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DYNAMIC TRANSVERSE LOADING OF REAMS
OF A MATERIAL EXHIBITING LINEAR STRAIN-HARDENING!
by
Margaret F, Conr6y2

Abstracte The object of this report is to show that in certain
circumstances the plastic deformation of beams made of a material
with linear strain-hardening and éubject to dynamic transverse
loading, can be determined by the techniques usod in solving
elastic problems. In particular, the differential equation of
motion for such beams is in somc instanccs of the same form as
in the corresponding linear elastic case, and so any of the
methods employed for solving elastic bcam problems, such as the
normal mode method, lLaplace transform mothod, or Boussinesq's
solutions for infinite beams, can be used. Because of this
linear character of t he differential equation of motion en=
counterad in the analysis presented herc, it 4s also shewn that
some initial motion problems for beams undergoing large plastic
deformations due to transverse loading can bc solved by supor-
posing solutions. In these problems thc disturbance part of the
solution is obtained by some elacsticity technique and i1s then
supcrposcé. on the initial motion of the beam. \

The method of solution is domonstrated by means of scvoral
examples involving finite beams. The first example is an initial
motion problem and illustratos the method of superpositions The

l. The rcsults prescnted in this paper were obtained in the course
of rescarch sponsored by the Officc of Naval Rescarch undor
Contract N7onr-35801 with Brown University.

2. Rescarch Assistant, Graduato Division of Appliocd Mathcmatics,
Brown University.
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Al1-82 2
disturbance part of the solution is found by the normal mode
techniquo, commonly uscd to solve forced vibration problems in
elasticity. An approximation to the solution of thc same problem
is found bv means of Boussinesq's solution for an infinite
clastic bcame The sccond example is an initial strnss problom
for a s;mply supported beame. Again the mcthod of superposition
is uscde Thc last coxamplo is a frec boundary problem for a
cantilcever became This problem is solved by an inverse mcthod
whereby the form of the solution is assumed and the phjysical
problem assoclatecd with this solution is thon determined. (A
similar type of analysis is uscd in finding solutions of clastic
planc strain problems by the consideration of simple polynomial
solutions of the biharmonic cquationa)

The gencral problem of the determirnation of the plastic
deformation of beams sub;cct to dynamic transversc loading is
very difficult to handle. Thus far only one such problem has
been solved for a beam made of strain-hardening moterial. H. F.
Bohnenblust [1]* has made an elastic-plastic analysis of the
problem of an infinite beam subjcct to a constant velocity im-
pact. In vicw, then, of the difficulty cncountered in solving
problems of this typec, thc annlysis carricd out in this rcport,
while it applics only to a very special class of problems, socms
well worthwhile, since it docs add a group of tractable solu=-
tions to the litcreturo., It is beclieved that this analysis
represents the first treatment of the plastic deformation of
finite beams, madc of a straig-hardening material and subject

to dynamic transverse loadinge

- -—— g

* Numbers in squarc brackets refer to the Bibliogravhy at the end
of the papcr.
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Nomenclatures

Distance along the beam,

Deflection. '

ozy/Oxz; the curvature of te deflection curve,

Mass per unit length of the team.

Bending moment,

Shearing force.

Time. '

The limiting value of M for rigid body motion.

¢ O B B R <€ N

M,
Foot=pound-second units are used throughout this report.

1. Introduction and basic assumptions. The analysis carried out
in this report is introduced to determine the permanent deforma=
tion of beams subjected to transverse loading of such a magnitude
that the plastic strains produced are large compared to the
elastic strainse It is shown here that, in some instancos; a
satisfactory approximation to t he solution of such problcms can
be obtgined by means of the ssme tochniques used in elastic beam
theorye.

The analysis i1s based on thc assumption of a linear straine-
hardening'bcnding moment=curvaturc relationship of the type shown
in Fig. 1. Thus, olastic strains are ignored and the boam is
considercd@ to be cithor rigid or plastice An approximation for
the solution of the actual clastic-plastic problom is, then;
obtained by iicglecting the elastic strains and carrying out a
plaztic-rigid type of analysis, It is expectecd that this approxi-
mation will be satisfactory whon the plastic strains are large

comparcd to the elastic strains.
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Fig. 1

The annlysis 1s also based on the assumption that the rate
of change of curvature of the beam is everywhere greater than
or equal to zero, or evervwhere less than or equal to zero; for
the range of time considered, and this of course places certain
restrictions on the initial conditions.and boundary conditions
for applicaticn of this analysis, as described below.

Under these assumptions the bending moment-curvature rela-

tionship of the beam for plastic flow is the linear rclationship
82

M=iMo+bK=1Mo+b._x§ (1)
o]

where the sign of M, is tho same as the sign of the rate of
change of curvature of the team. The differential equation of
motion for the beam, which is obtained from tho equilibrium
conditions

. 3 2y -
Q 3&9 ng"'m%;% o,
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becomes

@
N

(2)

"
Q

b

X

(=
ct

where =8,
53

This equation of motion is of the same form as in the elas-
tic beam theory, where the flexural rigidity has been replaced
by be Thus, under the assumptions stated, it is clear that the
plastic deformation of a beam can be determined by the same
methods used to solve the corresponding elastic problem and,
since the equation of motion 1s linear, superposition of effects
is permigsible,

The assumptions stated here restrict the application of the
analysis to a very speclal class of problems. However, as men=
tioned before, the general problem of the plastic deformation of
beams subject to dynamic transverse loading has not ylelded to
theoretical analysis, hence the analysis given here represents

definite progress,

2. Problem I -- An initial motion problem. Fcr the application
of this method to an initial motion problem, the initial motion
of the beam must be such that the final rate of change of curva-
ture of the beam after loading 1s everywhere greater than or
equal to zero or everywhere loss than or equal to zero. That 1is,
the rate of change of curvature of the beam due to the initial
motion must be such as to eliminate any oscillations in the sign
of the rate of change of curvature dus to the transverse loading.
An example of such an initial motion is afforded by the following

problem,

B s e Gl S Bl e s 109
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Let a cantilever beam of uniform cross section and longth 4
have onc end (x = 0) fixed, and be subject to an initial motion

y = 2,25tx° - (3)

2
30
which is maintaincd for all time by a bonding momont, M, + b(k.5t
= fg), applicd at the free end of the bcam. For t > O a bending
moment 9bt 1s applicd to tho frecoe end (x = 4) of the boam? Tho
problem is to dotermine the subsequont motion of ths becam.

The initial motion and the apprlicd bending moment given here
wore chosen rather ardbitrarily. Any othor choices would scrvo
as well, provided thoy are such that the rate of change of curva-
turc of the bcam after loading is overywhere greater than or

equal to zcro (or everywhere loss than or cqual to zero).

Duec to the prescribed initial motion, the initial rate
oﬂ-ohnnge of curvaturc of the bocam is everywhere greater than

zeroe Thus, the bonding momont-curvature relationship is

where KI and MI arc the bending moment and curvature correspond-
ing to tho initial motion. If the final rate of change of curva=-
turec of the beem duc to the initial motion plus thc disturbance
romains everywhcro positive, tho lincar bending momentecurvature
rolationship of Eq. (1) rcemains valid and from Eqs. (1) and (+)
it 1s clear that

Mp = B

where KD and Mb arc the additional bending mcment and curvature

. ?—"--“--...
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corresponding to the disturbance.

The final deformation of the beam can be obtained by supere
posing the disturbance deformation onto the initial motion de=-
formation. The disturbance deformation can be determined by any
of the methods used in elastic beam theory.

A. DBoussinesq Soiution

The disturbance deformation due to the application of the
bending moment at x = 4 can be found from Boussinesq's solution
for an infinite beam until svch time as this solution gives an
appreciable disturbance at the fixed end of the beam. While the
solution does not satisfy the fixed end boundary conditions, 1t
yields an approximation to the disturbance deformation until such
time as the daflection and slope of the beam at x = O provided
by this solution become significant.

The Boussinesq solution [2] of Eq. (2) for a semi infinite
beam, initially (t = - oo) straight and at rest, and subject to
the conditions

%i% =0, %E% = Fl'(ct)
at x =4, 1s
o0
¥ = \-/&1? I F(ct - g%)cos 922- da (5)
)

where £ = 4 = x and Fl'(ct) = 3?%?7 Fy(ct)s Hence Fy(ct) =
ct
Fy'(ct)a(et).

d ¢ o)
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Now, since the bending moment applied at the free end of

the cantilever is

| 0 for t O
M (L) =
g9bt for ¢t 2 O

and
MD = bKD
it i1s seen that
ady 82 0 for ct < O
=D = 0, -%Q = Fl'(ct) =
e\c or ct 2 O
at x = ‘Lo

It follows from Eq. (5) that

a
2 2
yp = ‘7_9_ (ct - -Li-’—'-g)—) cos -“; da , (6)
a
"¢ U-x)/(2et)?
(0 0]
i - dep?) (b =
ax nc J fes ﬁzé)_) a? Gt % ae,
(L-x)/(2¢ct)?
and
2 ? 52
3 “y { - 2
K. = —R = A8 j (t-i—f—) in & da.  (7)
P e Ve L 2 i
@=-x)/(2ct)?

From Eqs. (3) and (7) it is clear that the final rate of
change of curvature of the beam due to the initial motion plus
the disturbance motion is

i P —
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4

k;b‘ +9 {1 - 2S[(L—x)2/‘;ct]}

g§ =

where B [(4-x)2/4ct ] 1s the Fresnel integral, —b-
ven

(L-x)2 et

ﬂiﬂﬂ.d
/A )

o
Since S [(4=x)2/Mct] < «75 for all values of the argument, it
follows that

g§ > 0

everywhere along the beam for all time. Thus, Eq. (2) 1s every-

where valid and superposition of effects is allowable. Super=
posing Egs. (3) and (6), we obtain
®

+ 2.

Ve

2
(et - Lﬁ:xlg) cos 23

2a2 2

dua,

I

2.25tx2
(L-x)/(2ct)é
.This Boussinesq solution was calculated [3] ap t = .01 and

t = .02 for the case when £ = The results

shown in Table 1.

3 and 02.= b/m = 907.

are A plot.of yp VSe x for t = «02 1s shown

by the dotted curve in Fig. 2.

B. Normal mode method.

This problem may also be solved by finding Yp by the well
known method of normal modes, and then superposing this solution
onto the initial motion of the beam.

The disturbance deformation, yp, 1s then assumed to be of
the form

yp = T X (x0p(t) (8)

n=1
where the Xp(x) are the normal modes for the cantilever beam

and the ¢,(t) are thc normal coordinatos [M] of the system,
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Table I
t = ;0L t = .02

X Y1 Yp 4 Y1 Yp Y

0 0 +,00004 | +,0000% ) +,00102 | +,00102

15 | =.00024 | =,00005 | =.00029 +,00026 | +,00173 | +.00199

«30 | =.00098 | -,00015 | =-,0011 +.,00105 | +.,00223 | +.00328

o 5 -000219 -000019 -00023 +000236 +0002)+5 +'OO""81

.60 "‘000390 -000013 -00011'03 +000)+20 +000228 +.%6’+8

e75 | =+00609 | +,00005 | =.00604 +,00656 | +,00146 | +,00802

«90 | =.00878 | +,00029 | -.00849 +,009%5 | +,0000€ | +,00951
1.05 | =.0119% | +,00052 | =.01142 +,01286 | -.00192 ; +.01094%
1,20 | =.01560 | +,00062 | -,01498 +,01680 | =,00438 | +,01242
1.35 | =.01974 | +.00050 | =.0192h4 +,02126 | -.00712 | +,0141%
1.50 | -.02438 | +.00008 | -.02430 +.02625 | -.00988 | +.01637
1065 -0029‘4’9 "00006’4’ -00301 +003176 -001230 l +¢01
1.80 | =.03510 | =.00156 | -.0366 +,03780 | -,01399 ; +.02381
1,95 | =e04119 | =,0025% | =, 04373 +,04436 | -.01448 : +,02988
2010 | =,04778 | =.00332 | =-,05110 +.052%7 | -.01330 | +.03815
2.25 | -.,05u84 | -,00362 | -.05346 +.,05906 | =.00996 | +,04910
2,40 | =,06240 | =,00311 | -.N6551 +,06720 | =.00397 |, +.06323
2,55 | =.07044 | -,00142 | =-,07186 +,07586 | +.00509 ;+50809g
2070 '007898 +00017 -.07723 +008 05 +00176 | +01026
2085 -008799 +00066 -008131 +00 76 +.033 i +.1287O
3,00 | =409750 | +.01355 | -.08395 +,10500 | +,05421 |+.15921

]




Al1-82 11
It can easily be shown by the usual method of finding normal
modes* [5] that

Xn(x) = -{(cos k,x - cosh k,x)(cos k,4 + cosh k ) + (sin k. x

- sinh k;x)(sin k 4 - sinh kn&)}/(m{ﬁ sin k4 sinh k4
(9)

where the kn are obtained from the roouis of t he equation
cosh kpf cos k d= - 1,

Lagrange!s equations of motion are simply

e 2
vx‘l."ann=°n

in which Qn denotes the force corresponding to the coordinate Qn,

)

2 _ a2
and P, e kn .
In order to obtain a force<bn?assume that a small increase
bwr is given to a coordinate Pne The work done by the external
4

bending moment on the end of the beam is
Oy
® dp = 9btb(—£)
n'n 0x X’-"L

and so

o = 9btj-

2k (sin kp4 cosh kyl + sinh kL cos kn%)} .
-(mB? sin kpt sinh k2

Substituting<bn into the equations of motion and takirng into
consideration the homogeneous initial conditions on yp, we find

* tthen the principal modes have been normalized m'f'xnzdx = 1,
o
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1 2 2 2
= '9'%“ - < sin p t){gkn(sm -0 i‘COSh knt + sinh k* cos kpd)
! (¥ sin kyd sinh kpl

Finally, substituting % into Eq. (8) and superpo3ing the initial
motion ylelds the solution

y={2.25t-§%}x2+ > &(t-l-smpt) .

n=1 pn

2kp(sin k& cosh k & + sinh kil cos k) .
(miﬂ‘ sin k1 sinh k¥ n

where the Xn are given by Eq. (9). However, the convergence of

hls expression 1s improved by subtracting out the quasi static
deflection, %% txg, due to the application of the bending moment
to the end of the beam. Upon expanding this in terms of the
normal modes, i1t bscomes clear that y may be rewritten

2
= 2 . & s .91’. .
2.25tx §5 4-§%tx gil p sin p t

2kp(sin kpd cosh k& + sinh kpd cos k

' (o) ¥ sin k 1 sinh kL *n o

This.normal mode solution was also calculated at t = 01 and

t = .02 for the case when £ =3 and ¢c2 = 907. Six terms of the
series were used. The results of these calculations are shown
in Table II, and plots of Y1 VSe X and y vs. x for t = ,02

are shown in Fig. 3. A comparison of the disturbance deformation
obtained at t = .02 by the Boussinesq and normal mode methods 1s
shown in Fig,., 2.
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Table II
t b 001 t = .02

o0 0 0 0 0 o 0]
o195 | =.00024 | ~,00007 | =,00031 +,00026 | +.00029 |+,00059
.aO -.00098 | =-,00018 | -,00116 +,00109 | +,00091 |+.00196
) 5 "000219 -00002)"* -0002)4'3 +.OO236 +0001)+9 +.00385
60 | =.00390 [ =.00017 | =.00407 +,00420 | +.00172 |+.00592
075 ".00609 +oOOOd§ "000605 +0006 6 +000135 +000791
<90 | -.00878 | +.00031 | -.00847 +,00945 | +,00027 |+,00972
1,05 | =+01194% | +,00095 | =.01139 +,01286 | -,0015% |+,01132
1.20 | =.01560 | +.0006% | =.01496 +,01680 | =+00399 |+.01281
1.39 -.01974 | +,00049 | =.01925 +?O2126 -300685 +,01441
1450 | =e02438 | +,00006 | =,021:32 +.02625 | =,00980 |+.,016%
1.65 ‘.02914'9 "000065 -00301)+ +003176 -.012“}2 +50193
1.80 | -.03510 | =.00157 | =,03667 +,03780 | =,01424 | +,02356
1095 e 119 "'000253 "od‘+372 +o 36 “oOlh'?h’ +.O2962
2.10 | =.04778 ! =,00331 | =-.05109 +,09145 | ~,01346 |+.03799
2.25 -.0%3"' ".00362 "'00581'"6 +.05906 -.OOQ97 +od+90q
2,40 | =,06240 | =,00311 | =, 06591 +,06720 | =,00385 |+.,0633%
2; ‘)' "oO?d*l'l' "0001)""'+ "007188 +.07586 '5.00‘;27 +008113
2.70 | =«07898 | +,00173 | =.07725 +,08509 | +.01774% | +.10279
2.89 | =-.08799 | +,00667 | =.08132 +,09476 | +,03391 | +.12867
3.00 -.09750: +,01357 | -.08393 +,10500 | +,05397 | +.15897

- e Pttt i . Ol 08
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3« Problem II ~--Simply supported beame. Consider a tecam of uni-
form cross section simply supported at the ends x = 0 and x =2,
Initially the beam 1s at rest and subject to an external bending
moment, My £ - M,, at both ends. At t ime zero an external load
distribution

q(z,t) = q,t sin EE

13 applied to the beam and the resulting deformation is to be -
determined.

Initially the beam is entirely plastic. If the motion due
to the applied load or disturbance is such that the rate of
change of curvature of the bcam is everywhere negative, for all

t, the bending moment-curvature rclationship of the beam 1s

M=« Mo + bK

and

vhere Mp and KD are the additional bending moment and curvature
due to the applied external load. Again the deformation. of the
beam can bc determined by finding the disturbance deformation by
the normal mode method used in elastic beam thecory, and then
superposing this onto the initial deformation.

It 1is assumed in solving this problem that the rats of
change of curvature of the beam 1s cverywhere negative, for all
t. Once thc solution has tecn obtaincd, it is readily verified
that this assumption is valid.

The initial ®&formation of thec boam is

I:ﬁ.“_}{n(&-x)x
2b
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an'd the disturbance deformation of the beam is assumed to be of

the form
e o}

yp = Z

o xn(x)q> n(1:) (10)

where the Xn(x) are the normal modes for a beam simply supported

at x = 0 and x =4 . These normal modes arc readily found to bo
= (o) ¥
X, = (2/ad)® sin BF x . (11)
Again wo have as the cquations of motion

[ 1) 2 _
®nt Pp® =%, (12)

in vhich O;n,is the force corresponding to the coordinate Pn and
pn2 = czx‘*nu/l}’ o If a small increase % is given to a coordin-
ate Pn? the work done by the oxternal load will bo

2
&8y, =J q,t sin ? (2/m0*sin xis xb9 )dx
o
and thus
fbn =0 for n'# 1
2, = (2/mb /)t .

Substituting these into the cquations of motion and taking into
consideration the initial conditions of tho problem,we obtain

?h =0 forn # 1

(2/m¥@/2)q, A (¢ - & sin pyt).
2 P
P
Finally, substituting Xn and ?n into Eq. (10) and superposing

P

the initial doformation, thc following solution for the displace=
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ments i1s obtained:
( .
y(x,t) = -I——-Q(L - x)x + sin 82X (¢t - L sin p.t}.

To ensure that this is the solution of the vroblem, it
renains only to verify that g% <Ofor 0 x<4and all t > O,
But, differentiating y(x,t), we find

Qg =2 ,
g% _.Q.... %.2. sin Ef {1 - cos plt} !

vhich 1s readily seen to be negative for 0 < x <{and all t > O.

4. Problem III -- A free bouynds QQM In the two previous !
problems thc beam was initially entirely Plastic and remained
entircly plastic for all timne., No plastic-rigid boundaries were
present. The absence of such boundaries accounts in large mcasure
for'the ease with which thesc problems were solved, However, in
tho case of a beam which i1s initially rigid, the application of

a load wiil in general produce a moving plastic-rigid boundary.
The determination of this freo bourdary and the solution of such

problems docs not appear simple, However, by thc inverse method

shown below, it 1is possible to find solutions to somc freo bound-

ary problems under thc assumptions of Soc. le The mcthod con-

sists e¢ssentially of determining what physical problems are

associated with simple analytic exprescsions satisfying Eq. (2).
Consider the following solution of Eq. (2):

y = x2t2 - -x——-6 'S (13)
180c2

e e e o ——
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This expression satisfies the boundary conditions
] .
y=0 K = = 0
at x =0 and at x = E(¢) = (12)*(ct)* 3;5 .
y':O %ao
i

That is, the above solution of the differential equation of ﬁoticn
for plastic flow satisfies fixed end conditions at x = 0 and free
boundary conditions at x = g (t). As t increases from t = 04 the
position of the free boundary moves from the fixed end (x = 0)

to larger values of x., Moreover, since K = O for x = § (t), it
appears that Eqe. (13) may be the solution in the plastic region,
0 < x < §(t), for a cantilever problem in which the beam is
initially straight. For {(?) < x 4 the beam remains rigids

4 is the length of the beam. This solution will be valid only
until such time as the plastic-rigid boundary reaches the free
end of the boam; that is, for 0 ¢ t < t2/c(12)Y,

The physical problem associated with Eq. (13) is now
assumed to be that of a cantilever becam, fixed at x = 0, initially
straight and at rest, and subject at time zero to a force F(t)
and a bending moment M(t), both of which are applied at the free
end, x =4 ,

F(t) and M(t) are determined from the equations of motion
for the rigid portion of the beam, i.c.,

F(E) + by =[ (R - £)0 ndR +J ymdR
3 3
< 1 a 1.

M) + FB)(X = &) = Mg +J (R - &)l(a - ()’5}de +[ (R -O;de.
l g

N
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It Collows, then, that

- - s - ([ X ) 48, - 2 L]
F(t) b(y"t) + m(L ()(y)x=£ f m 1__?5111.(e;_§
&- \3 o L-
M(t) = =« F(£)(4 - K) ¢+ Mo + m L3_§J. (9)x=E +n L—'g—;)—(y)xf-'ﬁ

where

() = (12)%(et)?

o0 ) . 2 1
Myer ={9-2§ ¢ 28 4o+ ()2 "—x}xzz - 612)¥ct

at o 8x°
(e) - = By, f By, ()2 22 | = 6(12)%(et)?
= at28x ax2at ax3 [<=¢

! =-2ﬁ;
(") g 3o2

For any given set of parameters a check must be made to make
sure that M(x) < M, for £ < x g 4 . That is, it must be verified
that the yield limit is not qxceeded in that portion of the beam
which is assumed to be rigid. M(x) is readily obtained from the

folloving equilibrium equatiqe:

; ° o‘.
M(x) = M(t) + F(£)(1 - x) -‘[ (R - x)i(R - ()egde

X

-K m}.(R - x)dR .
%

As a specific example, the follecwing practical values of
the parameters were chosen: £ = 5 ftey My = 17 fte=1bse, m =
1.2 1bs./fte, c? = 907 ft.*/sec.? . H(x) was calculated for
£ {x g4 at t =0, .,005, 202, 05, .10, 20 secs. From the
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results of these calculations, which ara shown in Fig. ﬁ, it
appears that for this set of parameters M(x) < My for £ <x g X,
It does not secem feasible to make a rigorous analytic check of

this fact,.

5« Conclusion. The examples trcated in this report scrve to
illustrate the fzet that, under certain conditions, tho plastic
doeformation of beams subject to dynamic transverse loadinz can
be dete~mined by the same tcchniques used in solving elastic
beam problouse. This is due to the fact that, under thc assump-
tions stated in Sec. 1, thc cquation of motion for a beam under-
going largo plastic deformation is of the same lincar form as
the equation of motion for an clastic bean.,

Problems I and II wero rcadily solved, largoly due to tho
fact that in ocach case the beam was initially entircly plostie
and rcmained entirely plcstic for all timoee. If the beam 1is
initially rigid, an appliecd lqad will, in gcneral; produce a
moving plastic-rigid boundary. The presence of such froe bound-
arics makes thesc probloms morec difficult to handle. The samec
difficulty arises, of course, in solving probleoms involving the
unloading of external-forces, rathor than the loading typo of
problems troated herec,

As shown by Problem III, it is possible to find solutions
to some frec boundary problems under the assumptions of Scce 1.
The mothod of solution is ossontially an inverse procoss wheroby
a simplec anclytic cxpression satisfying the differcntial cquation
of motion for plastic flow is considcrcd, and the physical probe
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lem associated with this solution i1s then determined. The general
problem of a beam subject to prescribed external forces giving
rise to free boundaries is not so readily solved.

It was hoped that & numerical technique based on Hartrce'!s
mothod [6] might be devised for locating these free plastic-rigid
boundaries at any given time. While there was no free boundary
to be determined, Hartree's method was first tried on Problem I
of this report. However, it was found that, due to the proscnce
of the fourth derivative in thc equation of motion of thc bean,
the rcsults of a finite difference technique to solve the ordingry
differential equation rcsulting from Hartree'!s method wers poore
In the casc of a frcec boundary probicm, the satisfaction of the
boundary condition, %% = 0, would introduce furthcr high deriva-
tives, and it was virtually impcssible to rctain sufficiont_

accuracy using finite diff{crence to completc such a problem,
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