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NACA ™ 1353

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1353

SOME PROBLEMS ON THE THEORY OF CREEP*
By Y. N. Rabotnov
Section 1. The term creep of metals is applied to the phenomenon in

which, at temperatures beyond a certain limit, the metal subjected to a
load slowly undergoes deformation with time. For the case of steel, the

creep phenomenon must be taken into account at temperatures above 4000 C,

Very slow deformations for a prolonged period are cumulative and lead
either to inadmissible changes in the dimensions of a structural part or
to its failure.

It is important to note that failure due to creep occurs for very
small strains considerably less than those in static rupture.

. In the design of steam power units, boilers and turbines, creep is

a basic factor which determines the choice of the admissible stresses.

On account of the extreme urgency of the problem, the creep phenomenon

has claimed the widest attention of metallurgists, physicists, and to a
lesser extent, technicians.

At the same time, however, the theory of creep constitutes part of
the mechanics of dense media and the mechanical formulation of the pro-
blem may be given as the following:

A body is subjected to the action of a given system of forces, or
initial displacements are prescribed on its surface. It is required to
find the stress distribution in the body and the changes of its defor-
mations with time.

Such a statement of the problem immediately raises the following
question: What tests should be set up in order that the mechanical
characteristics of creep (certain constants or functions) may be deter-
mined? 1Is it sufficient for this purpose to make use of the generally
accepted methods of testing, or is it necessary to supplement them?

For the solution of the problem of creep as thus formulated, a
mechanical theory of creep is required. Such theory, at the present
state of knowledge of the physics of the process, must necessarily bear

*"Nekotorye Voprosy Teorii Polzuchesti." Vestnik Moskovskovo
Universiteta, No. 10, 1948, pp. 81-91.
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NACA TM 1353

an externsl, over-all character based, not on the investigation of
microprocesses, but on the results of mechanical tests. The existing

physical theories are as yet far from providing a quantitative descrip-
tion of the process in all its complication.

The usual method of creep tests is that of obtaining the strains
for a constant load. For small deformations it may be assumed that to a
constant load there corresponds a constant stress,

The results of tests are generally represented in the form of creep

curves (fig. 1), the time being laid off on the axis of abscissas and the
strain € on the axis of ordinates.

The intercept €, represents elastic deformation if the stress o

does not exceed the elastic limit of the material., Often in place of
the total strain there is laid off the plastic strain

p=¢- o/E

Many attempts have been made to give an analytical expression for

the creep curves. The different equations proposed may be divided into
two groups:

l. p

i

S(o)T(t) (1.1)

2. p = g(o)o(t) +8(0)t  (o(=) =1) (1.2)

In writing equation (1.2), the essential assumption is that the rate of
creep tends towards a constant value with time, that is, the creep curve
has an asymptote. The function g(c) is the intercept €' on figure 1.
For the function S(ou), the following equations have been proposed:

\ S(g) = AoR (Bailey)
| S(a) = veo/p (Ludwik)
s(o) = v(eo/u - 1) (Soderberg)
S(o) = 2v shﬁ- (Nadai)
% S(o) = boed/k (0ding)
i ' | . . e S
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For the function T(t), the best equation is apparently the power equa-
tion

T(t) =t® (0<m<1)

If equations of type (1.2) are used, the function 6(t) assumes
the following forms:

6(t) =1 - e Bt (Mac Vetty)
8(t) = — (0ding)

For g(o), it has not as yet been possible to establish a law.

The series of creep curves for different values of o give the
representation of the functional relations between the three variables
g, ¢, and t. If € and ¢ are laid off on the coordinate axes, a
series of curves is obtained, which is shown in figure 2 and character-
ized by different values of t. Figure 2 refers to the test data of
Robinson which are unique in that these tests extended for 100,000 hours
(from March 27, 1931 to October 8, 1942). We worked over a very large
number of the tests in the series by this method and obtained in all
cases, with an accuracy not exceeding the limits of the experimental
accuracy, affinely related curves in the o¢ plane.

On the basis of this result, the following formula describing the
law of creep for constant stress is proposed:

e(e) = [1 +a(t)] o (1.3)

For the. function G(t), good results are generally given by the following
expression:

1-
G(t) = 25 ¢1°

where the coefficient a fluctuates about the value 0.7, while the
coefficient X changes very strongly for different materials.

The scatter in transferring all the points on to the curve t =0
(fig. 2) is found to be not greater than the scatter of the modulus of
elasticity of the specimens on which the given series of tests was con-
ducted. .
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4 NACA TM 1353

Section 2. The mechanical theory of creep for the case of a single
axis must establish such relation between € and o, containing the
time or time operators, which would permit predicting the course of the
process varying with time. In particular, a second extreme case of the
one-dimensional problem is the. problem of relaxation. The latter is the
process of decrease in stress in a rod the length of which remains con-
stant., Test data on relaxation are very meager, only those data being
of value which, together with the curves of relaxation, give the curves
of creep for the same material. The only reliable data in the general
literature are those published by Davis in 1943 on copper.

The various mechanical theories of creep existing at the present
time may be divided into three groups:

(1) Theory of constant rate: Assuming the existence of an asymp-
totic curve of creep, the curve is replaced by a straight line parallel
to the asymptote and intercepting the segment €, = €/E on the axis of

ordinates. Then

p = 5(o) (2.1)

The theory of constant rate assumes this as the true relation for any
conditions. In particular, for € = constant, p = -6/E, and from equa-
tion (2.1) there is readily obtained the law of relaxation which grossly
contradicts test data, since the neglect of the primary creep (the curvi-
linear part of the curve e€t) is not permissible in the problem of
relaxation. In the case of the nonuniform stress state, equation (2.1)
leads to very great difficulties and even the problem of the pure bending
of a rod of rectangular cross section is not solvable.

The greater number of authors employing this theory take still
another step and neglect the elastic deformation. The fundamental equa-
tion is then the following:

€ = s(o) (2.2)

Equation (2.2) is generally put at the basis of the theory of sec-
ondary creep widely applied in technical computations. Below shall be
glven another basis for this theory which considerably generalizes 1it.
For the present we may note that from the point of view of equation (2.2)
the problem of relaxation has no significance.

(2) Theory of aging: The theory of aging postulates the existence
of a definite relation between o, €, and t:

€692
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[
(o]

f(o,¢, t) = (2.3)

or between D, 0, t

It

F(p, 0, t) =0 (2.4)
It is easily shown that any theory, the fundamental equation of which
contains the time explicitly, is contradictory. The physical law must
be invariant relative to a time origin. Applying the theory of aging
to the successive loading and unloading may yleld absurd results.

The theory of aging in the form of equation (2.35, however, gives
for smoothly varying loads satisfactory agreement with experiment. The
methods of computation based on it are relatively simple and at the same
time permit taking into account all the characteristic experimental
curves which may be obtained in tests. Hence, one of the varilants of
the aging theory can be recommended as a technical method of computing
structural parts working under the conditions of high temperatures. This
point of view has been developed by us in a paper presented at the
session of the Soviet Academy of Sciences in March 1948.

(3) Theory of strain hardening: This theory postulates the exist-
ence of an unvarying relation among the rate of plastic deformation, its
magnitude, and the magnitude of the stress:

¢(p, p, 0) =0 (2.5)

Methods exist for the graphical construction of the relaxation curve
by a given family of creep curves on the basis of hypothesis (2.5). The
analytical formulation of this theory, the choice of the functional
relations for which it is possible to integrate equation (2.5), is found
to be very difficult.

Section 3. The theories of creep enumerated in section 2 are not
capable of explaining a number of phenomena observed during experiment.
There is first of all the case for the strain-hardening effect., A
specimen initially strained by a large force evidences creep to a con-
siderably less extent than a specimen not initislly strained. If the
specimen was tested under stress o7 and o0; 1is decreased to op, the

creep practically vanishes. If, however, the stress o0y, was initially

imposed, the creep for this stress may be very marked. There are no
serious investigations of this problem in the literature. The published
data undoubtedly give a qualitative account of the phenomenon but the
quantitative aspect still awaits investigation.
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The second effect is the so-called reverse creep. If a specimen is
subjected to a creep test at constant load and the load is then removed,
the specimen immediately shortens by the amount of the elastic elongation
but the process does not stop there. In the course of time the specimen
continues to shorten, returning in this way a part of its residual
deformation. This phenomenon of the type of elastic aftereffect has been
subjected to a careful experimental study but not one of the previously
enumerated theories provides an explanation for it.

The theory of creep proposed by us represents an extension of the
theory of elastic heredity of Volterra to plastic deformation. In the
same way as the elastic heredity develops about a straight line o = E¢
in the o€ plane, the plastic heredity, or creep, develops about a
certain curve in this plane. It will be inconvenient, in what follows,
to lay off as usual the value of the stress ¢ on the ordinate axis and
we shall therefore take a certein fictituous plane ®€ and a curve
®=®(€e) in this plane (fig. 4).

The curve ®(€) represents the ideal curve of strain with the
exclusion of the time factor (actually never realized). For active
processes, that is, those accompanied by motion along this curve upward,
the fundamental law is written in the following manner:

o(e) = (L +K*% o (3.1)

where K* 1is the integral operator of Volterra, that is,
4

K* = K(t - T) o(T) 4T
[o]

Here and in what follows, use will be made of the notations and
results of our previous paper (ref. 1).

The increase 1n the stress ¢ 1s no longer a criterion of the
activity of the process as in the theory of plasticity but such criterion
is given by the increase in €.

For unloading processes, it is necessary in the left-hand side of

equation (3.1) to introduce in place of ®(€) the value of the ordinate
of the linear unloading AB expressed as a function of ¢:

E(e -€¢')+o0 =(1+K% o (3.2)

€592
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Ir I'* is the solving operator,

1 _ .
Trxr=1-T

there follows from equation (3.1)

" 0= (1-T*) CP(E)

Setting

K*+1=0G(t) and I'™ 1 = R(t)

the law of creep will then be

o(e) ={1 +6(t)] o (3.3)

and the law of relaxation

o =[1 - R(t)] o(e,) (3.4)

Equation (3.3) entirely agrees with that obtained from tests, for-
mula (1.3). The expression given in section 1 for G(t) shows that the
operator K® possesses a singularity of the type of the Abel operator.
In the simplest case we may assume

»
K* = XI*_o,

where I*_, 1s an operator with kernel (t - T)"%/I(1-a). Introducing

the 3J-operators employed in the previously cited paper (ref. 1) yields
a very close agreement with test results, since the 3 -operator contains
an additional constant. [ NACA Reviewer's Note: The 3 -operator is an

d,m Bn(t _ T)n(l-l'(l«)
g Tl(n+ 1)1 +a)

operator with the kernel 3,(B, t - 1) = (t - 7)

The additional constant referred to is B.]

If, as 1s usually the actual case, the body is acted upon by con-
stant loads or the displacement of its points is maintained by constant
stresses, it is necessary in actual computation to deal with the two
functions G(t) and R(t) which may be determined from tests forgetting
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about their origin from the kernel and as resolvents of the same inte-
gral equation.

This variant of the technical theory of creep is a forward step as

compared with the aging theory which retains equation (3.3) both for
creep and for relaxation.

The phenomenon of reverse creep (fig. 5) will now be considered. A
stress o 1s applied to the specimen and it undergoes the instantaneous
deformation U/E (point A); in the course of time T, creep ocgurs along
the curve AB; at the instant T the stress is removed and at the same
time there is removed the elastic deformation BC = OA = o/E. In the
time elapsed 6 after the unloading there is also removed the defor-
mation €. (point D). This process will be followed in the plane €
(fig. 6).

The instantaneously applied load corresponds to the motion along
the curve from point O to point A; during time T the strain increases

and the function ®{e) up to point B; the creep process is described
by equation (3.1). At point B

P(eg) =l1+a(T)] o (3.5)

With instantaneous unloading we drop to point C on the segment
BC = AO, the reverse creep corresponding to the motion along this line
up to the point D at instant 6. [ NACA Reviewer's Note: It is also of
interest to examine the effect of an instantaneous increase in load
occurring after a period of constant-stress creep. If €, is the strain

at the end of the creep period and b€ 1s an instantaneously imposed
strain increment, then, according to equation (3.1), there is an
instantaneous stress increment given by

80 = ey + be) -~ @(e,) (aj

This result msy be at variance with the facts, for recent experimental
evidence, including tests on the propagation of plastic waves in bars
subject to creep, suggests that after some creep has taken place materials
behave elastically for small instantaneous increments of stress, that is,

80 = E B¢ (b)

s ppona
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2N NACA ™ 1353 9
Only for sufficiently small €o would equation (a) reduce to equa-
tion (b).] Here equation (3.2) must be used:
E (¢ - ¢) +Pg=[G(T+06)-6(6)] o (3.6)
[NACA Reviewer's Note: The coefficient ¢ in equation (3.6) was
9 incorrectly omitted in the original.]
1s!
« It is seen from figure 6 that
g
€. =€g-fF "€
Making use of equations (3.5) and (3.6) yields
g
€& =3 {G(T) +G(68) - 6(T + e)} (3.7)
The linear dependence of the reverse creep on the stress and the
symmetry of its dependence on T and 6 1is well confirmed by experi-
2’ ment (ref. 2).
g -

v eI TR A TS T ety wormar g <
L]

An ortant particular case of the relation (3.1) is obtained when
v(e) = ae;, and K* =XI*_ . The law of creep is then

B _ X 1- a]
aia—[l+mt o]

For large t, the second term in the brackets is the dominating one and

€ = Ad™t" (3.8)
where
=2 - i<
g’ B

If 1-a =8, formula (3.8) gives, in the limit, a constant creep
rate.

Section 4. The application of the theory presented in the preceding
section to the problem of pure bending is considered herein. For sim-
plicity, we restrict ourselves to the case of a rod of rectangular cross
section, since we are concerned with the theoretical side of the problem.
Assuming the hypothesis of plane sections, set

L
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€ = z/p

where p 1s the radius of curvature of the bent axis, and 2z the
coordinate measured from the neutral exis and varying from -h to +h.

By equation (3.1)

(L +X* o= cp@ (4.1)

Multiplying by bzdz, where b is the width of the section, we
integrate from z = 0 to 2z = h, and multiply the result by 2 (the
function cp& ) is analytically determined only for positive values of
the argument; it is continued as an odd function in the region of nega-~
tive values). Since the time and space operators are interchangeable,

h
(1 +K*) M= 2b o(Z) zdz
o
(]

where M is the bending moment. Introducing the notation

X
1
= @(x) xdx =@(x)
o]
yields
(1 + K*) M = 2b0® cp<§> (4.2)

The graph for the function ¢(h/p) can be easily comstructed. It
is thus always possible to find the magnitude of the curvature from the
given moment M for a given instant of time and then, by solving inte-
gral equation (4.1), to determine the stress distribution.

If the function ¢(e) 1is a power function, the problem is consi-
derably simplified. Let ®(x) = axP., Then

®(x) = 555 %P

Dividing equation (4.1) by (4.2) yields

£592




e '-‘?-""'» . - e e .. . . -
L . )

2¢53

CP-2 back

NACA T™ 1353 11

whence

=28 <-z->B M (4.3)

The distribution of the stresses is found to be independent of the time.
We thus have in a certain sense a secondary creep although the rate of
deformation is not constant as is clear from equation (4.2).

The result, equation (4.3), was obtained by Davis (ref. 3) from
entirely different considerations. He made use of the theory of strain
hardening, using equation (2.4) in the form

i’ - Bpkot

As he found difficulty in accurately solving the problem as thus
posed, Davis identified the plastic deformation with the total defor-
mation and arrived at a creep law of the type (3.8) from which he readily
obtained equation (4.3) in the case of bending. The experimental verifi-
cation conducted by Davis well confirms the theoretical result.

Section 5. The generalization of any of the theories of creep to
the three-dimensional case may be effected if there are taken as a basis
the equations of the theory of small elasto-plastic deformations:

20, g,
i

1
ox = O —S—Cjtex, Txy ~-gq€xy (5.1)

The change in volume at high temperatures may be neglected with
greater Justification than for normal temperatures since, starting from
400°, the Poisson coefficient for steel assumes a value of the order of
0.45 to 0.47.

The intensity of the stresses and the strains which are determined,
following A. A. Ilyushin, as

e T

¥
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2 2 2 2 2 2 2
0y =Ng:vkcx - oy) + (oy - 0,)% + (0, - 0,)° + 6 (‘rxy + Ty, + Tyz)

2
€5 =§A/(ex - 6:y)z + (ey - €)% + (e, - €)% 4 2 (ciy + €5z + ix)

2
N ,
m i
& :
are assumed to be connected with each other by the same relations as the
stress and strain in the one-dimensional problem.
By the theory herein,
o(es) = (1 +K*) oy (5.2)
The problem of a pipe under the action of an internal pressure is
very simply solved on the assumption of the absence of axial deformation.
Let o0, and 0y be the radial and transverse stresses, €. = du/dr
and €4 = u/r the corresponding strains expressed in terms of the radial
displacement u, b and a the external and the internal radius of the
pipe, and q the internal applied pressure. Since €, = O, there .
follows from the condition of incompressibility
du  u !
Tty O ;
whence !
4
2 2 t
x /3 ea es
== = ——— € 5= cm——
fr=-f =% 173 }
where e 1is an as yet undetermined funetion of time, Equations (5.1) *

give [NACA Reviewer's Note: In the following three equations, an error
in sign appearing in the original has been corrected.] ¥

1 .-,
Op = 0 =;z§ oy ~.’

1 l
09-0=-~/—301




2653

NACA ™™ 1353 13

whence

2
0, = O, = (1] 5.3
r (o] 73 i ( )

Substituting (5.3) in the equation of equilibrium

dcr Gr - Uo~
dr + r 0
yields
do o
r 2 i
— i —— o 5.4)
dr Mﬁg r (

Multiplying by (1 + K‘), integrating from r = a, and noting that

(1 + K*) oy =p(ey) ep(Tz)

yield

. 2 [ fe?)

(1 +K*)(0p + q) -ﬁL cp(r2>r
Setting
x dx

f e(x) 5 = &(x)

gives
2
(1 + K*)(o. + q) =1/i3 [<b(e) - ¢>(e %)J (5.5)

For r =b, 0, = 0. From this condition, the integral equation for
determining the function of time e 1is obtained:

. L lace) - e.‘f
(4K = 2 [@() <x>< b2>J (5.6)

e P s
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The case where ®{x) = axP here too leads to considerable simplification;
in this case

d(x) = % xB

[NACA Reviewer's Note: The parameter a in axP  is evidently being
taken as 1.

From equation (5.5),

ap
» __1 B _ &
(L +x*) (o, +q) = W ef |1 rZBJ
_ 1, e
(1 + K*)q = = e {l - %

Dividing one equation by the other cancels the time function e on
the right side. The integral operator (1 + K*) likewise cancels and s
time-independent law for the stress distribution is obtained:

26 2B 28
a r - D
) FoE =7

The velocities are not constant and they are found from egquation (5.6)
where, if q 1is given, the case reduces to quadratures and the succes-
sive determination of the function e from the graph. If e 1is given,
the problem reduces to the solution of an integral equation for which it
is necessary to know the resolvent of the kernel,

Section 6. Proceeding to the general case of the three-dimensional
problem, we restrict ourselves to the consideration of those processes
in which the stresses vary simultaneously in proportion to a parameter
At), while the strains vary in proportion to a parameter u(t). Then

=A0x * e o € =u€x

Ox X

where G}, R E& . « . are functions only of the coordinates,
[NACA Reviewer's Note: The bars which appear above oy, and €, in this

clause were incorrectly omitted in the original.] Equations (5.1) give

- - 2
Mox - o) =3 0y

¢S™¢e
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The stresses oy are connected with the strains by the relation (5.2).

. If ®(e;) is a power function
P(e1) = aek = au® TF (6.2) ;
Multiplying both sides of equation (6.1) by 1 + K* gives ,
3 o7 t'
— — e ’e
™ (L+KIAG -5 =2 ac; 2 (6.3)
€1

[NACA Reviewer's Note: Errors in the subscripts on the right side of ‘
equation (6.3) appearing in the original have been corrected. ]

Equations (6.3), of which only the first is written out, correspond to !
the integral equation
(1 +K*) A =P (5.4)

and to a system of relations entirely agreeing with the equations of the
theory of small elasto-plastic deformation:

T o,

- = 29%- - 1% —~
i 0‘x - 0 = '3 .: x? 'I'xy = 3- E—l €Xy’ (6.5) N
. » Ll L . . . . . . . - L[] . L] . . L] l‘
where *
|

- -8 -

Ui = 8 €i =q>(€i) (6.&)) *

Systems (6.5) and (6.6) are systems of equations of the theory of '
secondary creep taken in a more general sense than the ordinary. The i
rates are now no longer constant but variable since the factors A and
g which depend on the time are obtained from the integral equation (6.4). 2
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