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The Foroe Distribution Exerted by Surfaoe Hares on Piles 

by 
J* R. Morison 

Abstract t    Experimental data for the foroe distribution on three model oylind- 
rioal piles for three nave conditions.are presented. These results are compared 
to the previously published theory.**' 

Introduetiom The purpoao of this report is to present experimental data on 
the foroe distribution exerted by surfaoe waves on piles* From these data 
the ooeffioients of drag and mass that appear in the equation**' for the foroe 
were obtained* The experimental results were compared to the calculated foroe 
distribution* In order to simplify the presentation, the foroe (lbs) was 
divided by the projected area (ft2) of a segment of the pile to give a foroe 
intensity (lbe/ft2). The measurement of foroe was made on a one-inoh'high seg- 
ment of several model piles of various diameters* The results of these studies 
are that the experimentally determined coefficient of mass shows good agreement 
with the theoretical value of 2*oC7»8), and relatively good agreement with the 
values in previously presented experiments(1#2,3,4,5,467. The results also 
show that the experimentally determined ooeffioient of drag is in relatively 
good agreement with the value 1*6 as found in previous experiments(^»2»5»*»*6'' 
The measurements of the foroe intensity distribution showed good agreement with 
the oaloulated distribution using the previously mentioned values of the ooeffioi- 
ents in the equation for the foroe* 

Experimental Set-up i The experiments were oonduoted in the 1 ft by 3 ft by 60 
ft wave ohannel In the Fluid Mechanics Laboratory of the Tfciiversity of California, 
Berkeley* A summary of the pile sizes and wave conditions is given in Tables I 
and II. The foroe intensity was obtained by measuring the total horizontal foroe 
on a one-inoh segment of the pile and dividing by the projeoted area of this seg- 
ment* This segment oould be plaoed over a range of elevations above the bottom 
of the ohannel* The apparatus resembled a pendulum restrained at the top, 
pivoted at approximately the middle, with the one-inoh pile segment fastened 
at. the bottom (See Figure 1)* The displacement of the pile segment was convert- 
ed to a foroe by means of a oonversion faotor obtained by calibration. In order 
to obtain a flow pattern similar to a continuous pile and to reduce the tare on 
the pendulum rod, a cylindrical shroud representing a pile was plaoed between 
the one-inoh segment and the pivot (whioh was always above the wave surfaoe)* 
By the use of a frame, a dummy pile seotion was held below the one-inoh segment 
to represent the lower portion of a oontinuous pile* The tare of the system 
without the segment was a very small peroentage of the foroe on the segment* 
The natural frequency of the system was relatively near the frequency of the 
uniform, periodio wave trains* This oaused considerable, unavoidable trouble 
whioh the one-inoh segment was near the surfaoe of the waves; ©specially when 
the waves were very steep and when the waves were in relatively shallow water* 

"lumbers in ( ) are reference numbers. 



figreo EquationA*»6 ' t The total horiiontal foroe on the one-inch segment of the 
pile ie given by the expression 

where 

dF s total foroe on pile segnont,  dS,  - (lbs) 
/° a density ox"* water,   (lbs x eeo2/ft4) 
Op s ooeffioienc of drag 
C„ = ooeffieient of mass yrR   Ooah ig£ 
u   • horisontal partlole velocity (ft/seo) - ~jT" gtrd—   Cos * 

Sinn 
.    o        ,,    .   2/rS 
2?T*H      Cosh 

-2i = horisontal partiole aooeleration (ft/seo*) -      g 2^.d   Sin © 
o * * Sinh —— 

L 
D s pile diameter (ft) 
dS e segment of pile (ft) 
H • wave height - (ft) 
T • wave period - (sec) 
L s wave length - (ft) 
d s still-water depth (ft) 
S s elevation of the section dS above the bottom (ft) 
0 : angular position of partiole in its orbit 

measure oounterolookwise (degrees) 

The first term of Equation (l) is the drag foroe and the seoond term is the 
inertia foroe. The coefficient of mass, CM, includes the virtual mass* 

The foroe intensity is given by the expression 

\-/ 

Substituting Equation (l) into Equation (2), together with the expressions for 
u and -4T the foroe intensity becomes 

^•9 ^9 1 

\/° —7T   [*>D *2 °°«2 • • CM I [—) Sin ej (3) 

where 

Cosh 
X s  

Siahi-li 

The angular position, corresponding to the wave orest, the still-crater level, 
the trough and the following still-water level are 0°, 90°, 180°, and 270=, 
respectively. In order to obtain the position of the maxls— foroe intensity 
relative to the wave position. Equation (s) is differentiated with respeot 
to v, set equal to sero, and solved for 9. The result, called, the pnase 
angle of the marl mum foroe intensity, is measured from the orest position, 
and is denoted bys&  (max)* 
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Slv* (~5" irh ^ 
The position of the minimum foroe intensity is obtained In the same manner 
end Is denoted byy£  (min). 

/?  (min) « /$ (max) • 180° (5) 

liquations 4 and 5 do not hold for dS above the trough elevation so that the 
ffl«.T^wT?i and minimum foroe Intensity for these elevations oan only be obtain- 
ed from a plot of Equation S for the values of 0 for which the surfaoe eleva- 
tion (Sc) is greater than the elevation'?) of the segment (dS). The position 
and magnitude of the maximum foree intensity relative to the wave orest then 
san be obtained ft cm -this graph. 

The notation P(0), P(90), etc. indioates that Equation (3) has been solved 
for 9s OJ 90° etc., respectively* The notation P(maz) and P(min) indioates 
that Equation (3) has been solved for 9 z/3 (max) and/^ (min), respectively. 
Siaoe the foroe intensity is also a function of the elevation, S, the great- 
est P(max) would be obtained for the larger values of Kj that is, for the 
large values of S, which is when the orest impinges on the pile* Conversely, 
the largest of the P(min) values ooours when the trough of the wave aots on 
the pile. However* this is only true if C^ and CM are oonstants over the 
length of the pile* In this study it was found that for all practical 
purposes these coefficients were oonstants* However, if these two coeffici- 
ents were not constant over the length of the pile* their variations with 8 
and 9 must be included when obtaining the greatest P(max) and P(min)* 

Results and Discussiont The results of the experimental study of foroe in- 
tensity distribution for three different size piles for two wave conditions 
are presented in Tab?as I and II* Two values of the foroe intensity are 
given in Table I* The first value is for a solid one-inoh pile segment and 
the seoond value is for a hollow one-inoh pilj segnent* These sections were 
used to show that the mass of the moving segment did not affeot the results* 
The motion of the segment was small, being of the order of l/32 of an inoh 
maximum* The effeot of the two different masses was to change the natural 
frequency of the system, and it was found that the hollow segment proved 
more suitable for the range of wave frequenoies possible in the wave channel* 
Henoe, it was used for the remainder of the experiments. Resonant vibration 
of the reoording system ooourred when measurements were taken near the surf- 
aoe of the water causing poor results which are not presented* 

At the top of eaoh table there is a summary of the average wave oondition 
together with the maximum peroentage deviation of any measurement from that 
average value* All deviations in the wave conditions were less than 10£, 
and about half of them were less than 8j£. The deviation in the measurement 
of the foroe intensity was within 1<# of the maximum measured foroe intensity 
as shown in Table I, where the same results were obtained from two different 
experimental set-ups* 

In Table I the wave in deep water was of moderate steepness QL/L • 0.039)* 
The inertia fore? w*e prodoaiaant with the drag foroe becoming more impor- 
tant for the small pile* and near the wave surfaoe* The inertia foroe had 
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a larger relative of foot under the crest than under the tivugh. The »^""'m 
and minimum force intensities are approximately equal for this wave condition 
BO that the time history of the foroes are nearly symmetrical about the 
maximum ordinate and zero abscissa (see also figure 6)* 

In Table II the imvo in deep water was very steep (H/t» • 0.091).  This ware 
was the same length as the wave condition of Table I, but the height was 
greater. The data show the drag foroe to have been more predominant than 
for the less steep ware (Table I). Otherwise the trends of the data were 
about the same* 

Thus far, the data indicate that the drag foroe is predominant for small 
piles, for steep waves, for shallow-crater waves, for the segment of piling 
near the surface, and for oondition when the wave crest passes the pile. 
In other words, the drag foroe is important in regions of high relative 
velocity, i.e. turbulenoe.  The inertia foroe is predominant for relatively 
large piles, for waves of relatively small steepness, for deep-water waves, 
for segments of the pile well below the wave surface and when the wave posi- 
tion was suoh that the pile was at the still-wat-ar level. The inertia foroe 
is important in regions of high acceleration where large masses are involved. 
It must be remembered that this report deals only with horizontal foroes. 

The data presented in Tables I and II in the columns P(0), P(90), P(180), 
P(270), together with the wave dimensions and pile geometry, were substituted 
into Equation 3 from which the values of Cj) and Cy were computed.  The aver- 
age Cj) and Cj( obtained from this study are shown in Table III. The.value of 
Op - 2.03 oompares roughly to the previously reported value of 1.6* ' (2fi£ 
variation). The value of CM » 1.96 oompares extremely well with the theoret-r. \ 
ical value or 2.0(7»8) and roughly with the previously reported value of 1.6* ' 
(25$ variation). 

figures 2 through 5 which show the drag component and the inertia component 
of foroe intensity are presented in dlmensionless form in order to show the 
distribution, relative magnitude, and relative deviation between measured 
and computed foroe intensity. The coefficients used in the computed foroe* 
intensity were CD • 1.6 and Cy • 2.0. The foroa intensity was made dimension- 
less by dividing by the greatest computed maximum foroe intensity possible 
for a given pile and a given wave oondition.  Figures 2 and 4 are for waves 
of relatively small steepness in deep water (Table I); and Figures 3 and 5 
are for a -very steep wave in deep water (Table II). Figures 2 and 3 show 
the drag components P(0) and P(l80) of the foroe intensity. The figures 
show that the drag foroe is more predominant for the smallest pile, in shallow 
water, and for steep waves.  The agreement between the measurements and the 
calculations is fair considering that most of the measurements are less than 
2Q£ for the maximum amplitude, with a deviation of generally less than 8J. of 
that maximum amplitude.  Figures 3 and 4 shear the inertia components P;90) 
and P(270) of the foroe intensity. The inertia foroe is shown to be more 
predominant for the larger piles, for deep water and for relatively low waves. 
The agreement between measured and calculated foroe intensity is generally 
within 1G0( of the maximum amplitude. Theoretically, the seoond order effects 
ef the force intensity would show that the foroe intensity under the crest 
is greater than the foroe intensity under the trough, however this offeot was 
not distinguishable in this study. The foroe intensity computed by Equation 
3, for the wave oondition of Table I and Figures 2 and 4, was plotted in 
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figure 6* This example shows the for35 intensity at the wave surfaoe, henoe 
at the elevation S8, whioh varies with 9* The curves for the different pile 
sites show the shift of the phase angle, and henoe the relative importance 
of the drag and inertia oomponents of the horizontal foroe. The ourves also 
•how the differenoe between the foroe intensity at the crest (maximum S8) 
and at the trough (minimum S8)« Unfortunately no suitable measurements oould 
be obtained at the ware surfaoe* 

Conclusionst The good agreement between the measurements and the calculated 
foroe intensity indicate the foil owing t 

(1) The values of the coofficients for the foroe equation of CD s 1*6 
and C]| • 2*0 were suitable for the calculation of the foroe intensity in 
this model study* 

(2) The drag oomponent of the horizontal foroe exerted by surfaoe 
wares on cylindrical piles is predominant for small piles, for steep waves* 
for shallow water, for segments of the pile near the surfaoe and for the 
oondition when the wave orest passes the pile* 

(3) The inertia oomponent of the horizontal force exerted by surfaoe 
waves on cylindrical piles is predominant for large piles* for waves of small 
steepness, for deep water, for segments of the pile well below the wave surf- 
aoe and when the wave position is such that the pile is at the still-crater 
level* 
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Table III 

Experimentally Determined Coefficient of Mass 

Average -values, average deviation and range 

CJJ s 1,96 ! 0.25 (1.15 - 2.83) 

Experimentally Determined Coefficient of Drag 

Average -value, average deviation and range 

CD s 2.03 £ 0.40 (0.98 - 3.50) 
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