of Research
Washington, D. C.
Attn: Dr. J. B. Platt
Chairman
Research and Development Board
Pentagon
Washington 25, D. C.
1 Attn: Information Requirement Board, Room 3D-1075

1 Director Institute for Numerical Analysis
University of California
Los Angeles 24, California

Director
National Bureau of Standards
Connecticut Avenue and Van Ness Street, Northwest
Washington 25, D. C.
1 Attn: Dr. J. H. Curtiss
1 Dr. W. Ramberg
1 Chief, Machinery Development Laboratory

Director
National Advisory Committee for Aeronautics
1724 F Street, Northwest
Washington 25, D. C.
1 Attn: Mr. C. H. Helms
1 Dr. J. W. Crowley, Jr.

Director
Ames Aeronautical Laboratory
Moffett Field, California
1 Attn: Mr. R. T. Jones

Director
Lewis Flight Propulsion Laboratory
Cleveland, Ohio
1 Attn: Mr. John C. Evvard

Director
Langley Aeronautical Laboratory
Langley Field, Virginia
1 Attn: Mr. Carl Kaplan
1 Dr. A. Busemann
1 Dr. A. Ferri
No. of Copies

Applied Physics Laboratory
Johns Hopkins University VIA Applied Physics Laboratory
Silver Spring, Maryland Johns Hopkins University
Attn: Mr. Arthur Norris Silver Spring, Maryland

1 Massachusetts Institute of Technology
Project METEOR
Cambridge 39, Massachusetts
Attn: Guided Missiles Library

Rand Corporation
1500 Fourth Street VIA 155 West Washington Boulevard
Santa Monica, California Los Angeles, California
Attn: Mr. R. H. Best

1 Princeton University
Princeton, New Jersey
Attn: Project SQUID

1 General Electric Company
1 River Road
Schenectady 5, New York
Attn: Dr. H. Poritsky

1 Arnold Research Organization, Inc.
Room 210,
522 Olive Street
St. Louis, Missouri
Attn: Mr. Ronald Smelt

1 Central Air Documents Office
U. B. Building
Dayton, Ohio
Brown University
Graduate Division of Applied Mathematics
Providence 12, Rhode Island
1
Attn: Professor W. Prager

University of California
Berkeley, California
1
Attn: Dr. Leland E. Cunningham, Students Observatory
1
Professor R. G. Folsom, Department of Engineering
1
Professor I. S. Sokolnikoff, Department of Mathematics

California Institute of Technology
Guggeneheim Aeronautical Laboratory
Pasadena, California
1
Attn: Dr. Clark B. Millikan, Director
1
Professor Hans W. Liepmann
1
Dr. P. A. Lagerstrom

California Institute of Technology
Pasadena, California
1
Attn: Professor M. Plesset

Graduate School of Aeronautical Engineering
Cornell University
Ithaca, New York
1
Attn: Professor W. R. Sears, Director

Harvard University
Cambridge 38, Massachusetts
1
Attn: Professor G. Birkhoff, Department of Mathematics
1
Professor H. W. Emmons, Pierce Hall
1
Professor R. von Mises, Pierce Hall

University of Indiana
Department of Mathematics
Bloomington, Indiana
1
Attn: Professor T. Y. Thomas

Institute for Advanced Study
Princeton, New Jersey
1
Attn: Professor J. von Neumann
No. of Copies

Johns Hopkins University
Department of Aeronautics
Baltimore 18, Maryland
1 Attn: Professor F. H. Clauser

1 Director
Institute for Fluid Dynamics and Applied Mathematics
University of Maryland
College Park, Maryland

Massachusetts Institute of Technology
Department of Mathematics
Cambridge 38, Massachusetts
1 Attn: Professor E. Reissner

New York University
Institute for Mathematics and Mechanics
45 Fourth Avenue
New York 3, New York
1 Attn: Professor R. Courant (unclassified reports only)

Princeton University VIA Inspector of Naval Material
Princeton, New Jersey Philadelphia, Pennsylvania
1 Attn: Professor L. Lees, Department of Aeronautical Engineering
1 Professor S. Lefschetz, Department of Mathematics

Director
Institute of Aerophysics
University of Toronto
Toronto 5, Canada
1 Attn: Professor G. N. Patterson

Stanford University
Department of Mathematics
Stanford, California
1 Attn: Professor G. Szego
Syracuse University
Department of Mathematics
Syracuse, New York
1 Attn: Professor Charles Loewner

University of Virginia
Department of Physics
Charlottesville, Virginia
1 Attn: Professor J. W. Beams