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' Limit Design of a Full Reinforcement for a

Symmetric Convex Cutout in a Uniform Slab1

By P. G. Hodge, Jr.2

j Abstract.,. A recent paper by 'Jeiss, Prager, and
; Hodre [1]3 established a design basis for an
i annular reinforcement of a circular cutout in
: a uniform slab, In the present paper, the
metliod is extended to deal with a cutout of
more arbitrary shape, In addition, the rein-
forcement is designed so that under a given
loading all cross~sections will become fully
plastic simultaneously.
1. _ Introduction, Consider a plane square slab of uniform
thickness h, subject to uniform tensions T,h, Tyh on its edges,
The slab contains a cutout, the shape of which is subjected only
to the following limitations: (1) there are at least two pere
pendicular ares of symmetry; (2) the cutout 1s convex; (3) the
maximum width occurs at an axls of symmetry., The problem is to
deisgn the reinforcement of total thickness H so that the cutout
slab will be "safe" under the given loads. Further, the shape
of the reinforcement is to be chosen in a particular manner to
be defined presently,
This problem 1s a generalization of the circular cutout

considered by 'lelss, Prager and Hodge (1), As such, it 1s subject

l, The results presented in this naper were obtained in the
course of research conducted under Contract N7onr-35810
betireen the Office of Naval Research and Brown University,

| 2, Assistant Professor of liathematics, University of Californla,
| Los Angeles, California.

| 3. Numbers in brackets refer to the references at the end of
the naper,
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to the same limitations of anplication., In particular, the di-
mensions of the reinforced part of the slab must be such that
it may be reasonably anproximated by a curved beam in which
shear forces may be neglected,

In a discussion of the paver by llelss, Prager, and Iiodge,
English [2] pointed out that if uniaxial loading alone is con-
sidered, a non-circular reinforcement could be desi-ned such
that two sections become fully plastic simultaneously., In the
present ~aner, thls idea will also be extended and a reinforceunent
designed vhich becomes fully plastic simultaneously at cach sec-
tion, As will be seen in the later develonment, this requirement
of simultancous full plasticity does not lead to a unique desizn,
even for a given height so that certain additional conditions
may be im»nosed., Since these conditions are most easily stated in
terminology wihich is yet to be introduced, we shall postpone their
discussion to Secs. 3 and 4,

It ruct, of course, be vointed out that any such analysis
will betvalid only within the 1imited framework of beam theory,

and must therefore be viewed merely as a first apnro:ximation,

2, . Method of solution, The method of design used herc is
; based upon a theorem of Prager, Drucker, and Greenberz [3], This
theorem states that if any set of stresses can be found which are

in equilibrium with the given loads, and thich nowhere violate

the yield condition, then the slab will not collapse under the
given loads, For the present rroblem, the unreinforced part of

the plate is assumed to be in a state of uniform plane stress, so




B11-15 -3-

that the tractions applied to the edze of the slab will be trans-
mitted directly to the hub., Since the loads cannot cause yield-
ing in the slab, it remains only to consider the state of stress
in the hub,
The stress resultants to be considered are defined in I'i7,
1. Since shear is to be nezlected, the stress resultants consist
of an axial force Il and a moment M, e choose two pernendicular
axes of symnictry as the coordinate ares. The equation of the
cutout 1s then given in polar coordinates by
r = a(9). (2,1)
The reinforcement is of radial thickness d, so that thc equation
of its outer contour is
r=a(@) +5(8). (2.2)
Vertical couilibrium of the first quadrant demands that
N, = Tyh(ao + 5. (243)
However, the moment M, at © = O is indcterminate from static
considerations and is temporarily left as a parameter.
Consider now equilibrium of the section OABCD (Figs. 1, 2).
As was previously stated, the statically admissible plane stress
field in the unreinforced slab 1s one of uniform stress, so that
the external, uniformly distributed loads are transmitted direct-
ly to the hub, For convenience of formulation we replace these
distributed loads on BC and CD by the equipollent concentrated

loads

"
L]

Txh(a +&)sin 9,

. ] (2,4)
F = “thao + bo) - (a +d)cos 0],
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acting at the midpoints of BC and CD, respectively, Equilibrium
in the direction of N(®) then yields

N(o) F sin 0 =« Fy cos 0 + No cos ©

X

cos® el, (2.5)

2
h(a + b)[Tx sin® 0 + Ty

while moment equilibrium about the midpoint of DE ylelds

M(Q)

1]

M, - No[(ao + 35) - (a+ $¥)cos o]

+ Fy[(a + 38)sin 6 - ¥(a + 8)sin 0]

+ Fy[%(ao+bo) + ¥(a + d)cos @ - (a + 3d)cos 0]

]

2 2
M, + % ah(a + 3 )[T, sin® 0 + T, cos el

- % hI‘y ao(ao +3 ). (2.6)

The interaction formula relating the bending moment and
axial force at any cross section is obtained immediately with

the aid of Fig. 3 (see also [1]):
bs H|M| + N2 = s2 H2 82 , (247)
If the hub is to become fully plastic everywhere, then Zq,
2.7 must hold for all values of @, Substituting Eqs, 2,5 and 2.6
into 2,7 we obtain an equation for the thickness 4(6) of the hub,
The computations for the case of general loading become quite

involved so that we shall consider in detail the two special

cases of unlaxial and equal biaxial tensions,

3. . Uniaxial tension., Let the direction of the applied
tractions be parallel to the x axis, and let the hub be designed

so that it restores the cutout slab to full stren3zth., Then Ty==0
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and Tx 1s equal to the yield strength s in simple tenslion, so that
Eqs. 2,5 and 2,6 become
F(8) = sh(a + b)sin2 9, 'L

5 (3.1)
M(9) = M_+ ¢ sha(a + 3)sin” O J

From the assumed symmetry of the cutout about the y axis,
the axlal forces at @ = O and @ = n must each vanish, since their
sum 1s zero,

) 'le nov imnose the condition that there must be at least one
section vhere X = O, That this is a reasonable requirement fol=-
lows from the following argumént, Since M is a continous function
of @ 1if 1t is never zero it 1s always of the same sizn, say posi-
tive, However, since the vnroblem 1s determinate only to within
a constant bending moment, the stress resultants obtained by sub-
tractinz the minimum value of M from the bending moment will be
statically admissible and nowhere fully olastic. Thus a different
reinforcenent for full strenzth could be designed entirely con-
tained within the assumed shape, which is hardly a reasonable
basis for desizn,

In the case considered in [1], a and b are constant, so
that M(6) 1s an increasing function of @ in the first quadrant,
and the zero value of M(®) occurs at © = n/2, We shall assume
that the shape of the cutout and the resulting reinforcement are

such that tals statement is still valid, 1i.e,, that
d 2
do[a(a + 8)sin“ Q) 2 0

for 0 £ @ < /2, In the specific examples considered in Sec, 5
this is always the case,
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Returning to Eq. 3.1, we see that since the sections at
0 =0 and © = n/2 are fully plastic, the followin:; relatlons

must be valild:

N(O) = O
(0) = 0 ) 1 (3.2)
M(0) = M_ = -s H ao/h,\r
and
N(n/2) = sh(ay + by) = s H b, . ﬂ
(3+3)
M(n/2) = -s H 82/% + s h a;(a) + 8,)/2 = 0,

where the subscript 1 denotes the value of a quantlty at © = n/2.

Bliminatin-; &, betwecn EZgs. 3.3, we may solve for the ratlo of

1
hub thic'tness to slab thickness in terms of the hub width at

e = 0: 5

H_ Eii;t_ig

= . (3.4)
h b%

The substitlon of Eqs. 3.4 and 3.2 into 3.1 then ylelds

N(e)

it}

ch(a + b)sin? o, (3.,5)

-1
1

)

M(Q)

sh[(2a§ + bi) - 2a(a + 5)sin® @1,

Cince by hypothesis M(@) 1s increasing in the first quadrant

and zero at 6 = n/2, 1t 1s everywhere non-positive, so that La,.

2,9 becomes

M 2,2
ol s D= @785, (3.6)

We shall find it convenient to define the following dimensionless
quantities:

P(O) = 8(OA, a(0) = alO)A , oy =alm/2). (3.7




Substituting igs. 3.4, 3.5, and 3.7 into Eq. 3.6 and sinnlifying,

we obtain

[+ 20)2 - sint 0102 + 24 sin? o[(1 + 2a§) - sin2 olp

2

- [+ 2a§)2 - 202 sin® o(1 + 2a§) + @ sint 01 = 0, (3.8)

Since p must be positive, the larger root of Eq. 3.5 1s correct,

Using the abbreviation

£(0) = sin® 0/(1 + 2d), (3¢9)
we may write the solution in the form
VA - g2
- 1+
0= -a-f_ 4 Y1-2a°£/( 1), (3.10)

1+ f Vieee
With the definitions 3.7 and 3.9, Eq. 3.10 gives the width of the
hub at any cross section in terms of the arbitrary wicdth bo at the
section @ = O and the known boundary a(®) of the cutout. The cor-

respondinz thickness H of the hub is then given bv Iq. 3.k

Y, . Blaxial tension., For full-strength biaxial tension,

Ty = Ty = s, so that Egs. 2,5 and 2.6 become

N(O)
M(e)

sh(a + &) (1)

My, + 4 shla(a + 8) - ag(a, + 3,) ]

‘Je choose coordinate axes so that the x axls corresponds to
the lar-est value of a, As In the case of uniaxial tension; there
will be at least one section where M = 0, {,e., one section under
pure tension, Since the averaze teiisile stress will be a maximum

across that direction where the cutout radius is a meximum we will
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choose this to bo the section of purc tension. Thus, sctting
@ = 0 in the sccond equation 4,1 we see that My = O, The yleld
condition 2.9 then states that at © = 0
N = sh(ag + 8) = sHb
so that

H .
h— Y = 1 + Go. (‘02)

 The substitution of Zgqs. 4.1 and 4,2, together with the
definitions 3,7, into the yield condition 2.7 leads to

21+ ap) lala+ p) = a(L+ o)l + (a+ 9% = @+ a)%®e (3)
If the bending moment at a siven section were positive,
Eq, 4,3 could be simplified to

2 2 2 .
ao(2 + ao)p - 2a(2 + a )p - a“(3 + 2ao) + 2ao(l + ao) = O,

However, the discriminant of this equation 1is

a2 (2 + ao)2 - hao(2 + ao)[-02(3 +2a) + 20 (1+ 00)2]

=8(2+ a)(1+ ao)a(az - ai),

Since, by our choice of axes, a < a, this means that the above
equation does not have real roots, so that the hypothesis that
M > 0 1s not a valid one,

Talking i < O in kq. 4.3, solving for p and choosing that

root which ylelds a positive value of p, we obtain

aay + (1 + ao)\/Zao(a% + 2a, - a?)

ao(2 + ao)

pm -

. (Lolr)
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5. 3zamples. It 1s interesting to compare the reinforce-
ments here designed with those of Vleiss, Prager, and ilodge (11,
For a circular cutcut, of unit radius a = const. = l/bo. Tqe el

for bilaxial tension then reduces to

p = = 1’ (501)

L3
%
i.e., the hub is of constant width 8, ., Equation 4,2 then shows
that this cutout 1s precisely that obtained in [1], as would, of
course, be predicted by the radial symmetry of both cutout and
tractlons,

For uniaxial tension, however, the substitution a = const,
into Xq, 3.10 does not yield any particular simplification, Ior
any given value of b,y curves may readily be constructed, Fiz, W
shows tie case

d =1, H= 3,00 h, (562)
Figz. 5 the case

5, =2, K

1.50 h,

and Fiz, 6 the case

%

3, H= 1,22 h, (Selt)

In each figure,l+ the dotted line indicates the circular rein=-
forcement computed from the appronriate one of Zqs. 13 and 19

of [L). Some interpretation of these figures is ziven in Sec, 6,

R, v B on - G

%, The author wishes to thank Mr. . Levin for carrying out
the computations necessary to construct the fizures in
this section,
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As a second example, consider a souare cutout of side 2.
If the slab 1Is loaded in uniaxial tension perpendicular to a
side of the cutout, the equations of the cutout in the first

quadrant are

(

1/cos @, 006 <M, l
1/sin @, /M £ 0K /2 } (5.9)

8y = 81 = L, J

On the other hand, if the uniaxial tension is perpendicular to a

a(0)
a(o)

diagonal, the x axis must be taken along a diagonal, so that the

equation of the first quadranf is

a(0) = VZ /(siné + cos 0),’L
— (546)
ao = al = v20 J
For blaxial tension, the axes must also be chosen along tihe diag-
onals, so that a(6) is still given by Eq. 5.6. In IFig. 7 we have
sketched the reinforcements for the three types of loadins cor-

responding to a thickness ratio of H/h = 1.9,

6o . Limitations and conclusions. As a preface to any con-
clusions; the limitations of the results must be nointed out,
A detalled discuscsion of the general validity of beam theory as
applied to reinforcement problems is contained in [1] and will
not be repeated here. However, it should be pointed out that
on the one hand, the depth of the beam must not be too small
compared to its length, so that the results pictured in Tigs, 5
6, 7 (by c) may be only rather crude anproximations, On the

other hand, the thickness of the hub H must not be too large
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compared to the slab height h or the question of carrying capa=-
city will arise, This in turn throws some doubt upon Fig. %;
since there H/h = 3. It follows, therefore, that all results
obtained by beam theory must be regarded merely as first approxi-

mations.
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Fige 4. Full reinforcement for circular cutout, 0o = 1.
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Fige 5 Full reinforcement for circular cutout, ®

o)

= 2,
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Fig. 6. Full reinforcement for circular cutout, b, =3,
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Fige 7. Full reinforcements for square cutout.
(a) Uniaxial loading perpendicular to side,
(b) Uniaxial loading along diagonal,
(c) Biaxial loading.



