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Surmary

Using the fact that cavities are, at low cavitation numbers, approximately
prolate spheroids, this report develops the theory of wall corrections in closed
tunnels and free jets of circular cross-section,

The results are displayed graphically for a wide range of the ratio (cavity
length) / (tunnel width),

In addition, a first-order theary is developed which appliss only to small
cavities at low cavitation numbers., The wall correction is then shown to be
proportional to the cube of this ratio, whereas in two-dimensional theary it is
propartional to the square of the ratio, loreover, the carrections in a closed
tunnel ars shown to be roughly four times as great as, and in the opposite sense
to, those applicable to free jets, In two-dimensional theory they are twice as

great,

The unaided theory yislds information on the thickneas ratio only of the
cavity, However, if the additional sssumption is made that the drag oocefficient
is relatively insensitive to boundary effects - an assumption which is certainly
true for the two-dimensional osse - than the length and breadth of the cavity
may be investigated separately. It is thus found that, in the axisymmetric as
in the two-dimensional case, the boundary correction to the length of a small
oavity is proportionately twice as great as that to the width,
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Symbols

Roman letters

A,B
[+}

Co(x*)

Pe

auxiliary functions defined in equations (7.1).
the radius or semi-width of the cavitating head,
an auxiliary function of # used in equation (4.14).

the true drag coefficient, based on the area of aross-section of the
cavitating head.

the modified drag coefficient, based on the area of cross-section of
the cavity.

ooefficients defined in Appendix II.

an auxiliary funotion of #’ used in equation (4.14).

incomplete elliptic integrals defined in equation (4.5),

the semi-length of the distribution of sources and sinks on the axis,
incomplete elliptic integrals defined in equation (4.5).

an auxiliary function defined in equation (4.2).

& function relating the cavitation number to the sise of the cavity.
an auxiliary function defined in equation (6.3).

the Bessel function of the first kind and of order v .

the modulus and co-modulus of elliptic integrals defined in equation
(4e4). Physically, k’ provides a rough meesure of the cavitation
number,

the m th, positive zero of Jy{z), taken in ascending numerical order,
a complete elliptic integral defined in equation (4.5),

mlU is the axial component of fluid velocity.

the particular value of m at the equatar of the cavity,

a function relating the strength of the uniform stream to the size of
the “dtyo

a paramstsr ocourring in equation (3.2).

the unifarm pressure along the cavity wall,

the pressure in the undisturbed stream, far from the cavity.

a mathematical parameter introduced in equations (4.14). FPhysically,
it provides a rough measure of the ratio of the size of the cavity
to the diameter of the st:eam.

oavitation number,

A=



—

< |

i

Yo

Yo

Xpx')
i)

2 G ( pue ), the cavitation number in the unbounded stream which
would yield a cavity of the length actually observed in the bounded
stream,

=G ( po ), the cavitation musber in the unbounded stream, which
would yield a cavity of the width actually observed in the bounded
stream.

denotes & remainder term of smaller order than the terms retained,

a variable of summtion,

a variable of integration,

velocity of the undisturbed stream,

non=dimensional ococrdinate parallel to axis of symmetry) unit of
length is

radius of
non-dimensional coordinate perpendicular to axis of tunnel

aymme try
the semi-length of the cavity,

the equatorial radius or semi-width of the cavity,

suxiliary funotions of x’ used in equations (4.14),

sreek Letters

I“.rzgr’

8

A4,8;,85,8,

auxiliary functions of a, defined in equations (4.17).

a mathematical parameter introduced by equations (4.1). FPhysically,
it provides a rough measure of the ratio of the sise of the cavity
to the diameter of the stream,

an operator imicating the difference between a bounded stream value
and the corresponding unbounded stream value,

terms contributing to 8 I ( ue)e
the displacement of the jet surface at the plane of symmetry.

& mathematical parameter defined in equation (4,15). Physically, it
is a function of the cavitation number only.

conicoidal coordinates defined by equation (1,1),

particular values of y at the equator and pole of the cavity,
respectively,

a paramster taking the value O far a free surfoce and 1 for a fixed
boundary.

the x~-coordinate of a source element,

2=

s s s+



: ’ density of the liquid,
£+ galx, y) that part of the axial component of velocity contributed by the line
% souroe-sink.
, #(x,y,v,p) a potential funotion defined in equation (3.9).
ox,y) Stokes' stream function.
x,y) a ourrent funotion defined in equation (1.5).
(x,y) that part of the ocwrrent function oontributed bty the line source-sink.

x,y,v,p) & partioular owrent function defined in equation. (3.2),

4 bar indiocates that ths aymbols apply to the unbounded stream,




Introduc

The purpose of this repart is to investigate wll effeots on the overall
yroportions of a cavity formed Ly an axially symmetrio body in repid motion
relative to a stream of wmter. In the laboratory it is possible to measure the
dimensions of such a cavity, farmed in a stream having a certain finite cross-
sectional area., The problem then is to caloulate what the dimensions would be
if such a cavity were formed in a stream ef ualimited extent in all directions,

There already exists a oonsiderable literature on the theory of wmll ocorrec-
tions applicable to non-cavitating flow in wind- ar water-tunnels. In that case,
howsver, the boundaries of the flow are determined, being the walls of the tunnel
and the surface of the asrodynamic body under test, and the problem oconaists
of determining the correotions to be applied to the velocity or pressure field,
In our oase, on the othsr hand, the internal boundary of the flow is variable,
being the surface of ths ocavity, and only the presswre distribution along it
is knomm,

In two dimensions, the problem has been solved for oertain simple head
shapes by the use of conforml transformetions (ref, 1 and 6), In three
dimsnsions, even under the assumption of axial aymmetry, this powerful method
is no longer available. A partial and approximate sclution of the axially
symstric problea will, however, be derived in the following pages by the use
of souroce-sink methods.

The basic fact underlying our present method is that the shapes of such
cavities are known to approtimsite to prolate spheroids. Furthermore, it is
possible to produce closed stream surfaoces, which are either exacotly or
approximately spheroidal in shape, by ocombining a very simple axial souroce-
sink distribution with a uniform stream of either unbounded or bounded extent,
respectively,

The characteristic feature of cavity flow is, of course, that the fluid
pressure is unifarm along the free surface of the cavity, and a dimensionless
cavitation number, Q, is accordingly defined by the ratio

p.qc
Q= ?ﬁ.— . {0.1)

Here pg and pg are [xessure in the indisturbed stream and the pressure on
the cavity wmll respectively, whilst p and U are the density of the liquid
and the velocity of the undisturbed stream,

In the flow-patterns which we shall construct by source-sink methods, the
mressure along the closed stream surface will be only approximetely uniform,
this constituting an intrinsic imperfection of the method, and we shall adopt
the convention of oonsidering the rxessure at the equator of the stream-
surface as characteristio of the "cavity", The cavitation mmber will then
be defined in terms of this equatorial pressure,

#ithout any further assumptions we oan then investigate the effect of the
boundary on the thickness ratio of the cavity, at a given cavitation mumber.
In order to investigate the behaviowr of the length and width separately,
however, we make. the assumption, rendered plausible bty the known results of
two-dimensional theory, that the dreg coefficient of a small cavity is
unaffected, to a high degres of accwsaay, by the boundary.

g o



1. Notation

In this report it will be convenient to emplay two non-dimensional
cocrdinate aystems, and the necessary transformations are set out here for
ease of reference., The oylindriocal coordinate system (Fig, 1) will employ
x, measured along the axis of symmstiry from the centre of the cavity, and
¥, measured perpendicularly from the axis of aymmetry. The oonicoidal
coordinate system (Fig. 2) will emplqy A, which is constant on each msmber
of a confoodl system of hyperboloids of revolution, and u , which is constant
on each member of the orthogonal gystem of confooal prolate spheroids, The
fool of this aystemare at y = 0, x = ¢+ f, where £ is a positive parameter,
The relations between (x,y) and ( A\, u) are

i

x/f = tanh \ ooth g }
’

y/f = sech \ oosach u (1.1)
and, in particular,

when x = 0 A=0,

wheny=0 (x| >f) A=+ ™ (1.2)

wheny =0 (lxlct) u=e .

We shall study the shape of the closed stream-surface generated by the
superposition of a uniform stream of velocity U, parallel to the x-axis,on a
certain source-sink distributitm., The latter extends along the x-axis from
- f to ¢ £ and has a density equal to x, The unit of length is the radius of
the stream at infinity, so that the limiting case of an unbounded stream is
obtained by letting £ tend to zero, The fineness ratio of the closed stream-
surface is oontrolled by the choice of U,

The semi-length of the closed stream-surface, that is, the value of x
when y = 0, will be denoted by x,, Similarly, the equatorial radius of the
closed stresm surface, that is, the value of y when x = 0, will be denoted
by Yo « Oun the same basis, the value of y at x = 0, ¥ = yo, will be denoted
bY ye 5 and the value of 4 at x = xo, ¥ = O, will be denoted by u,. Thus

Yo /f = cosech u, }
Xo /f = coth u,

The results of the analysis will be displayed in the form of a comparison
between the properties of the closed stream surface for general values of f
with the ocorresponding properties in the limiting case of the unbounded stream,

» it will be oconvenient to use a bar to indicate walues applying to
the oase of the unbounded stream, and the symbol A to indicate the difference
between the value far the bounded stream and that for the unbounded stream,

Thus, for example,
u-ﬁ¢w . (10‘0)

(1.3)

It is usual to desaride axisymméetric flow patterns by means of Stokes'
stresm function ¢(x,y), where 2w ¢(x,y)-1s the rate of volume flow of liquid
through the oircle (x,y) in' the.positive direction of x. Because, however,
this function vanishes identioally on the axis of smymmetry, it will be more
convenient here to use:-« current function N(x,y) defined by

L ) = plxy) . (1.5)

.} % . . < ,
This functios Mg &p ebwious phiysical significance, for it is equal to half
the average xe-dompaaBnt of Vvelacity insige ‘the circle (x,y).s It vanishes on
the x-exis oqb'fﬂihp”ip'pomq, namely the stagnation poipts (2 Xe00)e
2 d'\\ L 2y o L% .
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The closed stream surface ¢(x.y) = O breaks up into two btranches
namely the axis of symmetry y = 0 and the closed stream surface 2(x,y) s O.
It is only the latter branch which is of interest in this paper.

From this point onwards, in the interests of brevity, we shall replace
the striotly correct appellation "closed stream surfaoce” by the rather
loose term “cavity",

The axial component of the fluid velocity at any point of the flow will
be denoted by mJ, so that m s a funotion of x and y, or of A\ amdyu. In
practice, however, we shall only study the variation of m in the plane x = 0,
where, by symmetry, ml is the actual magnitude of velocity, The particular
value of m at the equator of the cavity will be denoted by my, and it follows
easily from Bermouilli's law, and the definition (0.1) of the cavitation
number, that

1¢Q-m': . (1.6)

It is often convenient in cavitational theory to consider two drag
coefficients, the first, Cp, being based on the area of the plate which is
supposed to be causing the cavity; and the second, Cif, being based on the
maximum cross-sectional area of the cavity, It will be oonvenient to
distinguish betwesn the two by referring to them in this report as the "true"
and the "modified" dreg coefficient, respectively, If the radius of the
cavitating plate is denoted by ¢, then we have the cbvious relationship

Yot/c? = Cp/Cp » (1.7)
Simmons (ref. 1) has shown, from considerations of momentum and contimuity,
that

%'-’Q" ;.L(n"1)'yi‘/9 (108)

the intepral being evaluated along the ¥y axis (x = 0), It will be possible
to calculate the boundary effect on Cp, and hence, by making a plausible
assumption as to the behaviour of Cp, it will be possible to deduce the
boundary effect on the ratio yo/c from equation (1.7).

2, Cavity in an unbounded stream

#e develop first the theoary for the unbounded stream, as the analysis
required is simpler than, and completely dissimilar from, that required for
the stream of finite lateral extent. The fact that this case ocarresponds to
a vanishingly smell value of f is no inconvenience, since all the ratios of
length which ocour in this section are finite in sise,

The current function f1(x,y) of the flow pattern is given by

r
Mx,y) =T+ ,,?1?"%" . (2

After transformation to the coniocoidal coordinates (l,u) this is easily
integrated to give

Nx,y) =T - (+ etnh 2y - ) (2.2)

The cavity surface {ix,y) = O is thus the prolate spheroid s T,
Jhere



¥ = M(uo) =+ sinh 2o = 1o , (2.3)

o ® Uy o (2.4)

The axial component of velooity is given by the equation

- 13 30
aU-1f-Br E. (2.5)

In the plane of symmetry, where A\ = 0 it follows from (1.,1) that the operator

(yd/dy) ip equivalent to the operator (~-tanh yd/du), so that the
substitution of (2.2) in (2.5) yields eventually

(;-1)ﬁ-u—hnhu. (XIO), (2.6)

Hence, using the relation (1.6), we obtain for the cavitation number the

expression
T = o) = [ Eestat e 'y (27)

The dimensions of the cavity are obtained immediately from (1,3), thus

Yo/t = cosech uo

and _ - (2.8)
Xo/T = coth o .

oreover, on subatituting (2.6) and (2,7) into (1.8) and evaluating the
integral, we find that

E‘E{) = sinh?® 3o (1n oochf o = tanh® ). (2.9)

3. Cavity in a stream of circular cross-section

In the previous section we examined the flow patterns produced by a linear
distribution of sources and sinks inmersed in an otherwise uniform unbounded
stream, The object of this section will be to examine the flow patterns pro-
duoed by the same line source-sink immersed in & stream which has a finite
ciroular cross-section. It is convenient to take the radius of the aross-
section of the undisturbed stream as unity, so that oertain boundary oonditions
have to be satisfied on the qylinder y = 1,

de shall consider two cases, firstly when the siream is enclosed Yty a
rigid qylindrical wall, and secondly whea it 4s opmy Gi all sides to an atmosphere
at constant pressure, The first case obviously imposes the boundary oondition

': -1-



that the qylinder y = 1 shall be a stream surface, in other wordsf(x,1 )=
comgtant, MNoreover, conaideration of oconditions far upstream or downstreanm
o. the oavity shows that the constant is simply ! U,

In the second oase the mathematiocal boundary condition only approximates

to the physioal boundary conditions. Por, instead of ensuring that the welooity
magnitude shall be oonstant on the disturbed free surface, we scotually stipulate

that the axial component of velocity shall be constant on the oylinder y = 1.
The validity of this approximation has been inveatigated in Appendix I, where
it is shom that the errors involved are not seriocus in that part of the field
which rorms the subjeot of this report,

The ourrent function due to a unit point source situated at (¥,0)

inaide a e or fixed aylindrical boundary, having the equation y = 1, is
ginn by ref, 2.} )

-ty + (x=E,y,v,+) when x > &
(3.1)
or -';v -y~? « ((E~x,y,v,) when x < E.

Here
0(x,7,0,) = I (kyn)? y—jt@iu;% oxp(ky wx) ,  (3,2)

k, is the m th. positive sero of J,(z), and vy = O for a free boundary
udv-_1 for a fixed boundary.

On integrating from ¥ = -f to E = f, to obtain the cwrrent function
Ng(x,y) due to the line source-sink, the result takes different analytical

forms according to the relative magnitudes of x and f. The two essentially
different ocases are as follows:

(1)

When O ¢ x ¢ f,
x

¢
ny(x,y) = ff!-%n x-£,y,v,4)} £ a5 + f!irv -y “3=alg=xy,u,4)} £ o
- X
= [E“(!'EJ.V.‘Q) + ﬂ(*'!.!.v.'”]: + ‘}' V(f‘ - x.)

. [E Q(E"‘J,v."?) .Q(E-x,y,y,-j) + % E‘/y.]: . (3.3)

(11)
When £ ¢ x

?
0,(x,7) -]r!-tv + oxg,y,0,4)] £ &

= lg 6y G¥om=2) + Axgy,v, -3 (3.4)

The current function of the combined flow patt=rn, 0(x,y), dis simply
the sum of the current function due to the line sawrce-sink, fig(v,y),

B
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and that due to the uniform streams thus

(x,y) =40 +0(x,y) . (3.5)

The function flg(x,y) is the sum of an infinite series of products
of Bessel funotions and exponential functions, but, by means of certain
tranaformationa listed in Appendix II , it oan be expressed in another form,
Thus,

2(‘(2.’) - ({' sinh 2y - y) * ,‘ O»u'. £2+R (x,y,!') » (3.6)

where Ozh. ars oonstants and R (x,y,f) is the sum of an infinite series
whose nth, term is a homogenecus polynomial in x,y and £ of degree (n + 3),
This form demonstrates the similarity between the current function for
unbounded flow (2,2) and that for bounded flow (3.5), and will be particularly
useful in a later section for developing a first order theory for amll
cavities.

The equation of the closed stream surface may now bs ocbtained by equating
2(x,y) to sero. The resulting functional relation between x and y is rather
oomplex, but we shall investigate only the overall dimensions of the cavity,
namely xo and y, o These quantities = the semi-length and equatorial radius
of the oavity, respectively -~ are given by the equations

0(xo,0) = 0 and N(0,y,) = O . (3.7)

Next, it is necessary to differentiate y*(x,y) partially with
respeot to y, in order to obtain the axial velocity component m U ., We
observe that

22 Ly s fxgen), Gu)
where
- Jo(ky oY)
#(x,7,v,p) = (-k,,'.)";:%fﬁ exp(-ky aX) . (3.9)
It follows from (3.5) that
0=t 2 raten) av-gxm) (3.10)

where
$a(x.Y) = (€ $(x-£,7,0,4) + p(x-E,7,0,=2)])7 - Ar2x?)
+ [E ¢(£—x,y,v,-1) - “Eq-Yo”o‘z)]: (0¢xcf) (3.")
or
= [E ¢(x-g,y,v,-1) + «&-E,y,u,-E)];r (f ¢ x)

«9-



On n-.ld.n? usé of the transformations given in Appendix II , one can
oxpress (3.10) in ths form

(m<4) U = y =4 cosh A sinh yfsech(r+x) + soch(r=p)] 4o0,,,2°+ B (xy,0);

alternatively, this sxpression may be obtained directly from (3.6).

In particular, at the equatarial plane x and A vanish, so that, from
(3.10,11, 12,)

(m‘1) u = 8‘(’.’,“.-1) - 3(’.” u,-Q) + %(OJ.V'Q) * v f.
(\=0) (3.13)
sy = tanh y +§c,'. >+ R (0,y,0) ,
and the ocorresponding formula for m, is obtained by simply adding the

suffix gero to the symbols m, and 4y . Pinally, Q follows from equation
(1,6), and (1.8) then yields after a numerical integration.

4 First order theary for two-dimensional oavities

Before developing a first arder theory for axially symmetric ocavities
it seems advisable to set on recard the corresponding results for two-
dimensional cavities behind a flat plate, The exact mathematical theoary of
a two-dimensional cavity behind a flat plate in a bounded open or closed
stream has been developed by Simmons (ref. 1) , but a certain amount of
algebtraic manipulation is neceasary in order to extraot the results which

we require,
(a) Closed tunnel

A suitable starting point far developing a first order theory in the
case of the closed tunnel is furnished by Simmon's equations (47, 54, 56
and 62) (ref. 1) . In the present notation, these become:

T hmoc = g(8) + k' sec 5 tan”'(k‘tand) ,

4 kmomxo = k* K 8in 8 - sec &1 -k'sin®8)'/* (K B(8) - E X(8)] ,
(.1)

t.monyo = g(8) + k' 8 mec &,
kecCp/kmo= g(8) ,
where

8(8) = sec 5(1-k*sin®8)'/* |k’ B(8) + (E'~k') F(8)] - k* K'sins, (4.2)

and

kmo = sec § {(1-k"sin®8)'/? 4 k'] , (4e3)

«10=



The incomplete elliptic integrals are defined by

5
2(8) = [ (14"sinta)'/* &

(4ots)
8
N8) = f(1 “«*sin%u) "'/t |
and 'chn camplete elliptioc intoyo'nla Eand K by
E=Ew2) , K=Kw?2), (4.5)

Primed letters for ocomplete elliptio intefah indicate that the modulus
has been replaced by the co-modulusk ‘(k "+ W'* = 1),

The assumption that k'’ is smll leads to series expansions valid for
smll values of the cavitation mmber. Thus, from (4.2),

g(8) =4 wk'® tan L se0 8 {1+ 0(k'?)],

and henos equations (4.1) take the form

Fimgmo =L(ped)k’® tand secd {1 + O(k'?)] ,
* mowxy n ‘d-‘bh + O(k'.)} ’

(4.6)

% Imonyo = k' § secd {1 ofk' tand/s » O(x‘*)} ,

kwoCp/ume = 4+ k'" tand secd {1 + O(k’?)} ,

and (4.3) becomes
mg =1 + k' 9008 + O(k’®) . (&e7)

On dividing the last thres of equations (4.6) by the first, the

Adimsnsions of the cavity are exyressed in terms of ths width of the cavitating

plate; thus

I A (0 e ox)], )
L.=r. Fﬂgﬁ! 1+ o(x'")]} r (4.8)
and _&;.-ﬁh + 0x'"] . J

-11-
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The equations (4.8) involve the two parameters 8 , which broadly
repressnts the effect of the tunnel sise, and k’ , which broadly represents
the effect of cavitation number, We shall now separate these two offects,
80 far as this is possible, by writing %, ¥ and Op for the limiting
forms of xo, yo amd Cp, respectively, as Stondl to sero, that is to say,
as the tunnel croas-section increases indefinitely., Pirst making the
substitution, obtained from (4.7),

k' secd =2 Q1 -3 q+0(QY}], (4.9)

we find that
Xo 16 1 4 Qe+ O{Q*
2~ e
- o .
?-"_&, 01Qq+O(Q) (4.10)
and Tp= 2T 1 v as (],

where the right-hand members are functions of Q only. The corresponding
correction factors, expressing the effect of tunnel size, are then found to
be

=& gL oy,

M

Yo = 5 .
S _ .7 " sind I+ o(e")] (4.11)

Q

a2l

=1+ 0(Q%) .

It will be noticed that these correcticn factors are not entirely independent
of the cavitation number, although when the cavitation number is smll the
inter-dependence is only slight,

The precise physicel signiticance of & is apparent from {4.6), which
shows that it is related to the length of the cavity by the equation

§oxo=gam't {1 -3 Q. 0(QM] . (4.12)

12
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Accordingly we plot in Pig, 3 the behaviour of x¢/x, amd ¥,/y, as
functions of x, in the limiting case when Q = 0 , (c is then negligible
in comparison with y, or y,,) using § as a parameter,

Up to this point no restrictions have been imposed on the parameter 8,
which is free to range from zero to = w . Acoardingly our results are
valid, for small values of G , whatever may be the ratio of the length
of the cavity to the width of the tunnel. It should be noticed however,
that, as Simmons pointed out, the ratio of the width of the cavity to
the width of the tunnel must necessarily be szml]l when Q is aml],

e now particularize our results to the case of cavities which are
short compared with the width of the tunnel, Then § is small and the
equations (4,11) reduce, by virtue of (4.12), in the case of vanishingly
small cavitation mumber, to

x./;, =1« T'; Xo® + o(x.,‘) ’
.ol P
Yo/¥o = 1 + ;M Ko ¢ o(xo0?) (Q = 0) (4.13)

and cD/Eb =1,

These results may be simply expressed in words as follows:

(1) Por smill values of the cavitation number the ratio of the length
of a cavity to the width of the stream may be of any oarder of magnitude,
although the width of the bubble is necessarily small compared with either
of these dimensions,

(i1) The true drag coefficient of the cavity tends to be independent of
the blockage ratio, for small cavitation numbers,

(111) When the ratio of the length of the cavity to the width of the
stream is small, and the ocavitation number is also small, the length and
breadth of the cavity are both increased by an amount proportional to the
square of this ratio, and the proportionate effect on the length is twice
as great as that on the breadth,

(b) Pree jet

In the case of the free jet, one of the present authors has adapted
Simmons's results to a form which furnishes a suitable starting point for
the present treatment. Thus, from equations (3.8), (3.9) and (3.10) of
ref, 4 we have

—
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ne
— $mee =4 q'"? ‘go et cu(x’),
k b moxo = 4 q'’? .?. Q* X(«') , : ;
Fmmgyomiq'/t jo q* Yu(«') r (4a18) ;
snd ¥ woCp/me = L '/ jo Q* Dy(«) ,
where
= ¥(2+0) (415)
and Cy(x'), X\(x'), Y\(#), Dy(«’) are known functions. In one

respect these initial equations are simpler than those (4.%,2,3) for the
closed tunnel, since one of the menthematioal parameters, namely «’,
depends on the cavitation number Q only. On the other hand, of course,
they possess the compensating disadvantage of involving infinite series.
The other mathematical paremeter, namely q, represents broadly the sffect
of tunnel sisze and is accordingly analogous to § in the previous case,

In order to study the case of smll cavitation numbers, we expand each
of the coefficients of q% in equations (4.14) as series is ascending
powers of x’ and obtain the following results

Frmec = (ma ) q'/ I(q) «* {1+ (kD] , )

1 mmox,

4 q'/% Ty(q) 1 + 0(x'N] ,
} (L.16)

+ mmaye = a2 (4 Tx(q) «’ + o Ti(q) «"*111 + o(x'*)]

and

$+mcOp/me = 2 wq'/% Tu(q) «'* {1 + O(x')},

where P(q)=1+4q+64q"+8¢q +0q"),
Ta(q)=1 e aedq+2a®+0(q) (8.17)

md r'(q)’10*QQ-.;’q.""!q’.fo(q‘).
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Division of the latter three equations of (4.15) by the first gives

expressions for the cavity dimensions in terms o the width of the oavitating

plate, thus
1 Q(‘“) N
% " ﬁ’“q, . x'? 4 ‘
o Ty(c 1 '3 l
L.zl (4.18)
c
st Do E b,

The similarity between equations (4.18) far the free jet and (4.8) for
the closed tunnel is already oclear, and it is psrhaps worth mentioning in
passing that the relation between k'’ and «' is

' = tanh [E&T tanh = k‘} , (4419)

80 that «’ and k’ tend to equality when small,

Proceeding as in the earlier case, we now write Xo, Yo and ED
for the limi ting forms of x,, ¥, and Cp . respectively, as q tends to
sero, that is to say, as the tunnel cross-section increrses indefinitely.
On using equation (4.15), this leads at once_to a_restatement of equations
(4.10), shewing that our two definitions of X,, ¥, and By  are,
in fact, consistent, The corresponding correction factars, expressing the
effect of tunnel aise, are found to be

T, 2
é:‘:q{{%}h + o(aM} ,

Yo-ALC® 1 . (4.20)
ﬁc'ﬁ%h + o(QM}

;o'

and 2o oan) .o
°p

. See note at end of this section,
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The physical signi.icence of ¢ may be deduced from the second of
eauations (4.16), which becomes

zmo=4 a2 L)1 -2+ 023} . (4.21)

Using q as a parameler, we can now plot in Fig, 3 the variation ofx, /%,
and ¥,/¥, as functions of x, , in the limiting case when Q vanishes,
The above results are true for quite general values of g between O and

1, although coefficients of higher powers of q than are contained in
(4e17) would be necessary to obtain reasonuble accuracy in the evaluation
of the functions Ty(q), T(q) and I5(q) when g becomes appreciable in
size, The evaluation of further coefficients would be tedious but not
difficult,

If, however, we now particularize to the case of small ¢, that is
to say, when the length of the cavity is smull compared with the width
of the jet, the equations (L4.20) reduce, by virtue of (4.21), to the
formlae

it

X0/ %o = 1 _z xo® + O(x0*),

24,

L
)
H)

1 = I x0® + 0(x0%) (@ +0)  (4.22)

and

Q
S
[w ]

[

—

[ ]

These particular results have already been obtained in an earlier paper,
but the general results (4.20, 21) are new,

It will be observed that equations (4.22) are very similar in form
to equations (4.13), the only difference being that the coefficients in
the case of the free jet are of opposite sign and of half the magnitude
of those pertaining to the closed tunnel,

NOTE:

It will be observed that in the limiting case when Q = 0 , equations
(4.11) and (4.20) both imply that the true drag coefficient is completely
independent of cavity size. This statement, however, has not a great deal
of practical significance since in this limiting case the cavitating head
itself must vanish, This is clear from equations (4.6) and (4.16), for ¢
vanishes with k’ (or &' ), whatever the value of §(or q).

At first sight this result, as regards the free jet, seems to be at
variance with previous results (see for example, refs. 4 and 6), where
the variation of the true drag coefficient at vanishing cavitation number
is actually studied quantitatively. There is in fact, however, no con-
tradiction, since in the earlier papers the cavity was allowed to be open
at the rear, whilst in the present paper it is necessarily closed,

-16-



5. First-order theory for axially symmetric cavities

#ith the results of the exact two-dimensional theory to act as a guide,
we are now in a position to develop the first order formmlae from the
approximate axially symmetric theory,

Since it is required to compare the properties of cavities in bounded
and unbounded streams at a given value of the cavitation number, the
fundamental connection is

me = mg - (5.1) '

For the other variables, we express the bounded stream value as the sum of
the unbounded stream value and a small increment., Thus, for example, the
equation (3.13) evaluated at the equator of the cavity becomes

(mo =1)(TU + &U) = Uo + Buy - tanh o - sech? Yo By + & Cy,2 £7 + R (5.2)

where R will be used to denote a remainder composed of smaller order terms,
On the other hand, equation (2,6) evaluated at the equator of the cavity
becomes

(Eo -1)ﬁ=710-tanh71° . (5.3)
and accordingly, by subtraction,
(‘0'1) AU = tanh® T AUo+'§Cu’z P+ R, (5e44)

Similarly, since the value of u at the point (o,yo) is pe , we find
from equations (3.5, 6 and 7) that

T+ & =-1- sinh 2 Jo + cosh 2 7o Bug = Ho = B, -§- ('_}v’2 P+ R , (5.5)
whilst, from (2.3),
T=%s8inh 2 16 = 00 & (5.6)
A subtraction now yields the result

& = 2 sinh?® %o Buo -4 Cy , £7 + R, (5.7)

-17-



Again, the value of u 2t the ooint (x0,0) is yg,i.e, T, + Au,
so that (3.5, 6 and 7), together with (2,3, &) give a result
recisely sinalar to (5.7,, but with the subscrijt e replacing tne subscoript
o throughout, 3ince, however, we have already noticed (z.i) that To = T
it follows that ug = o , and the cavity in the bounied streum is still
& prolate spheroid, to the present order of accuracy. This M-t is also
clear directly from (3.6),

Elimination of U between equation (5.3) wnd (5,6) yiclds an expression
for (m, - 1) , which mey te eguated to a similar exrression obtained by
eliminating AU  from (5,4) and (5,7), thus

- - - z
Mg = tanh yg _ tnh? o A+ 3 Cp of + R (5.8)
-g-sinhZEo-zo 2sinh271'o Al.lo";zcl)zf:f'R
’

Now#, when the cavitation number is very small, these two excressions for
(mo = 1) must tend to zero and hence pp, must tend to infinity, I'oth the
numerator and the denominator of the left-hand merber of (5.8) are then
clearly dominated by the leading terms, It may then be deduced taat, in
the right-hand member of (5.8), the numerator is tominated by the second
term, whilst the denominator is dominated by the first term. It follows,
since sinh 2 4, ~ 2sinh2 3, , that

2 Uo Buo ~ 4 Oy 2 r3 (o = o . (5.9)

In order to deduce the corresponding change in the pronortions of
the cavity, observe that, from (1.3),

Yo/%o = sech uo ’

so that M = - tanh zo Auo . (5.10)

¥o/%o
Conbining (5.9) and (5.10), we find that
Cy, I3
Myo/x0) o _ Cu,2f? (to = =)« (5.11)

Yo/%o 3 Tio

The numerical values of - G, , &are riven in Appendix Il ~s
’

=Co 2 = J205911... =Cy 2= -.79682 .., , (5.12)
b4

so that the corrections to be applied in a closed tummel cre of onnosite
sign, and roughly four times in magnitude, those to be applied in a free
jet. This makes a reasonable comparison with the two~-dinensional case,
where the corresponding factor ic exactly tvo.

8=




Again, the corrections to Le vr;iied are -re;curtional to the cube
of the ratio of the length of the cavity to the wialh of the axially
symuetric jet, whilst in 4w. Jdinensions the correctlons were proportional
to the square of this ratio,

There is an importani dissimilerity between the two-dimensional and
axially symmetric results, however, in that the numerical coefficient in
the latter case tends logarithmically to zero with the cavitation number,
whereas in the two-dimensional case it tends to a finite limit,

6. Use of the drag coefficients to.determine cavity dimensions

The width of the cavitating plate, namely 2c, does not appear in the
analysis which we have developed for the axially symmetric cavity, so that
it is impossible to determine unaided the variation of the actual cavity
dimensions, as distinct from the thickness ratio yo/xe . However, it is
clear from the two-dimensional theory that the true drag coefficient ¢p ,
based on the cavitating plate width, is very insensitive to boundary effects,
and by assuming that the same is true in the axially symmetric case we can
calculate the variation of x, and y o, separately,

Prom equations (1.7, 8), the true drag coefficient is given by

CD = (yo%/c?) Cls ’ (6.1)

where CIS = 0 - sinh? po I( uo) , (6.2)
1

and I(l.lo) =2 f-z [ (m '1)2 y G.Y . (6-3)
Yo

Taking logarithms in equation .(_6.1) and subsequently performing the operation
A , we find that, since Cp = Cp by assumption,

2 oo .
Yo

]

&

(6a4)

N
.

(e
[

The cavitation number Q is the same in both bounded and urnbounded cases,
so that

- &} = sinh 2 o buo (o) + sinh® 1o 8T(we) »  (6.5)

On making the transform.tion to the conicoidal coordin-tes (1.1) and remerber-
ing that the path of integration is along M = 0 , {(Z.3) becomes

Ho
I(ue) = 2 r (m = 1)? cosech® ycoth udu, (6,6)
‘8inh™' £
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whence, in particular,
T* 1(Ho) = 2 Mo coth flo = 2 In cosh go = Fe? cosech® my = 1,(6.7)

and

I )~ (Inks -1)/T* (o + &) & (6.7a)

The quantity AI(y, ) may be evaluated from (6.6) as the sum of four
parts, thus -

BI(uo ) = 814 ba+ By48, (6.8)
where A, =2 (mo = 1) 2 cosech?® o coth po dp + R
2 3
3 Y2 —
——— (mo = 1) (o = o ; (6.9)
UI
sinh™' f
and B8g=-2 (m = 1)2? cosech? pcoth pdu+ R
[
£ ( )
~ Ho * @) (6.10)
1602

The two contributions 4, and 4, result from the alteration of the upper ard
lower limits of integration in I( ye) . The remaining contributions, &3
and 4, result from applying the opsrator 4 to the integrand. For a given
value of pu, the only factor in the irft‘e‘grand which is susceptible to A is
(m-1)? . Now, fram (3.13) and (2.6)

8{(m) U} =T Mm-4) + (m1) U =50, , £ +R

so that T a(nt) ~§Cy, £ - (m1) 0, (6441)

-20-



On using this result we now find that

Ho
3 ——
A;:l,.x-;-Cu,zé— / (m=1) cosech?® ycoth yduy+ R
0

'}Cv of3
~ "-ﬁ—’;— (o »w) 3 (6.12)

and

oY L —
8= 2L () + R
U

ro_g. CU’Z f:’%;ll (uo *m) ° (6.13)

It is clear that when f is small, and when py, « »  that is to say,
when the cavitation number is also small, 4, A4, and A, are all small
compared with &3 , so that equation (6.5) bdcomes

I inh d1 ] 2 .n}f-_‘
-ty | 2 zn?(’@;z) + mﬁiuo_l':' Cu,2 £7% (6.14)

The first term inside the square bracket may be neglected by comparison
with the second term, when 7, is large.

Examining the relative magnitude of the terms in (642), we find from
(5.8) that

Q ~2(my=1) ~ 2 e/sinh? o (o ‘”),(6’15)
and from (2,3) and (6.7a) that
sinh® o I(o) ~ (In 4 - 1)eosh? T, (ho =+ w);(6.16)
so that the second item is negligible compared with the first,

Substitution of the results (6.14, 15 and 16} in equation (6.4)
produces the result

Ave fCU.zf’ sinhqo
'%" costfn, 2 7,

~ (Ho < =) . (6.17)
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Finally, since

In xo = In yo - In (y¢/xo0) ’

we find, on applying the operator A , that

S0 _ &yo _ Aye/xq)

Xo ;o ;o/;o

2Cy L3
~——vl=2— (uo neo), (6.18)
3 ue

by virtue of (5.11) and (6.17).

The results (6,17) and (6.18; for the axially symmetric cavity are
analogous with those (4.13 and 22) for the two-dimensional cavity, They
state, in fact, that, for a small axially symmetric cavity at low cavita-
tion number in a closed or open tunnel of circular cross section, the
boundary effect is proportional to the cube of the ratio of cavity length
to tunnel breadth, and the proportiamte effect on the cavity length is
twice as great as that on the cavity breadth. PFurthermore, the boundary
effect is a shrinkage in the case of the open jet and an expansion in the
cage of the closed tunnel, the latter effect being roughly four times as
great as the former,

7. Numerical results

The simple first order results deduced in sections 5 and 6 apply only
to the doubly limiting case when both Q and f (or x,) are very small, One
of these limitations, that of small cavitation number, applies alsoc to the
more general theory developed in sections 2 and 3, for the prolate spheroids
investigated therein satisfy the constant pressure condition of cavitating
flow only when the thickness ratio yo/x, is very small,

The condition that the length of the cavity should be small compared
with the width of the tunnel, however, is not necessary to ensure the
validity of the theory of sections 2 and 3. It is true that the width of
the cavity must be small, in order that the mathematical boundary condi-
tion applied to the surface of the free jet shall sotisfictorily represent
the actual physical boundary condition, But for any ;iven cavity length,
the width of the cavity is bound to be small when the cavitation number
is small enough, so that we do not need to stipulate that, in addition,
the length of the cavity shall be small,

Accordingly, it seems worth while to evaluate the results of the
general theory for a wide range of values of the non-dimensional cavity
length x4, and for various small values of Q, In order to be convenient
for practical use, the results have to present, for iven volues of Q,
the variation of the thickness ratio yo/xo s a function of some easily
measured length, such as xo, « In view of the fact that @ is only obtained
in terms of x,, y, and f after a fairly lengthy calculation, some care
is necessary in order to reduce to a minimum the labour and inaccuracy
involved by inverse interpolation, The method of calculation which was
eventually selected will be briefly described.
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The ocavity in a bounded stream, at a given value of the oavitation
number .Q, is characterised by a trioc of valuss ue, yo and £ , oon-
nected by the relation (1.3). This value of ue oorresponds, in an
unbounded stream, to a slightly different valus of the cavitation number,
which we shall denots by Qy = G{ue).

Similarly, the oavity in the bounded stream is characterised, for
given Q, by the trig uw, Xo and f, connected by the relation (1.3). #e
acoordingly define Qx = G(u,). , that ia to say, the cavitation mmber in
the unbounded stream which would yield a cavity of the length actually
observed in the bounded stream.

The essonce of our method is to form estimates of Qy and Q: from
the given value of Q and hence by using (2,7) to calculate e and ue ,
which yield the required values of y, and x . The process is iterstive,
sincg each estimate of Yo and x, enables a better estimtion of Q,
and Uz to be made, and these in turn lead to improved estimates of y,
and X e

The first step was to tabulate Q as a funotion of e , using (2.7),
at intervals sufficiently close to make inverse interpolation simple and
accurate (Table I). Next, taking in turn the values y = 0,05 (0,05) 0,35,
combined with the values £ = 0,5 (0.5) 2.0, the fumcti: * U(y,, £) wes
calculated from (3.5) by setting 0(0,7s) =0 . PFor the same values of

o and f, the mroduct (my - 1) U was also oaloulated from equation
{}.13). Simple diviaion then yielded m, , from which Q followsd by virtue
of (1.6). PFor the same ratios yo/f , the function Q, was galoulated
directly from (2.7). With f as a parameter, the difference Qy - Q was
tabulated as a function of y., and the resulting second diffsrences were
sufficiently steady to ensure satisfactory direct interpolation (Table II).

In a similar manner, but setting n(‘..p) = 0 in place of 0(0,y,) = 0,
the function Gz - Q was tabulated as a function of x4 , with £ as a para-
peter, intervals of 0,02 in the argument being quite small snough to ensure
acourate interpolation (Table III),

For a riven valug of Q and one of the tabular values of £, the first
estimate of Jy (or Q= ) was simply Q itself, The ccrresponding value
of uo (or u, ), obtained by inverse interpolation from Table I, yielded
a first estimate of y, (or xo )s The ocorresponding estimte of the
difference Yy - @ (arJs - Q ) wes interpolated froa Table II (or III)
and an imxoved estimate of Qy (or Tz ) thus obtained, The cycle was
repeated until the valus of y, (or xo ) 80 obtained was not subject to
further change, whan it was assumed to be ocarrect, Convergence of the
process was rapid,

'ﬂwadn.ntlgootthin-thodofooupuutionisﬂutﬂwwofm
unwieldy farmilas involving infinite series, which are appliocable to
bounded streams, is kept to an absolute minimm, The only inverse inter-
polation required is for the oosparatively simple relation (2.7), whioh
applies to an unbounded stream.

The ocalculations of Of) were planned on similar principles, this
being rendered even maxre important owing to the fact that mmeriocal inte-
gration was involved, The expression (1.8) far 0of) was split into parts,
thus

23~
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Op=Q-=(a-npt, (741)

[ ]
where 4 = 2yt , m-1)ya
‘vo

(7.2)

and n-zy:'[ IG-1)' 0 e(m-1)ut]ya.
Ve

The small numeriocal integral B was tabulated (Table V) for the same
values of yo and £ ag those used in the cospilation of Table II,

Then for one of the chosen values of Q, and a tabular value of £, the
previocusly computed values of y 4 enabled the valus of B to be inter-
polated, whilst the value of A was readily caloulated snalytiocally.

The results of our computations are displayed in Pigs. 4 ~ 6.
Fig. 4 shows the behaviour of the ratio (Y, .)/( ) as a function
of xo , in the case of the open tunnel o cuinrarou-uotim A
mspcdiumfathotw—dmnuomlunhdmddtmrc
oomparison, Pig. 5 shows the same function plotted against ths blockage
rstio,tbtthto-v, Yo in the case of the two-dimsnsional ourve, and

in the axially symmetric oase, Pig. 6 shows the effect of the
Mommmmmuddrqmmohntbudontlnudv
diamster, As explained in Section 6, we may draw the inference that the
maximm aross-sectional aresa of the cavity behaves in an approximately
reciprooal manner.

When this report was in ocourse of preparation, it was learnt that
a closely similar investigation was being oconducted at another Govermment
ostablishment, namely, the Admiralty Researoch Laboratory, Teddington,
It was therefore agreed to divide the field for numerioal work between
the two establishments, Aocordingly, the mumerioal results dspicted
in the grephs at the end of this report refer only to open jet tunnels,
vhich are of more particular interest to this estadblishment, It is
understood that a report containing similar results for closed tunnels

1s being published by A.R.L.

8. M\l‘im

The wall corrections necessary to msasurements of axially aymmetric
cavities in ciroular tunnels of free jJet type have Desn displayed graph-
ioally, These results are epplicable to smll values of the cavitation
mmber but to arbitrary values of the ratio (length of cavity)/(wiath
of aross-section of tumel)=x,,

For the oase when X, is small as well as the cavitation mmber, we
have demonstrated the following results:

=2l

S




(a) In two-dimsngiopal flow

(1) the fraotional increases (closed tunnel) or decreases (free
Jot) in the length and width of the cavity are both proportional
to x,', The factars of proportionality are

- length width
closed tunnel /12 /2
free jot - /2 - wt /4B

(41) the true dreg coefficient, based on the cross-sectional area
of the cavitating head, is unsaffected by the tunnel boundary.

(b) Ir_sxi-ymmetric flow

i (1) ine frectional decrease (closed tunnel) or increase (free
Jet) in the thickness ratio of the oavity is proportioml to x,%:
The factors of proportionality tend to sero with the cavitation
maber, but they are in the following ratio:

closed tunnel - 79682,
free jot + 205911

(11) assuming that the true drag ocefficient is unaffected by the
boundary, then the fractional increases (closed tunnel) ar decreases
(free jet) in the length and width of the cavity are both propartional
to x¢? . The factors of propoartiomality tend to zero with the
cavitation number, but they are in the ratio:

length width
closed tunnel 2 x 796824 « 796824
free jot - 2 x ,205911 - 4205911
i
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Appendix I
The validity of the aprroximate condition at the free surface

The physiocal bourdary ocondition at the free surface of the jet differs
from the approximate mathematioal boundary oondition in two respects, We
have, in fact, satisfied the wrong boundary condition at the wrong place,
and it is necessary to see whether the inacouracies involved are serious.

to the excessive amount of numerical work which would be involved
in an exact investigation, we shall restrict ourselves to a numerical check
in the plane of symmetry, together with a swrvey of the arder of megnitude
only elsewhere,

One of the inacouracies involved is due to the displacemsnt of the
free boundary, and this is obviously a meximum at the plane of symmetry,
where we shall assume that the radius of cross-section is 1 4+ ¢.

The other inacouracy is due to assuming that the velocity magnitude
at the boundary is adequately represented by the axial component of the
velocity. This partiocular error, which vanishes at the plane of symmetry,
is obviously a "cosine effect” of the angle of inclimation which the free
surface mkés with the axis. The arder of magnitude of the maximum mgle
involved may be taken as given by € /r,

The equation of the "free boundary™ of the jet, when calculated by
the present approximate msthoéd, is

VP Huen(zyl=tu

s0 that

«U=-0(01) 1 +0(e)]. (1.1)

Neglecting the factar {1 + 0(¢)] in the right-hand meaber of (I.1) we
have ocalculated the displacement ¢ as a function of cavitation mumber
and cavity length, the results being shown in Pig, 7.

A more exact theary than the one used in this report would have to
apply the free boundary condition at the free surface itself, that is to
say, on & surface lying between y a1 amd y =1 + ¢ « It may be
seen intuitively that the results of such an improved theory for a given
value of £, would 1ie somewhere between ouwr present results for that value
of £ and tbe corresponding results when ¢ is replaced by fA +e¢)

In other wards, the plotted points in the Pigs, 4 - 6 are a little tc the
left of their oarrect position, The horisontal coordinates should be
inareased by a factor which lies between 1 and (1 +¢), [(1 + 2¢) in
the case of Pig. 5]. The smll walues asesumed by ¢ in Pig, 7 make it clear
that the oxrrection involved would be small,
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The boundary condition which has acturlly been a:plied in this
report ensures that the axinl component of velocity shall be constint on
the cylinder y = 1. Owing to the displacement of the ‘et Loundary,
however, it is clear that tiis axial com. snent of velocity 711l not te
constant on the jet bhoundary, Accordingly we shall investigate the
difference tetween the velocity at infinity and the -xial coupeicat of
velocity on the equator of the jet boundexy, Ideally, of conrse, this
difference should be zero, since the axial component is at this point
equal numerically to the velocity mupgnitude,

Trom equation (3,10) the nctual difference is piven by

(1 -m) U= egB(0,) 11+ o(e)] . (1.2)

MNow, from the definitions (3.2) =nd {3.9), it can be showmn that
3
-55 (x,y,v,p) =y Ax,y,v,p+1) ,

from which it followrs that, mutting v = 0 for the free toundary,

$ 25 (0,11 = - £0(£,1,0,0) + 0(£,1,0,4) =0(0,1,0,4) . (1.3)

I'4

Substituting this formule in (I.2) and using the meviously calculated
values of e, we can now plot (1 - m)U es a function of § ond x,, the
resulis being shown in PFig, 8,

In order to .woviie « basis of coryericon we also show in Fig, 8, by
a dashed line, the cdlitional contrilution to the axiel compon:nt of
velocity at the centre of the jet due to the presence of the free surface,

According *o equations (2,6} ard (2.13) ihis may be » ~ressed, after some
manipulation, as

[(E “1)T - (m=~1) U] =1n2f -1 -2f §1,0,0,-1)+2 ¢(£,0,0,-2)
x,y) = (0,0

(1.4)

It is clear from Pig, 8 thet the viriation of the wxial cormonent

of velocity on ine free boundary is of n~ smaller order than the viriutions

produced at the jet centre by the  resence of the free bounims In fact,
the two effects differ by a factor of at lerst 5 in 211 the cogses used in
constructing the cuwrves for Figs, 4 - 6, The centre of the jet is chosen
as the roint of the basis of comparison because the effect of the free
boundery is least there, so that the difference in order of the two effects
viould be even nore marked elsevhere,

Pinally, it is necessary to examine the effect of the anzle of inclina-
tion between the jet boundery and the axis of symewetry, This results, of
course, in a discrepancy between the axial componcnt and the magnitvde of
the velocity., Since this is o cosine effect the arder of marnitude is given
by the square of the order of ragnitude of the angle of inclination,
naely (€/f)?, This is comnared with the juantity (1 - m), measuring the
veriations in axial component, in fig, 9. Clearly the two effects are of
the same order, and, since the latter effect has been shovm to be unimportant,
so is the former,
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INCLASSIFIED

AFYENDIX _II
It has been shown (ref, 5) by one of the present authors that infinite
series of the types appearing in equations (3.2) and (3.9) may be trans-
farmed into other seriéds which converge rapidly near the origin, The

particular results required in the computation of equations ( 3,3), (3.4)
and (3,11) are listed below, :

« “) 1 ; r"Pn(s
XY,V =-3* neo CU’" -

#xy,v,-2) = -3; In {r(1+s)] + ; cu'"_‘ ﬂqi’.).

Neo .

Ax,y,v,R) = %‘ [r(1+8)]7" - n;-:.o cvv"" %ﬁ-

x,y,v,-3) = 5 [1n {r(1+8)] =2 (1-8)/(1+s)] - ngo oy nee rn.;fég?)

where r’ =x +y, 8 =x/r

and Pn(s) 1is the Legendre polynomial of order n,

The ooefficients C, , have the following numericzl values:
’

Co,-v =0 Coujmy == 2375000
Co,o = + 435345 Gy, =+ 1.106824
Co, =0 Capr =-=1
Co,s = = 4205911 Cu,a = o796824
Co,a = + ,658857 Ci,a == 1,200470
Co,6 = - 5.14657 Ca,e =+ 7445829
Coe =+ 73,7500 Cy,e == 96:2205
Co,10 == 1682,77 Ci,10 =+ 207091
Cy,anes =0 (n>0),
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FIG. I CYLINDRICAL CO -ORDINATES.

Al oo

"AXIS OF SYMMETRY.

FIG.2. CONICODAL CO-ORDINATES.
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Q= 0.03

EiG. 7
DEVATION OF FREE BOUNDARY
FROM UNIT RADUS.
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COMPARISON OF EFFECTS OF
BOUNDARY INCLINATION
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