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DYNAMIC TRANSVERSE LOADING OP PEAMS 

OP A MATERIAL EXHIBITING LINEAR STRAIN-HARDENING1 

by 

Margaret P. Conroy2 

Abstract. The object of this report is to show that in certain 

circumstances the plastic deformation of beams, made of a material 

with linear strain-hardening and subject to dynamic transverse 

loading, can be determined by the techniques used in solving 

elastic problems. In particular, the differential equation of 

motion for such beams is in some instances of the same form as 

in the corresponding linear elastic case, and so any of the 

methods employed for solving elastic beam problems, such as the 

normal mode method, Laplace transform mothod, or Bousslnosq's 

solutions for infinite beams, can be used. Because of this 

linear character of the differential equation of motion en- 

countered in the analysis prosented hero, it is also shown that 

some initial motion problems for beams undergoing large plastic 

deformations due to transverse loading can bo solved by supor- 

posing solutions. In these problems the disturbance part of the 

solution is obtained by some olarticity technique and is then 

superposet on the initial motion of the beam. 

The mothod of solution is demonstrated by moans of scvoral 

examples involving finite beams. The first example is an initial 

motion problem and illustrates the mothod of superposition. The 

1. The results presented in this paper were obtainod in the course 
of rosoarch sponsored by the Office of Naval Research undor 
Contract N7onr-35801 with Brown Univorsity. 

2. Research Assistant, Graduato Division of Appliod Mathomatics, 
Brown Univorsity. 

. Tj  * »»».*» n 
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disturbance part of tho solution Is found by tho normal mode 

technique, commonly used to solve forcod vibration problems; in 

elasticity* An approximation to the solution of the same problem 

is found by means of Boussinosq's solution for an infinite 

elastic boam. Tho socond example is an initial stress problom 

for a simply supportod beam. Again tho method of superposition 

is used. The last oxamplo is a free boundary problom for a 

cantilever beam. This problem is solved by an inverse method 

whereby the form of the solution is assumed and tho physical 

problom associated with this solution is thon determined. (A 

similar typo of analysis is used in finding solutions of elastic 

plane strain problems by tho consideration of simple polynomial 

solutions of the biharmonic equation*) 

The general problom of the determination of tho plastio 

deformation of beams subject to dynamic transverse loading is 

very difficult to handle Thus far only one such problem has 

been solved for a beam mado of strain-hardening material. H. F. 

Bohnonblust [l]* has mado an elastic-plastic analysis of tho 

problem of an infinite beam subject to a constant volocity im- 

pact. In view, thon, of tho difficulty encountered in solving 

problems of this typo, tho analysis carried out in this report, 

while it applies only to a very special class of probloms, seems 

well worthwhile, since it does add a group of tractable solu- 

tions to the literature It is believed that this analysis 

represents the first treatment of the plastic deformation of 

finite beams, made of a strain-hardening material and subjoct 

to dynamic transverse loading. 

* Numbers in square brackets refer to the Bibliography at the end 
of tho paper. 
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Nomenclature» 

x   Distance along the beam* 

y   Deflection. 

K   0 y/Ox , the curvature of the deflection curve. 

m   Mass per unit length of the beam. 

M   Bending moment. 

Q   Shearing force. 

t   Time. 

MQ  The limiting value of M for rigid body motion. 

Foot-pound-second units are used throughout this report. 

1. Introduction and basic assumptions. The analysis carried out 

in this report is introduced to determine the permanent deforma- 

tion of beams subjected to transverse loading of such a magnitude 

that the plastic strains produced are large compared to the 

elastic strains. It is shown here that, in some instances} a 

satisfactory approximation to t he solution of such problems oan 

be obtained by means of the ssme tochniques used in elastic beam 

theory. 

The analysis is based on tho assumption of a linear strain- 

hardening bending moment-curvaturo relationship of the type shown 

in Pig. 1„ Thus, olastic strains are ignored and the boam is 

considered to be either rigid or plastic. An approximation for 

the solution of tho actual olastic-plastic problem is, then, 

obtained uy  neglecting the elastic strains and carrying out a 

plnstic-rigid typo of analysis. It is expected that this approxi- 

mation will be satisfactory when tho plastic strains are largo 

compared to the elastic strains. 
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* K 

Pig. 1 

The analysis is also based on the assumption that the rate 

of change of curvature of the beam is everywhere greater than 

or equal to zero, or everywhere less than or equal to zero, for 

the range of time considered, and this of course places certain 

restrictions on the initial conditions, and boundary conditions 

for application of this analysis, as described below, 

Undor these assumptions the bonding moment-ourvature rela- 

tionship of the beam for plastic flow is the linear relationship 

,2. 
M = + M0 + bK = + M0 + b 2-3 (1) 

where the sign of MQ is the same as the sign of the rate of 

change of curvature of the team. The differential equation of 

motion for the beam, which is obtained from tho equilibrium 

conditions 

0 « $h    , 
8x ' 

+ m iLZ = 0 
8t 
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becomes 

^+^^ = 0 (2) 
Ox*      c2 Ot2 

where -L * fl . 
c2  b 

This equation of motion is of the same form as in the elas- 

tic beam theory, where the flexural rigidity has been replaced 

by b. Thus, under the assumptions stated, it is clear that the 

plastic deformation of a beam can be determined by the same 

methods used to solve the corresponding elastic problem and, 

since the equation of motion is linear, superposition of effects 

Is permissible* 

The assumptions stated here restrict the application of the 

analysis to a very special class of problems.  However, as men- 

tionod before, the general problem of the plastic deformation of 

beams subject to dynamic transverse loading has not yielded to 

theoretical analysis, hence the analysis given here represents 

definite progress* 

2. Problem I — An initial motion problem. For the application 

of this method to an initial motion problem, the initial motion 

of the beam must be such that the final rate of change of curva- 

ture of the beam after loading is everywhere greater than or 

equal to zero or everywhere less than or equal to zero.  That is, 

the rate of change of curvature of the beam due to the initial 

motion must be suoh as to eliminate any oscillations in the sign 

of the rate of change of curvature due to the transverse loading. 

An example of such an initial motion is afforded by the following 

problem* 
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Let a cantilever beam of uniform cross section and longth -t 

have ono end (x = 0) fixed, and bo subject to an initial motion 

y » 2.25tx2 - x£ (3) 

which is maintained for all time by a bonding moment, MQ + b(*f.5t 

- T>)t  applied at tho froo end of the beam. For t > 0 a bonding 

moment 9bt is applied to tho froo end (x = I)  of tho boamc Tho 

problem is to dotcrmino tho subsequent motion of tho beam. 

The initial motion and tho applied bonding moment given hero 

wore chosen rather arbitrarily. Any othor choices would servo 

as well, providod thoy are such that tho rato of chango of curva- 

turo of the beam after loading is everywhere greater than or 

equal to zero (or everywhere loss than or equal to zero). 

Due to the prescribed initial motion, the initial rate 

of change of curvature of the boam is everywhere greater than 

zero. Thus, the bonding moment-curvature relationship is 

Mj = M0 + bKj (k) 

whore Kj and Mj are tho bending moment and curvature correspond- 

ing to tho initial motion. If tho final rato of chango of curva- 

ture of the beam duo to tho initial motion plus tho disturbance 

remains everywhere positive, tho linear bending moment-curvature 

relationship of Eq. (1) remains valid and from Eqs. (1) and (0 

it is cloar that 

where KD and MD aro the additional bending moment and curvature 
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corresponding to the disturbance* 

The final deformation of the beam can be obtained by super- 

posing the disturbance deformation onto the initial motion de- 

formation. The disturbance deformation can be determined by any 

of the methods used in elastic beam theory* 

A*  Boussinesa Solution 

The disturbance deformation due to the application of the 

bending moment at x * I can be found from Boussinesq's solution 

for an infinite beam until such tine as this solution gives an 

appreciable disturbance at the fixed end of the beam. While the 

solution does not satisfy the fixed end boundary conditions, it 

yields an approximation to the disturbance deformation until such 

time as the doflection and slope of the beam at x = 0 provided 

by this solution become significant* 

The Boussinesq solution [2] of Eq* (2) for a semi infinite 

beam, initially (t * - oo) straight and at rest, and subject to 

the conditions 

Ox3 ox2   1 

at x • I, is 

no 
!2      2 
FiCct - £-?)cos V da (5) 

2a*     lL 

where £ = I - x and F1«(ct) =  A  . F1(ct). Hence F^ct) • 

ct 

Fi^ctWct). 

-00 
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Now, since the bending moment applied at the free end of 

the cantilever is 

MpCt) = 

and 

it is seen that 

0  for t £ 0 

9bt for t 2. 0 

Mn = bKT 

*3yD    n 
3x3 

8 3.w 
9x 

•f » F^Cct) 
0     for ct £ 0 

2(ct) for ct^O 

at x = -t, 

It follows from Eq. (•>) that 

oo 

*D = JL. 
,2 2 

a-x)/(2ct>* 
(ct - i£=£L) cos SL da , 

2 a' 

oo 

Hz 
ax • nc 

(ct - iicq& ilsxl 

0-x)/(2ct)' 
2 a' 2 

cos ^-da, 

and 

oo 

9X2   /KC 

2 2 

(6) 

(ct - &=&  )  sin |- da.  (7) 

(«l-x)/(2ct)* 

Prom Eqs, (3) and (7) it is clear that the final rate of 

change of curvature of the beam due to the initial motion plus 

the disturbance motion is 

•till  | IT      ' — 
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|Slt,5 + 9    1- 2S[(«Ux)2Act ] 

where 8 C(:t-x)2Act ] is the Fresnel integral, 

(t-x)2Act 

v/2T 

Since S[M-x)2Act]  < .75 for all values of the argument,  it 

follows that 

dt>0 

everywhere along the beam for all time. Thus, Eq, (2) is every- 

where valid and superposition of effects is allowable. Super- 

posing Eqs. (3) and (6), we obtain 

CD 
2 

y = 2.25tx2 - $. + JL. 
30  ^c J 

(ct - C't-X)2) cos S- da# 
J i      2a2       2 
a-x)/(2ct)* 

This Boussinesq solution was calculated [3] at t « .01 and 

t = ,02 for the case when £ = 3 and e2 » b/m = 907. The results 

are shown in Table I. A plot of yD vs. x for t = .02 is shown 

by the dotted curve in Pig. 2. 

B. Normal mode method. 

This problem may also bo solved by finding yD by the well 

known method of normal modes, and then superposing this solution 

onto the initial motion of the beam. 

The disturbance deformation, yD, is then assumed to be of 

the form 

yD = 1° Xn(x>pn(t) (8) 
n«l 

where the Xn(x) are the normal modos for the cantilever beam 

and the qpn(t) are the normal coordinatos ['•»•] of the system. 
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Tablo I 

t = .01 t = ..02 

X yI yD 7 
1 

yD y 

0 
.15 
.30 

.60 

.75 

.90 
1.05 
1.20 
1.35 

1.50 
1.65 
1.80 
1.95 
2.10 

2.25 
2.WO 
2.55 
2.70 
2.85 

3.00 

0 
-.0002V 
-.00098 
-.00219 
-.00390 

-.00609 
-.00878 
-.0119V 
-.01560 
-.0197^ 

-.021+38 
-.029V9 
-.03510 
-.0V119 
-.01+778 

-.05V8V 
-.0621+0 
-.0701+1+ 
-.07898 
-.03799 

-.09750 

+.00001+ 
-.00005 
-.00015 
-.00019 
-.00013 

+.00005 
+.00029 
+.00052 
+.00062 
+.00050 

+.00008 
-.0006V 
-.00156 
-.0025V 
-.00332 

-.00362 
-.00311 
-.001U2 
+.00175 
+.00668 

+.01355 

+.0000V 
-.00029 
-.00113 
-.00238 
-.00V03 

-.OO60V 
-.OO8V9 
-.0111+2 
-.011+98 
-.01921+ 

-.021+30 
-.03013 
-.03666 
-.01+373 
-.05110 

-.0531+6 
-.06551 
-.07186 
-.07723 
-.08131 

-.08395 

0 
+.00026 
+.00105 
+.00236 
+ .001+20 

+.00656 
+.009V5 
+.01286 
+.01680 
+.02126 

+.02625 
+.03176 
+.03780 
+.OVV36 

+.05906 
+.06720 
+.07586 
+.O8505 
+.09*+76 

+.10500 

+.00102 
+.00173 
+.00223 
+ .0021+5 
+.00228 

+.0011+6 
+.00006 
-.00192 
-.OOV38 
-.00712 

-.00988 
-.01230 
-.01399 
-.01VV8 
-.01330 

-.00996 
-.00397 
+.00509 
+.OI763 
+ .033 9V 

+.05V21 

+.00102 
+.00199 
+.00328 
+.001+81 
+ .0061+8 

+.00802 
+.00951 
+.0109V 
+.012V2 
+ .01V ik 

! +.01637 
+.019V6 

j +.02381 
! +.02988 
j +.03015 

i +.01+910 
i +.06323 
;+.08095 
1+.10268 
i +.12870 

+.15921 
1 

\ 
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It can easily be shown by the usual method of finding normal 

modes* [?] that 

Xn(x) = -[(oos l^x - cosh knx)(cos kn<t + cosh k^ + (sin l^x 

- sinh knx)(sin kn-t - sinh kn^}/(m<tD* sin kn>t sinh 1^1 

(9) 

where the k are obtained from the roots of t he equation 

cosh kn-t cos kn-t= - 1. 

Lagrange's equations of motion are simply 

"• 2 
9     + P« 9- = * Y n     *^n Yn       n 

in which $ denotes the force corresponding to the coordinate 9 . 
n n7 

O      p  If 
and p./ -  cck  • 

n     n 
In order to obtain a force* .assume that a small increase 

n' 

69 is given to a coordinate 9 • The work done by the external 

bending moment on the end of the beam is 

V9n = WKj?)^ 

and so 

.   -. . - 2k_(sin kn-t cosh kn-t + sinh k-/t cos k„-t) <*> = 9ht^        n 2 n       n     n   t 
{      -(m-t)* sin knl sinh kn* J 

Substituting *n into the equations of motion and taking into 

consideration the homogeneous initial conditions on yD, we find 

* When the principal modes have been normalized m j Xn dx = 1. 
o K* 
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9n = 3(t "ta±n Pn° Pn 
Hn 

2kn(sin k^ cosh kn*t + slnh k^ cos Ic^^t) 

(m-l)'*" sin kn-t slnh k^ 

Finally,  substituting  9   into Eq.  (8) and superposing the initial 

motion    yields the solution 

y = I 2.2?t - ilx2 +   2    -%(t - -L sm p t)  • I 3°f n=1      ^ pn n 
v j rn 

f 2kn(sin kn<t cosh k^t + sinh k^ cos k^) 

(m-t)* sin kn<i sinh kn^t 
>X n 

where the X are given by Eq. (9)» However, the convergence of 

this expression is improved by subtracting out the quasi static 

deflection, •$- tx, due to the application of the bending moment 

to the end of the beam. Upon expanding this in terms of the 

normal modes, it becomes clear that y may be rewritten 

.2  o  P   co 
• £-tx2 - S y = 2.2*tx2 - $  *£tx2 - ? f^  sin pRt • 

n 

2kn(sin kn-t cosh kn<L + sinh kn-t cos kn-t 

(mt)* sin knt sinh kn<t 
kn • 

This normal mode solution was also calculated at t = .01 and 

t = .02 for the case when I = 3 and c2 = 907 • Six terms of the 

series were used. The results of these calculations are shown 

in Table II, and plots of yj vs. x and y vs. x for t = .02 

are shown in Fig. 3» A comparison of the disturbance deformation 

obtained at t = .02 by the Boussinesq and normal mode methods is 

shown in Fig. 2. 
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Table II 

X 

0 
.15 
.30 

.60 

.75 

.90 
1.05 
1.20 
1.35 

1.50 
1.65 
U80 
1.95 
2.10 

2#25 
2.1+0 
2.55 
2.70 
2.85 

3.00 

t = .01 t = .02 

*I yD y yl 
y y 

o~" 
+.00055 
+.00196 
+.00385 
+.00592 

+.00791 
+.00972 
+.01132 
+.01281 
+.011+1+1 

+.0161+5 
+ .0193H- 
+.02356 
+.02962 
+.03799 

+.01+909 
+.06335 
+.08113 
+.10279 
+.12867 

+.15897 
i 
1 

0 
-.00021+ 
-.00098 
-.00219 
-.00390 

-.00609 
-.00878 
-.Ol^ 
-.01560 
-.0197H- 

-.021+38 
-.029^9 
-.03510 
-.Oi+119 
-.01+778 

-.051+81+ 
-.0621+0 
-.070M+ 
-.07898 
-.08799 

-.09750 
1 

1 

0 
-.00007 
-.00018 
-.00021+ 
-.00017 

+.00001+ 
+.00031 
+.00055 
+.0006»+ 
+.0001+9 

+.00006 
-.00065 
-.00157 
-.00253 
-.00331 

-.00362 
-.00311 
-.0011+1+ 
+.00173 
+.00667 

+.01357 

0 
-.00031 
-.00116 
-.0021+3 
-.001+07 

-.00605 
-.0081+7 
-.01139 
-.011+96 
-.01925 

-.02^32 
-.03011+ 
-.03667 
-.Cr+372 
-.05109 

-.0581+6 
-.06551 
-.07188 
-.07725 
-.08132 

-.08393 

0 
+.00026 
+.00105 
+.00236 
+.001+20 

+.00656 
+.009*5 
+.01286 
+.01680 
+.02126 

+.02625 
+.03176 
+.O378O 
+.OI+1+36 
+.0511+5 

+.05906 
+.06720 
+.07586 
+.08505 
+.09*+76 

+.10500 

0 
+.00029 
+.00091 
+.0011+9 
+.00172 

+.00135 
+.00027 
-.00151+ 
-.00399 
-.00685 

-.00980 
-.0121+2 
-.011+21+ 
-.01^ 
-.OI3I+6 

-.00997 
-.00385 
+.00e>27 
+.0177^ 
+.03391 

+.05397 
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3. Problem II —Slmplv supported beam. Consider a team of uni- 

form cross section simply supported at the ends x = 0 and x = -t, 

Initially the beam is at rest and subject to an external bending 

moment, Mj £ - M , at both ends. At time zero an external load 

distribution 

q(x,t) = qQt sin 2£ 

i3 applied to the beam and the resulting deformation is to be • 

determined. 

Initially the beam is entirely plastic. If the motion due 

to the applied load or disturbance is such that the rate of 

change of curvature of the beam is everywhere negative, for all 

t, the bending moment-curvature relationship of the beam is 

and 

M = - MQ + bK 

MD = bKD 

where MD and KD are the additional bending moment and curvature 

due to the applied external load. Again the deformation of the 

beam can be determined by finding the disturbance deformation by 

the normal modo method used in elastic beam thoory, and then 

superposing this onto the initial deformation. 

It is assumed in solving this problem that the rate of 

change of curvature of the beam is everywhere negative, for all 

t. Once the solution has been obtained, it is readily verified 

that this assumption is valid. 

The initial deformation of the beam is 

MI + M« ft \ yT = -± a {I  - x)x 
1    2b 
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and the disturbance deformation of the beam is assumed to bo of 

the form 
00 

yn = I X (x)<p (t) 
n=l n  'n 

(10) 

whore the X (x) are the normal modes for a beam simply supported 

at x = 0 and x =» I,   • These normal modes arc readily found to bo 

/r.,^* Q*n &2 -r . (U) Xn = (2/a-t)
7 sin If x 

Again wo havo as the equations of motion 

•• 2 9     + p    9     =$ Yn     *n Yn       n 
(12) 

in v/hich * is the force corresponding to the coordinate 9 and 

p 2 = c2«^n /-t • If a small increase 69  is given to a ooordin- n n 

ate 9 , the work done by the oxtornal load will bo 

n*fn 

and thus 

I 

q0t sin Si (2/m<t)*sin Iff X&9 
1 
0 

*    = 0                      for nV 1 n 
* 

*! =  (2/m-t)*tt/2)q0t  . 

Substituting those into the equations of motion and taking into 

consideration tho initial conditions of the problom, wo obtain 

9n = 0    for n / 1 

9, = (2/m<t)*(<t/2)q0 JL.  (t - -L sin p,t). 
1 °  2     Pi     x 

Pi 
Finally, substituting Xn and 9  into Eq. (10) and superposing 

tho initial doformation, the following solution for the displace* 

—»— 1 • mm 
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merits Is obtained t 
r 

y(x,t) = 
HI*   g(t - x)x + -Jfl. sin 5* it - JL sin p,t 

2b mp *      !   pl 

To ensure that this is the solution of the problemf it 

reiiiains only to verify that $&  < 0 for 0 £ x £ t and all t > 0. 

But, differentiating y(x,t), we find 

i;hich is readily seen to bo negative for 0 £ x ^-tand all t > 0. 

**. Problem III — A free boundary problem. In the two previous 

problems the beam was initially entirely plastic and remained 

entirely plastic for all time. No plastic-rigid boundaries wore 

present. The absence of such boundaries accounts in large moasure 

forvthe ease with which these problems wore solved. Howevor, in 

the case of a beam which is initially rigid, the application of 

a load will in general produce a moving plastic-rigid boundary. 

The determination of this froo boundary and tho solution of such 

problems doos not appear simple. However, by tho inverse method 

shown bolow, it is possible to find solutions to somo freo bound- 

ary problems, under thG assumptions of Soc. 1. The method con- 

sists essentially of determining what physical problems are 

associated with simple analytic expressions satisfying Eq. (2). 

Consider tho following solution of Eq. (2): 

y = x
2t2 - j£-5 . (13) 

180c2 
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This expression satisfies the boundary conditions 

at x = 0 < 
y * 0 

y»= 0 
and     at x « *(t) * <12)*<ct)* 

That is, the above solution of the differential equation of motion 

for plastic flow satisfies fixed end conditions at x = 0 and free 

boundary conditions at x « g(t)« As t increases from t * Of the 

position of the free boundary moves from the fixed end (x = 0) 

to larger values of x. Moreover, since K = 0 for x « C(t), it 

appears that Eq. (13) may be the solution in the plastic region, 

0 £ x £ £(t), for a cantilever problem in which the beam is 

initially straight. For S(t) < x ^ I  the beam remains rigid; 

1 is the length of the beam. This solution will be valid only 

until such time as the plastic-rigid boundary reaches the free 

end of the boam; that is, for 0 £ t £ l2/c(12)* • 

The physical problem associated with Eq. (13) is now 

assumed to be that of a cantilever beam, fixed at x = 0, Initially 

straight and at rest, and subject at time zero to a force F(t) 

and a bending moment M(t), both of which are applied at the free 

end, x ~t • 

F(t) and M(t) are determined from the equations of motion 

for the rigid portion of the beam, i.e., 

I 

F(t) + b(y"») 
x=C (R - O© mdR + ymdfi 

1 
f       i     -1    f     -  ' M(t) + F(t)(-t - V  = M# +  (R ~ 0*(R - OftfmdR + (R -OymdR. 

J 
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It follows, then, that 

18 

2 - 
F(t) = - D(y"»)   + mM - ^)(y)

x=r 
+ m ^2 ^  (9^ 

M(t) - - F(t)(-t - O + M0 + m ii-=-L2
3(©)x=^ + m LL|-D (y*)^ 

where 

at) = ci2)^(ct)* 

<"*•r =1-^- + 2^ -O^L. + (I)2 £%\__r  = 6(12)*(ot)* 
x=* ~ 5t26x o^at ^M 

For any given set of parameters a check must be made to make 

sure that M(x) < M0 for £ < x £ <t . That is, it must be verified 

that the yield limit is not exceeded in that portion of the beam 

which is assumed to be rigid, M(x) is readily obtained from the 

following equilibrium equation: 

M(x) = M(t) + F(t)(J - x) - (R - x)«,(R - OejmdR 

my(R - x)dR . 

As a specific example, tho following practical values of 

the parameters were chosen: -1 = 5 ft,, M = 17 ft.-lbs., m = 

1,2 lbs./ft., c2 = 907 ft. /sec.2 • M(x) was calculated for 

S £.x £ I  at t * 0, .005, »02, .05, .10, .20 sees. From the 
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results of these calculations, which are shown in Fig, If, it 

appears that for this set of parameters M(x) < MQ for $ < x £ I* 

It does not seem feasible to make a rigorous analytic check of 

this fact, 

5. Conclusion, The examples troated in this report serve to 

illustrate the fact that, under certain conditions, the plastic 

doformation of beams subject to dynamic transverse loading can 

be determined by the same techniques used in solving elastic 

beam problems. This is due to the fact that, under tho assump- 

tions stated in Sec, 1, the equation of motion for a beam under- 

going largo plastic deformation is of tho same linear form as 

the equation of motion for an elastic beam. 

Problems I and II woro readily solved, largoly due to tho 

fact that in each case the beam was initially entirely plastio 

and romalned entirely plcstic for all timo. If tho beam is 

initially rigid, an applied load will, in general, produce a 

moving plastic-rigid boundary, Tho presenco of such free bound- 

aries makes those problems moro difficult to handle. The same 

difficulty arises, of course, in solving problems involving the 

unloading of external forces, rathor than tho loading typo of 

problems troated hero, 

As shown by Problem III, it is possible to find solutions 

to some froo boundary problems under tho assumptions of Sec, 1, 

Tho method of solution is ossontially an inverse procoss whereby 

a simplo analytic expression satisfying the differential equation 

of motion for plastic flow is considered, and tho physical prob- 

I 



All-82 20 

lem associated with this solution is then determined. The general 

problem of a beam subject to prescribed external forces giving 

rise to free boundaries is not so readily solved. 

It was hoped that a numerical technique based on Hartroe's 

method [6] might be devised for locating those free plastic-rigid 

boundaries at any fciven time. While there was no free boundary 

to be determined, Hartroe's method was first tried on Problem I 

of this report. However, it was found that, due to the prosonce 

of the fourth derivative in tho equation of motion of the beam, 

the results of a finite difference technique to solve the ordinary 

differential equation resulting from Hartroe's method were poor. 

In the case of a free boundary problem, tho satisfaction of tho 

boundary condition, 4& = 0, would introduco further high deriva- 

tives, and it was virtually Impossible to retain sufficient 

accuracy using finite difference to complete such a problem. 
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