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I

INTRODUCTION

This dissertation is concerned with individual differences in

certain characteristics of the performance of routine, repetitive

tasks. Such tasks require the production of well-learned responses

over a long period of time to a relatively constant stimulus situa-

tion.

The present research employed an experimental task as a paradigm

for a repetitive, routine task. The hypotheses under which this re-

search was carried out were 1) that reliable individual differences

in the performance of repetitive tasks can be discovered by objective

analysis of long series of experimental observations which are ordered

along the time dimension, and 2) that the differences discovered by

objective analysis in one task situation are of a general nature:

i.e., certain stable features of personality are manifested on all

repetitive, routine tasks.

Both of these hypotheses require amplification. Firstly, the fact

that long series of observations ordered along the time dimension are

being analyzed is of great importance. Time-ordering as a property of

psychological data has never been adequately treated in the psycholog-

ical literature (see Section II). The only statistical measures of

long series of observations which have been used extensively are the

mean and the standard deviation. In studies of learning or fatigue,

the chief interest centers upon changes in the mean level cf perform-

9
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anoe, and, to a lesser degree, upon changes in the standard deviation.

Measures of the strictly serial characteristics of the data in these

studies are of less moment, since most of the relevant information about

the process is conveyed by the changes in these two measures. But now

consider a set of time-ordered data in which there are no major changes

from the beginning of the series to the end of the series, a set of data

as might arise in studies of attention, psychophysical judgments, work

without decrement, or various performance tasks. Here it is clear that

the mean and the standard deviation, though they are important to the

analysis of the data, do not exhaust the relevant information conveyed by

the data. There is residual information concerning the serial depend-

encies of observations upon observations prior in time--what might loosely

be called the rhythmical properties of the data. It is these properties

which are a main concern of this paper. The mathematical analysis of

these properties will constitute a major objective of study.

A long detour is taken in Sections II, III, IV and V to treat the

relevant historical and mathematical material, before returning in Sec-

tion VI to the experimental study of individual differences in the per-

formance of routine, repetitive tasks.

What features of personality are manifest in the performance of

such tasks? In the absence of a systematic, theoretical framework to

guide us (since we are not primarily concerned with the extensively

explored areas of learning fatigue or motor skill), we will be content

here with a list of concepts to which these manifested features of

peronality might be allied.



1i. Rigidity

2. Level of aspiration

3- Involvement

4i. Concern over errors

5- Stability

6. Attention

The conceptual framework will be sharpened and elaborated in later

sections.
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II

HISTaY CF THE ANALYSIS OF TIME- DERED SERIES IN PSYCHOLOGICAL DATA1

Time-ordered series have appeared in psychological data since the in-

ception of experimental psychology. However, their mathematical and sta-

tistical properties have almost always been ignored or taken lightly, with

the result that the analysis of such data has been arbitrary, spotty, and

erroneous.

Two of the oldest lines of research deal with attention waves and

with work rhythms. Profuse references to these researches may be found

in Guilford (19) and Bills (51 respectively. The research prior to 1900

did not recognize time-ordering as a salient property of its data. In

1905, however, Seashore and Kent (31) published a lengthy article on the

subject of periodic change in continuous mental work. This article con-

tained a great deal of data plotted in serial order. The "mental work" -

involved attending to a tone which oscillated systematically in intensity

about the auditory threshold, and the data consisted of the intensities

of the tone at those times when it became just audible (or inaudible).

Seashore and Kent claim that periodicities of three different wave lengths

are apparent upon inspection of the data: second-waves, minute-waves,

and hour-waves. These three varieties of waves are then reified and

discussed. But no objective evidence for their existence is presented.

Indeed, it is doubtful that an independent observer inspecting the same

data records would have postulated the same three waves.

1Data arising from learning or fatigue studies are not considered, since
the rhythmical properties of such data are overshadowed in importance by
changes in the mean level of performance.



It must have been apparent to many experimenters that mere inspec-

tion of time-ordered data was unsatisfactory as an analytical technique.

Sarvis (30), in particular, decried the lack of analytical tools and at-

tempted some objectification of his own data. The task he set for his

subjects was that of tracing a square repeatedly without pausing. He

timed the completion of each circuit around the square and plotted these

times in serial order. His criteria for rhythmicality were the distances

between successive troughs, and a more or less intuitive evaluation of

the character of the intervening succession of points. If the inter-

peak and inter-trough distances seemed relatively constant and the over-

all wave generally smooth, a rhythm was said to have been established;

but it was very rare for an empirical record to have these properties.

As Sarvis himself pointed out, a combination of different rhythms could

make the wave picture quite complicated. Here Sarvis resorted to intui-

tion, with the statement that years of study are required to train the

eye to the detection of hidden periodicities in graphical records.

Another who felt that objective methods were meager was Philpott

(27, 28). His approach took a very different turn. He noticed that when

work curves from many different tasks and experimental sources were summed

together, the resulting composite curve showed wide oscillations. Claim-

ing that these oscillations were too large to be accounted for by chance,

he postulated that work curves on all tasks and in all situations conform

to what he called a "master time-table." Assuming (1) that all rhythms

in the work curve must have periodicities equal to integers on the time

scale and should occur with equal probability, and (2) that the work curve

must be plotted against the logarithm of time instead of against time

itself, Philpott studied only the troughs in his composite work curve
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and devised a scheme which be thought would describe the inherent organ-

ization of the curve itself. While he himself has not tested his scheme

against independent experimental data, several of his students (cf. Chen

(7)) have done so. The criterion of conformity of the model to the data

is, unfortunately, subjective. It consists of a judgment as to whether

the troughs in the empirical work curve fall near certain positions on

the time axis. An evaluation of Philpott's scheme would have to condemn

it as grossly implausible; his assumptions (especially that of a master

time-table) are gratuitous, his mathematical treatment is naive, and his

empirical validation is unconvincing.

The difficulty with many of these attempts is that they have taken

for granted the idea that curves of work or fluctuations of attention

should follow the pattern of a small number of well-defined sinusoidal

components. Rhythm has been unjustifiably bound to variability. This

idea undoubtedly stems from the feeling that since many physiological

phenomena are almost exactly rhythmical, psychological phenomena should

be so too, and should correlate with physiological rhythms such as heart

beat, breathing, the Traube-Hering wave of blood pressure, or some central

neurological rhythm--a "scanning wave" in the brain (36). Often strict

rhythmicality is postulated for psychological phenomena which are in fact

not rhythmical, but random. A case in point is Bills' study of "mental

blocking," which is treated in detail in Section V.

An entirely different line of research covers those time-ordered

series where the natural expectation is one of randomness and not rhyth-

micality. These series are characterized by the fact that the variable

under measurement is ordinarily not quantitative, but qualitative. There
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are psychophysical situations known to many authors (e.g., Fly=m (17),

Arons and Irwin (2), Preston (29) and Day (10)) in which the presence

of non-random serial patterns of response have been detected. Similarly,

non-random patterning has been noticed by Thorndike (37) in verbal

responses. Goodfellow (18) and Skinner (33) have observed the tendency

to avoid repetition of response categories in a popularized experiment

on mental telepathy. Miller and Frick (25) have discussed certain aspects

of sequential patterns of responses in multiple-choice situations. In

some of these cases, the mathematical treatment of time-ordered series

has been rather sophisticated, particularly with Day, who used autocorre-

lational analysis, and Miller and Frick, who discussed the Markoff

process. However, neither of these methods is quite general enough, al-

though autocorrelational analysis comes close, and deserves detailed

consideration (Section III).

A third line of research which departs somewhat from the psycholog-

ical in order to embrace engineering concepts is that of "operational

analysis" (12). This field has roots in both military psychology and in

cybernetics (42). Operational analysis deals with electrical and mechan-

ical systems in which a human operator intervenes in one or more parts of

the system. The activity of the operator usually consists of a long

series of ongoing motor responses to a given perceptual situation, and

is thus very similar to the activity which is the subject of experi-

mental investigation in this dissertation. The prototype of this per-

ceptual-motor activity as treated by operational analysis is pursuit

tracking (15). In pursuit tracking the operator, by manual manipulation,

attempts to maintain a pointer or cross-hair in correspondence with a

target which moves in "the visual field. Two pursuit tracking studies
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which have employed mathematical methods of time-series analysis are

those of Flood (14) and of Krendel (24). Flood nade use of autocorrela-

tional analysis and discovered a coherent organization to the time-series

properties of his data. Krendel, on the other hand, employed "spectral

analysis" to describe his data. Spectral analysis is the method even-

tually chosen here as being ideal for the general analysis of time-ordered

data and in particular for the analysis of individual differences on a

repetitive perceptual-motor task. It must be emphasized that while this

paper employs both a similar task and a similar analytical method to

those of operational analysis, its outlook is essentially antithetical

to that of operational analysis. The present emphasis is upon the indi-

vidual as a personal organism whose activities require explanaticn in

and of themselves, and not as an operator in a mechanical and electrical

system.

In summary, investigations of psychological phenomena wherein the

experimental variable undergoes fluctuations with time have suffered from

lack of analytic methods to deal with the time-ordered properties of the

data. Early methods were characterized by an appeal to inspection of the

data and by arbitrary, subjective statements about rhythms which were

presumed to exist in graphical records. Later emphasis was more objec-

tive, and a small number of recent studies have employed methods power-

ful enough to cope with the analysis of the complicated properties of

time-ordered data.
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III

METHODS OF TIM-SERIES ANALYSIS

Possible methods of analysis of time-ordered observations may be

culled from the literature of the other sciences. Although a great number

of methods exist, the majority of them can be subsumed within the three

main categories: Quality control, autocorrelational analysis, and. spec-

tral analysis. The first two will be discussed in this section, and

spectral analysis in Section IV.

Quality Control

The methods of quality control, developed originally by Shewhart

(32) for industrial applications, deal with the class of time-series

arising when measurements are made on each of many successive machine

products. To be more precise, measurements are made or samples drawn

at regular intervals from the output population of a machine in opera-

tion. The purpose of quality control is the detection and correction

of improper machine operation. There are many typical ways in which a

machine can get "out of control" and produce products which violate, in

one or more ways, the manufacturer's standards of quality. To most of

these types of defections there corresponds an optimal statistical test

carried out upon the sampled products. These tests are designed to

serve as ready danger-signals. If a machine goes out of control, the

interest is not in analyzing in their own right the interesting and

peculiar properties of the resulting series of measurements, but in

making the indicated machine corrections as quickly as possible.

ii
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A machine is said to be "in control" when firstly, measurements on

successive products are independent. This independence of successive

events is what we mean when we say that a time-process is random. The

further requirement usually imposed is that the individual measurements

be normally distributed with some fixed, predetermined variance. Olmstead

(26) has enumerated the typical ways in which a machine product can be 4

out of control. (The statistical tests he gives for the detection of

each type do not interest us here.) These are:

1 A gross error or !blunder"; i.e., an individual product ap-

pears which is very much out of line with the over-all distribution.

2. A shift in the mean measurement of a group of products.

3. A shift in the variance of measurement of a group of products.

4. A gradual change (trend) in the mean measurement.

5. A regular pattern of change (cycle) in the mean measurement.

Now, Shewhart has concluded from his own private observations that it is

virtually impossible to find a series of repetitive human performances

which is "in control." If this be true, it would be of great interest

to explain this curious finding, perhaps describe the nature of the usual

out-of-controlness, and most interesting of all, to attempt to find mean-

ingful individual differences on the basis of degree and type of out-of-

controlness. This approach might be entitled "Human Quality Control."

It was a discussion of this possibility between Dr. Shewhart and Professor

Harold Gulliksen that gave impetus to the present project.

That-the quality control method is not of general experimental ap-

plicability can be held on three grounds:

1. Quality control analysis is a set of diverse, particularized

procedures which do not lend themselves to a large study of a group of



individuals; The analysis is too diffuse. One individual may show broken

trends, another a non-normal distribution, two more a predilection for

'olunders," etc.- There seems no a priori way to organize such findings.

2. The interest in quality control is primarily with correction

and not with description and explanation. If, say, a changing variability

is encountered, we would want to know 'Why?" and "In what way?" Quality

control analysis probably will not tell us this. The experience gained

in answering these questions for machine operation is not likely to prove

useful when dealing with human subjects.

3. It is experimentally difficult to produce human performances

in as great profusion as machine products can be produced, so that any

aberrances which occurred with rare frequency or over very long intervals

would go undiscovered.

It is still possible that for certain very particular psychological

hypotheses, quality control methods would prove useful. But they do not

serve as a general precedure for handling time-ordered psychological data,

nor for the experimental study at hand. It is well to add that the same

arguments apply to sequential analysis (35, 40), an outgrowth and refine-

ment of quality control. The observation that human serial performances

are almost never random is not being ignored. This human propensity

toward out-of-oontrolness can be uncovered by other methods which will

prove of more general applicability than quality control analysis as far

as psychological data is concerned.

* iAutocorrelational Analysis

In contrast to the quality control method, aUtocorrelational analy-

sis is of quite general applicability to large classes of time-ordered
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data. The method has been applied to meteorological and economic time-

series data with fair success; also, as has been mentionedDay (10) and

Flood (14) employed it with psychological data. The mathematical back-

ground of autocorrelational analysis is given in Kendall (22); historical

and mathematical material appears in Davis (9).

In order to consider autocorrelational analysis here, it will be

necessary to define a time series Ropulation and a stationarZ time-series.

A sample of time-ordered observations will be denoted by (XI X2  X3 .....

X t  ..... XN_ l XN), or more simply by (Xt)t~l,2...N , where X is the

variable under consideration and the subscript denotes the time-order
2

of occurrence , t being a general subscript denoting the t:th observa-

tion, and N being the total number of observations. Now in the same

* •fashion that a single observation is considered to be a sample from a

statistical population of potentially occurring single observations, the

set (Xt)tl,2..N must be considered to be a sample from a population of

potentially occurring sets of N time-ordered observations each. This

population is N-dimensional, and will be denoted3 by (Xt)by~t=l,2. . .N

The objective of any method of time-series analysis is to induce the

nature of the population { t- l,2...N from one or more samples
t--1, . .

2 1f the observations are made at eaual time intervals, the time-order of
occurrence is equivalent to the actual time of occurrence, where the
first observation occurs at time t-l and the interval between succes-
sive occurrences is taken as the unit of time.

3Where reference is made to the population of X's at some fixed, single
.value of t instead of the population of X's at all values of t, the I

* identification t-l,2... will be dropped from the notation.



-13"

In most cases, only one sample (Xt)l2 .. N is available. It would

be hopeless to induce anything about a population from a sample of one

were it not for the assumption of stationMity. Consider the sample to

be translated along the time axis a distance of K units (i.e., K new ob-

servations are added at the end of the series and K observations at the

beginning are dropped). Compare the associated population ftltK+1K+2K+N

with the original population LXP tl2°N " If these two populations

are identical--indistinguishable from one another--for any positive or

negative integer value of K, the time-series is said to be stationary.

A stationary series is characterized by the fact that the data we find

now is equivalent (in a sampling sense) to what we might have found be-

fore or might find later. In other words, time has no effect as such,

but only insofar as it orders the observations with respect to each other.

The power of this assumption will become apparent as we progress.

Autocorrelational analysis approaches the population fXj I, 2 o.

with the question, "Are Xlp.X 2 .... . X. independent, and if not, what is

the extent of the dependence of any observation on those preceding it?"

In other words, we inquire into the N-dimensional joint probability

distribution of XlX 2 ....XN . If all the X's are independent, then

the series is random, and the joint probability distribution is simply

equal to the product of the separate probability distributions f XII
S..... . Further, for the stationary case, these separate distri-

butions are identical.

Now, in the case where the X's are not all independent, we ask, "How

can we best summarize the dependencies?" If attention is restricted to

linear dependencies and stationary time-series, the question is answered
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as follows: Consider the linear regression of {X21 on {Xlj Continued

sampling from the population (X1 ,1 will produce a bivariate surface

with a linear regression and a certain correlation coefficient. Since

time has no effect as such, but only insofar as it orders the observa-

tions, the regression of {X21 on (Xlj is equal to the regression of fX31

on [X 2 , and, in general, of {XK+Il on XKI . Thus we may think of a

general regression effect of an observation on the observation prior to

it, the so-called autocorrelation of lag one, or first-lag correlation,

B1 . Similarly, there is a general regression effect of {XK+ 2 1 on [ K,
the second-lag correlation, R , --the correlation between an observa-

tion and the observation prior to it save one.

In general, there is a regression effect of + j on X the

J:th - lag correlation, RJ,. Computationally, Rj conforms to the ordi-

nary correlation form, the covariance divided by the product of the

standard deviations. In this case, however, the standard deviation of

the observations X1 through XNj is very nearly equal to the standard

deviation of the observations X J+1 through XN, and both may be taken as

equal to the standard deviation of the observations X1 through XN

Thus

Q
(3.1) Bj = /Q , where

N-j Nj 1-
(3.2) Q= i -tt+ " E Xt E xt+j

N-j

(Qj is called the J:th las covariance.)
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N r~l 2
NX2 -IX a2

N N

All the linear dependencies in a series of N observations can be ex-

pressed by the lag correlations R N 1....N . For a random series,

all R = 0. If the R tend toward alternation of positive and negative

values, the time series is non-random in that neighboring observations

tend to be unlike one another; the series shows sharp quick ups and downs.

If the R are high and positive for small values of J, trailing off to

zero or negative values as j is increased, the time series is non-random

in that observations tend to be like their immediate neighbors but unlike

observations farther removed; the series shows a slow, gradual, wandering

trend or cycle.

In Figure I are presented three time-ordered series of empirical

observations (from the present experimental study). Series A is almost

random; Series B shows quick ups and downs; Series C shows slow, cyclical

variations. In Figure 2 are presented the scatterplots for the regres-

sion of on P the autocorrelations of lag one, for each of

the empirical series. For Series A, the scatterplot is circular, indi-

cating no correlation; for Series B there is evidently a negative corre-

lation, and for Series C, a positive correlation. In Figure 3, the first

20 lag autocorrelations for each of these series are shown; these plots

conform in general to the descriptions of the previous paragraph.

The lag correlations R are constrained in relation to each other;

that is, they are not independent. For instance, if R1 is very close to

1.00, '2 must be quite high also, since a lag of two observations is
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composed of two lags of one observation each. The general constraint on

the R's is given by the relationship:

1 IR1 B1  2  R3 . . . . . . . .  s

* 1 Rl R2 RBI B 1 2  ....... Bs_
R2 R, 1 R, ....... Rs_2

(3.4) R3 B2  B1  1.........B 0, for any value of s
SR2 R ....... .-3

s s-1 s-2 s-3

In view of these constraints, the information provided by the R's for the

longer lags is subject to diminishing return; that is, it is not necessary

to know all the R's. A limited number of them -- R, I2' R3 , ..... B5 --

where s is small compared to N, will generally suffice to give a nearly-

? "complete summarization of all the linear dependencies in the data and thus a

nearly-complete summarization of the time-ordered process itself. That is

S"the power of this form of summarization. Unfortunately, sampling fluctua-

tions will always mask the true values of R. The sampling properties of R

have been studied by Anderson (1) and others (ll) (41). Assuming N-variate

normality of the parent population [Xt}t,2 N' an Rj whose true value

is will be asymptotically normally distributed with mean and standard

deviation1 . This much is known, but the complicated constraints upon

the R (see (3.4)) make a joint significance test upon two, ten or twenty of

them an unmanageable affair. Over and above the consideration of the diffi-

culty of such a test, the R have the unhappy property (due to the constraints

again) that a sampling peculiarity in one of the first few lags will intrude

itself artificially into the later lags. Thus the over-all picture given by

the R's is made blurry, as Kendall himself has complained (23).
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IV

OTHER METHODS: SPECTRAL ANALYSIS

What is desired is a descriptive scheme with the advantage of nearly-

complete summarization provided by autocorrelational analysis, yet without

the disadvantageous sampling properties of that scheme. Spectral analysis

(39) is Just such a scheme. Related analytical techniques, such as Fourier

analysis, harmonic analysis, etc. have been used in one form or another in

many scientific fields where time-ordered data occur, particularly in elec-

trical engineering (38).

The essential idea of spectral analysis is that any stationary time-

series can be.decomposed into a large number of cosine-wave components.

That is, the oscillations in the time-series are accounted for by a sum of

cosinusoidal oscillations of varying frequencies. All frequencies are

admissible, and the number of component waves is taken to be infinite; this

represents an advance over the naive notion that a small number of compo-

nents with frequencies commensurate with the unit of observation on the time

scale are adequate to account for most empirical data. The amplitudes of

the component waves are an important consideration. The bigger the ampli-

tude of a component wave, the more important it is in the explanation of the

time-series. In fact, the amplitudes of the component waves are related

to the total variance of the time-series in a very neat and useful way,

as shall be shown below. The phases of the cosine components are essen-

tially irrelevant to spectral analysis, except insofar as they allow for

consideration of statistical variation. It will be remembered that a dis-

tinction was drawn between a time-series sample and a time-series popula-

tion. Different samples from the same population differ from each other;
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spectral analysis assumes that the differences between samples are due to

the fact that the various cosine components in the several samples have

different phases.

These various ideas can be stated mathematically as follows:

00

(f.) t i a i cos (wit + 01 )

where Xt is the population of X's at any single value of t,

a i is the (fixed) amplitude of the i:th component wave,

w I is the (fixed) frequency of the i:th component wave,

01 iis the (variable) phase of the i:th component wave,

and the sumation indicates that an infinite number of such components

are being added together.

It is assumed that the phases 0i vary statistically from sample to

sample; the 0i for different components, i, are assumed to vary inde-

pendently of one another, and the distribution of each 01 is assumed to

be uniform (rectangular) over the interval 0 to 27t (i.e., all values of

0i from 0 to 27( have equal likelihood of occurrence in any given sample).

The form (4.1) is a perfectly general representation of any station-

4
ary time series. Any function with values defined at the points tl

through t=N can be fitted exactly at those points by a unique series of

4The fact that (4.1) represents a stationary time-series can be seen by

substituting t+k for t in that formula. Then fXt+k =E ai cos(wi [t+k] + 0 ,i)

E ai cos(wit + 1 + wik] ) . Define i= 0i + wik . Now 9i has the same

distributional properties as 0i' since wi and k are fixed. Thus time

translation does not affect the population.
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the form (4.1). This is a classical result of Fourier analysis. Under

certain conditions, the series will not agree with the function at one or

more points which we do not observe. But as far as what we observe is

concerned, any stationary time-series acts as though the underlying popu-

lation were a sum of an infinite number of cosine components. That is the

power of this formulation.

The total variance of the time-series population (i.e., the average

squared deviation of all possible X's from the expected value of X at any

fixed value of time) is given by

C,2 12
(4.2) a E

i=l

(The derivation of this result is given in Appendix A.) That is, each

component wave of frequency wi contributes to the total variance in

proportion to the square of its amplitude, a The contribution to the

total variance of all waves with frequencies between w1 and w2 is equal 5

1 2
to E 1 a 2 The contribution to the total variance of all waves

w 1l< wi< w2

with frequency less than some w has a special significance. Denote this

quantity by S(w), the so-called integrated spectrum.

(4-3) S(w) = 1 a 2

wi< w

2
The extreme values of this function are S(O) = 0 and S(o) = Cx . The

5Spectral analysis does computationally with a discrete series of observa-

tions subject to sampling fluctuations what a wave filter does to an elec-
trical current. In this analogy, the total variance of a time-series is
equivalent to the total power in an electrical discharge.
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function increases monotonically as w goes from 0 to oo . Indeed, with

an infinite number of admissible component frequencies, contributions to

the total variance may be considered to occur at all frequency values,

and S(w) may be taken to be a continuous function. In that case, S(w)

has a derivative at all values of w. Call this derivative s(w). s(w)

is called the spectrum. To every stationary time-series population there

corresponds a unique s(w), with the property that the contribution to the

total variance by waves of frequencies between w1 and w2 is equal to

s(w) dw

wI

Thus far no mention has been made of the fact that we are interested

in dealing with a finite, discrete set of observations. This condition

imposes an upper limit on the range of admissible frequencies, w, because

very high frequency components are not detectable by observation. They

undergo their fast wiggles in between the points of observation, and as

far as what we observe is concerned, a high frequency component will ap-

pear as some lower, observable frequency. This is the phenomenon of the

alias, pictured in Figure 4A. Figure 4B gives the exact relationship

between high-frequency components and their low-frequency "aliases." The

highest observable frequency is one cycle per every two observation points.

This corresponds to the angular frequency W =If. Thus the limits on the

admissible range of frequencies are 0 = w lT, and the spectrum s(w) is

confined to that range.

In order to estimate s(w) from a single time-series sample, it is

necessary to compute estimates of s(w) at several values of w, and then

sketch in the rest of the curve. 'These estimates are ordinarily computed

at equally spaced values of w; if the total number of estimates is (M+.l),
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the individual estimates are made at w = O ,_ _ (m-l T)

These individual estimates are denoted by U , (p = 0,1,2.. .m) the estimated

spectral densities at frequencies defined by w = The (m+l) values of

U provide as near-complete a summarization of the time-series data as do
p

the first (m+l) lag covariances Q In fact, the U are computed from
J* p

certain linear combinations of the lag covariances, Q (j=.,l,2...m), a

different combination for each value of p.

M.
(4.4) U E T QP J= jp j

The T are presented in Appendix B along with the rationale for this

computational device.

For a random series, the spectrum s(w) is flat over the range 0 to 1T

(i.e., s(w) = constant).

Deviations of the spectrum from a constant level indicate departures

from randomness. If s(w) increases as w goes from 0 to T, the time-series

will tend toward sharp quick ups and doms (high frequency components).

If s(w) decreases as w goes from 0 toWr, the time-series contains more low

frequency components than high frequency components; that is, it tends

toward slow, wandering trends and cycles. (See Figure 5,) Another type

of possibility is that the spectrum will consist only of a very sharp

peak at w-vo . (In other words, the time-series does not decompose into

many components--there is only cone component, at w- 0 .) This situation

is .very nearly true in certain gross physical phenomena, such as tides

and sunspots. But it is less often true than one might expect, and the

search for sharply defined frequencies in any and all time-series has
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been largely a failure. There is a method called periodogramu analysis

which sets out to find such well-defined frequencies (see Davis (9) for

an excellent historical summary and Wold (43) for a mathematical treat-

ment). Periodogram analysis can be treated as a restricted case of

spectral analysis. Controversies about the exact periodicities presumed

inherent in business phenomena have not been settled by periodogram anal-

ysis, because periodicities (or frequencies; the two are reciprocal to

each other) are seldom sharp and exact. They are blurred over some range.
41r

For example, the periodicity of the short business cycle is said to be

between 36 and 48 months (9). Certainly, in complex psychological data,

sharply defined frequencies are not to be expected. There are usually

too great a number of factors acting for a single well-defined cosine

component to dominate a phenomenon. The major difficulty with studies

of psychological rhythms is that in talking of a rhythm, we fail to ap-

preciate the fact that the so-called rhythm Lay be so blurred (the peak

on the spectrum may be so broad) that the phenomenon is nearer to random-

icity than to rhythmicalityo (See Section I and Bills' study, Section V.)

The important difference in utility between spectral analysis and

autocorrelational analysis is that the statistical properties of the

estimates of spectral density are very convenient; sampling variations

can be handled much more easily by spectral analysis. These statistical

properties have been worked out recently by Professor John Tukey (39)

and are stated below:

(4.5) If the true (population) value of U Up the quantity fLp

-P_
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is approximately distributed as -2 with f degrees of freedom, where

f = 2N = 2 (number of observations in the time series) (Mere is a
m-- (number of lag covariances computed)

slight loss of degrees of freedom when the spectrum departs considerably

from flatness. See footnote 9, page 56.)

A
A convenient statement for graphical purposes is that log U - log U

Sp p

is disttibuted as log f In other words, on a simultaneous plot of log

U vs. p and log U vs. p, the distance between the points at any value
p p

of p is a direct measure of the probability of occurrence of the sample

A
value U under the hypothesis that U is the true value. The standard

p P

procedure used throughout this paper is to plot spectral densities on

semi-logarithmic paper, with U as the (logarithmic) ordinate and p as
p

the abscissa. Any set of empirical values of U can then be surrounded

by a confidence region, corresponding to some probability level, which

4 A
delimits the area within which the population values, Up, will probably

lie.

(4.6) If two samples (one of them denoted by ') from the same time-
U

series population are drawn, the quantity - is approximately distributed

2N 2N'
as F with and -- degrees of freedom. For this significance criterion,

the semi-logarithmic plot is also convenient.

Property (4-5) is additive over several samples. In other words,

[f1  + f 2  + ... + fr is approximately distributed asDC2 with

f I + f2 + ... + fr degrees of freedom. Property (4.6) is also additive,

but the addition must be done separately for numerator and denominator:
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T~l +U + prp 2 I ..+'" + Ur is approximately distributed as F with
Upl + Upr

M1 +22 . .. Nr 2 N + 211r

+-+ ..... +-and- +- + .... +- degrees of freedom.

(4.7) Adjacent values of U, Up and Up+l, are not independent, due to

computational blurring. However, any Up and U are independent. A

very high value of U will spill over somewhat into the neighboring values,

but no further. The over-all effect is a slight smoothing of the spectrum.

The advantage of spectral analysis over autocorrelational analysis

is the relative lack of constraint between U values and the simplicity

and utility of their sampling properties. Furthernore, a spectrum pre-

sents a much clearer graphical picture than an autocorrelational plot.

To cite a specific analytical example on the basis of which we may com-

pare spectral and autocorrelational analysis, consider a simple case of

the so-called auto-regressive scheme (see Yule and Kendall (44)). By

this scheme, each observation, Xt, is determined by a linear combination

of the previous observation and an independent random error. This may

be written

(4.8) Xt aXt + £t' where a is a constant between -1 and +1. It

can be shown that the autocorrelations, Rj, for such a scheme are given

by

(4.9) =aitjo

The spectrum, meanwhile, is
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(4.10)
(1+a2 ) - 2acos w

An empirical data series generated by such a scheme with a = .5 is shown

in Figure 6A. Figure 6B gives the theoretical and empirical autocorrela-

tion plots for this series. Figure 6C gives the theoretical and empirical

spectral plots for the same series. The picture the spectrum presents is

much clearer than the autocorrelational picture.

In sumary, spectral analysis decomoses the total oscillation of a

time-series into cosine oscillations of varying rates, specifying the rela-

tive contribution of each of the components of oscillation. It does this

by a unique function s(w) which conveniently sumarizes these relative

contributions as a function of the frequency of oscillation w, of the

contributing components. The statistical sampling properties of the esti-

mates, U, of s(w) axe known, enabling us to assess whether a time-series

sample has come from a particular time-series population or to determine

whether two time-series samples have come from the same time-series popu-

lation. Spectral analysis is thus superior to autocorrelational analysis

as an analytical method, and will be used to deal with the experimental

data of this paper.
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V

SPECTRAL ANAIYSIS APPLIED TO PREVIOUS PSYCHOLOGICAL DATA

In order to confirm the suitability of spectral analysis for analyz-

ing time-ordered psychological data, the method will be applied to the

data of two previous experimental studies. In so doing, we shall inci-

dentally clarify certain of the conclusions made by the authors in those

studies. The two chosen studies are those of Bills (3) on mental block-

ing, and Day (10) on serial patterns of responses in the auditory thresh-

old.

A. A Study of "Mental Blocking"

Bills (3) gave his subjects simple, repetitive tasks to perform, essen-

tially involving an enforced rapid choice amongst alternatives. For example,

a long row of randomly intermingled yellow, blue, red and green dots was

shown with the instruction to read from left to right, calling off the

colors of the dots as rapidly as possible. The response times of each

successive response were recorded in serial order. Bills arbitrarily

considered a response to be "blocked" when the response time was more

than twice the length of the modal reaction time prevailing during the

minute of work when the block occurred. Two questions are then asked of

the data:

1. Are the blocks real; i.e., qualitatively different from normal

responses, and not simple extreme variations within a unimodal distribu-

tion of response times.

2. Are the blocks "rhythmic" or periodic in occurrence.
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Bills answers the first question in the affirmative by presenting a

distribution of response times which looks bimodal. However, the number

of cases is much too small: only 4 cases at the secondary mode as com-

pared to 2 cases at the presumed dip between the modes. Apparent bi-

modality is a notorious snare and delusion, since it can so readily appear

by chance with small samples from a unimodal distribution. Good statis-

tical evidence for bimodality is not presented by Bills.

Bills approaches the problem of the rbythmicality of the blocks by

plotting a frequency distribution of the distances (in number of responses)

between adjacent blocks. The following statement is made concerning this

frequency distribution: "if no periodicity exists, the frequency curve

of interblock distances should show a normal or chance dispersion. If,

on the other hand, a definite periodicity exists, it should emerge as a

mode at some definite point along the base line, with a narrow range of

dispersion of the measures from it. If more than one periodicity exists,

there should be a multimodal distribution of the interblock distances,

with a separate mode for each periodicity." (6). The first part of this

statement is in error, and the last part is highly questionable. If no

periodicity exists, the distribution of response times is not normal,

but decreases geometrically. Where p is the probability of occurrence

of a block on any single response, the probability of an interblock

interval of N responses is [P(l - p)Nl . With this erroneous statement

in hand, Bills presents several experimental frequency distributions of

interblock responses and claims that two periodicities are revealed by

each of these records (4). There is no sampling theory given, nor are

there tests of statistical significance. The conclusions are based solely

on the apparent modes in the frequency distribution, an inadequate method

of analysis.
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Spectral analysis was applied to a set of 75 successive response times

on a figure analogies task. The data, shown in Figure 7, were originally

presented in Bills' chapter in Andrews (6) as typifying the blocking phe-

nomenon. Spectral analysis cannot answer (directly) the question of the

bimodality of the distribution of response times, since this is based on

discrete and not serial information. The question of the rhythmicality

of blocks can, however, be answered directly and clearly by spectral

analysis.

The estimates of spectral density of the blocking data are presented

graphically in Figure 8 on a semi-logarithmic plot (see p. 23). These

estimates U , were computed on the basis of the first 20 lag covariances,

Q1 through Q0, and the variance Qo" Estimates were computed only at

frequencies1E.-r 37 1_ , (i~e., p = 0,1,2,
frequenciesw= 0, 2 0 2 0  2 0  2 0 ' 2 0 , 20 ' 20

3,4,7,12, and 17), due to a short-cut computational method explained in

Appendix C. The estimates at p = 7,12, and 17 actually each represent

averages of five adjacent U . Ninety per cent confidence limits, based
p

on the X2-test given in (4.5) are placed above and below the empirical

curve. This confidence belt can be expected to include the true, or popu-

lation spectrum at 90% of the values of p (frequency) for which U's have

been computed0 It will be noted that a flat spectrum fits very nicely

into this confidence belt. In other words, the series of 75 response

times is not significantly different from a random series; the evidence

for rhythmicality is nil. The apparent dip and the later drop-off in

the spectrum of the empirical data cannot be considered as other than

phantoms of sampling. On the other hand, if blocks had occurred in these

data with perfect rhythmic regularity and if the series were in all other

mm11
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respects random, the theoretical spectrum would have 'been as indicated by

the dotted line. Conformity of the data to this spectrum is close at high

frequencies, but at p = 0,1,2,3 the discrepancy is enormous. In all fair-

ness to Bills, it is true that this analysis pertains to only one fragmentary

portion of the data he has collected. But analysis of this nature is neces-

sary before statements about rhythmicality can be sensibly made, and, indeed,

such analysis should be carried out on more extensive data.

B. On Serial Patterns in Auditory Discrimination Judgments

We have seen spectral analysis applied to what was essentially a random

series. The use of spectral analysis considerably altered the conclusions

which had been drawn by the original investigator, who used inspection as

his only technique. Let us now turn to the case of a clearly non-random

time series upon which a refined objective technique (autocorrelational

analysis) had already been brought to bear by the previous investigator.

* •Does spectral analysis add anything to the detail and precision of the

previous analysis?

Day (10), acting on a lead supplied by Flynn (17), has analyzed the

tendency for subjects to respond in non-random sequential patterns in

auditory discriminations.6 A 1000 cycle, 16 db. tone was sounded steadily

except for a brief temporary increase in intensity occurring every T

seconds. The duration of these pips was .1 second and their amount was

fixed for each individual subject at his particular differential threshold

(50% level) for the given frequency and intensity.

6

6This particular line of experimentation is very old, and Joins historically

with research on the attention wave. But it is only recently that adequate
mathematical treatment has been employed.
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The subject pressed a key whenever he perceived an increase in inten-

sity. The data consisted of a series of "yesses" and "nos," a "yes" when-

ever the subject heard the actual increase, a "no" whenever he did not.

No mention is made in Day's paper of instances in which the subject "heard"

an increase when it wasn't there; presumably this was a rare occurrence.

The value of T, the interval between successive pips, was held constant

at each sitting, but varied from sitting to sitting. Five values of T

were used for each of the five experimental subjects. There were: 1.6

seconds, 2.1 seconds, 4.2 seconds, 7.1 seconds, and 10.6 seconds. The

numbers of observations per subject recorded for each interval were 600,

6o0, 450, 350 and 300 respectively. Each series of yesses and nos was

analyzed by an essentially autocorrelational analysis. Each "yes" was

designated by a "l," each "no" by a "0," and the first 20 lag correla-

tions were computed from an index devised by Flynn. Flynn's index for

the J:th lag is defined as

(5_ Observed no. of "matches" - Expected no. of "matches"
(5.1) J - Maximum no. of "matches" - Expected no. of "matches" '

where a "match" at the J:th lag occurs whenever two l's occupy positions

j responses apart or two O's occupy positions j responses apart.

This index can be shown to be approximately equal to the ordinary

product-moment lag correlation under certain conditions, as follows:

Let N = the number of observations in the series

N1 = the number of l's in the series; N0 = the number of O's in the
series

A j = the number of matching pairs of l's at lag j in the series

Bj = the number of matching pairs of O's at lag j in the series
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Assume 1. That N is very large.

2. That the number of l's in the series is equal to the number

of O's. as it must to satisfy the specification that the

N
stimulus is just at the threshold. N, No = om this

it follows indirectly that Aj = B

Now the observed number of matches is (Aj + B) = 2A ; the maximum number

of matches is (N - J), the total number of pairs at the J:th lag; and the

expected number of matches is (N - j), since in a random series a match

occurs with probability 1. Finally, neglecting j with respect to N, the

formula for _lj. can be simplified to

N
2A A

(5.2) = 4 1
j N NN --

But the product-moment lag correlation, R. is computed from R J

jwhere from (3.2),

N-j j X -j
E: Xtt j F tt__l Lt_-l 1]t=

Q N - j (N - j)2,

Now, since the X's must be either 0 or I, there are - of each, and2

N is large enough so that j can be neglected in comparison to N, the

formula for simplifies to

A(5,3) -, 1 1
"A NN

A1
(5.4) But 0 1 2N 1 1

I0
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Therefore

:; A( 1 AJ ~
*(5.5) R~ Qb (.)= QO N N- "

Day's sets of autocorrelations (plotted in Figure 9) demonstrate

the following properties:

1. For T = 1.6 and T =2.1,

the plots of autocorrelation vs. lag show a steady decline from high

positive values for the initial lags down to values not significantly dif-

ferent from zero. All the individual plots show this effect, as well.

2. For the intervals T = 4.2 T = 7.1, and T = 10.6, the autocorre-

lations vary erratically near the chance level, although this is not

uniformly true of all subjects, 5 out of 15 records being found which

are similar to those for the shorter intervals, and 2 records showing a

marked tendency toward alternating positive and negative autocorrelations.

On the basis of these plots and upon an analysis of "runs" (sequences

of identical responses), Day concludes that there is a non-random serial

effect for the short inter-stimulus intervals which all but disappears

as the interval T is lengthened. This non-random serial effect is dis-

tingulshed by the presence of ultra-long successions of "yesses" and

ultra-long successions of "nos." No attempt is made to explain the

phenomenon, which could be indicative of the properties of the auditory

threshold or could be an artifact of the experimental design, or some-

thing else entirely.

Treating Day's lag correlations as though they were lag correlations

based upon a quantified instead of a dichotomous variable, spectra were

computed from these lag correlations for all subjects and all values of
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T, the inter-stimulus interval. Our main interest here is with the effect

of T and not with individual differences. Accordingly, we content our-

selves with noting, as Day did, that individual differences are small for

T 1 1.6 and 2.1 but are much more apparent for T = 4.2, 7.1 and 10.6; the

spectra presented in Figure 10 for the five values of T each represent

averages over the five subjects. The sixth spectrum in the Figure is ex-

plained below. We ask two questions which Day did not consider:

1. Do these five spectra all represent a single underlying process

which is a function of time alone? That is, do the spectra appear dif-

ferent only because they are each drawn to a different time scale; e.g.,

for the spectrum with T = 1.6 seconds, the point p = 4 represents a

frequency of 1 cycle per 10 observation points or 1 cycle/16 seconds,

whereas for the spectrum with T = 4.2 seconds, the point p = 4 represents

1 cycle per 10 observation points or 1 cycle/42 seconds.

2. Whether the five spectra represent one process or five processes,

can we go beyond description in organizing the results? In other words,

why is the process (or processes) non-random at all, and further, why

does the non-randomness take the particular form that it does.

In order to answer question 1, let us divide the spectrum with

T = 1.6 seconds into equal quarters along the frequency scale. The

first quarter extends over the frequency range 0 to 1 cycle/12.8 seconds;

the second quarter extends over the range 1 cycle/i2.8 seconds to 1 cycle/

6.4 seconds; the third over the range 1 cycle/6 .4 seconds to 3 cycles/12.8

seconds, and the fourth over the range 3 cycles/12. 8 seconds to 1 cycle/

3.2 seconds. Let us construct from these pieces the shape of the spec-

trum of the same process referred to the base T = 6.4 seconds. The entire

frequency range of this constructed spectrum would extend from 0 to 1
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cycle/12.8 seconds; the maximum frequency which would appear in this arti-

ficially constructed spectrum is the frequency (i cycle/2.8 seconds) cor-

responding to the upper limit of the first quarter of the T = 1.6 second

spectrum. Thus the first quarter -f the T = 1.6 second spectrum carries

over directly to cover the whole range of the constructed spectrum.

Frequencies above 1 cycle/12.8 seconds, however, must enter the constructed

spectrum as 'aliases' (see p. 20). For instance, the frequency 1 cycle/

6.4 seconds appears to be a frequency of 0, since observations are only

being made every 6.4 seconds, the precise interval at which a wave of

frequency 1 cycle/ 6.4 seconds returns to its starting point. Referring

to the rules for aliasing given in Figure 4B, the artificial spectrum can

be constructed from the four pieces of the T = 1.6 second spectrum. (The

accompanying diagram shows how each piece carries over; the four pieces

are averaged to give the constructed spectrum.)

~~(RE SULJTANTI' II Reversed-, . SPECT U M

IV III - (Average of

IV Reversed jI

1 1 5 1 cyc. 0 i cc.
0 8 7 U .8 3.2 sec. 12.8 sec.

Pieces I and III carry over directly; pieces II and IV are turned

backwards, due to the nature of aliasing, and then are carried over.

The artificially constructed spectrum with T = 6.4 seconds is shown

along with the empirical spectra of Figure 10. It will be seen that the

spectrum for T = 6.4 seconds constructed to represent the same process as

the spectrum with T = 1.6 seconds shows less deviation from randomness

(i.e., is flatter) than the empirical spectrum with T = 7.1 seconds (at



-35-

p = O, the T = 7.1 second spectrum is significantly above the T - 6.4

spectrum at a significance level of .005). In other words, at the interval

T = 7.1 seconds, the psychophysical judgment process is more non-random

than would be expected if we were dealing here with a process (a fluctu-

ating threshold) that varied passively with time alone. This conclusion

is weakened by the weird behavior of the spectrum for T = 10.6, due en-

tirely to two subjects who showed a tendency toward alternating "yes"

and "no" responses. But if the conclusion is accepted, it can only mean

that the threshold is affected by the fact that we are measuring it. A

perceived differential increase in the intensity of the sound raises the

probability that the increase will be heard upon the next presentation.

We do not know whether this facilitative effect is due to afferent or

central neural facilitation or to the fact that the subject, having

responded (pressed the key) is placed in greater readiness for the next

stimulus. But we do know that the spectra. we are dealing with are not

the spectra of the fluctuations of threshold alone. Some further effect

is present.

As to the question of the explanation, or at least greater speci-

ficity of classification of the non-randomness at hand, let us consider

the spectra for T = 1.6 and 2.1 seconds in greater detail (for the

longer intervals, individual differences become operative, and the average

curves are no longer as smooth nor as meaningful). In Figures lla and llb

are shown two theoretical fits to each of t' se two empirical spectra

along with the 95% confidence belts which surround each of the empirical

spectra. As can be seen from the Figure, both fits are quite adequate

to the data, and either one might serve as a possible explanation of the

phenomena.
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One of these fits is according to the relation log U = A - B log p.
p

This fit is drawn out of a hat, with no theoretical justification. It was

merely noticed that the spectra (for T = 1.6 seconds and T = 2.1 seconds)

when plotted on log-log paper instead of semi-log paper, produced rela-

tivply straight lines. (The value p = 0 is omitted, since the log (0) is

negatively infinite.) Perfect straight lines were fitted to the data on

the log-log plots by eye and the values transferred back to the semi-log

plot. The fit to the data is excellent; the author knows of no model,

however, which would produce such a spectrum.

The second fit was found from the following theoretical model: Sup-

pose that the probability of responding "yes" to any given stimulus (i.e.,

hearing it) depends only upon whether the previous stimulus was heard or

not heard. Suppose that the probability of a "no" response likewise de-

pends only upon the nature of the previous response. Then a table can be

constructed of the conditional probabilities of: a 0 (no) followed by

a 1 (yes), a 0 followed by a 0, a 1 followed by 1, and a 1 followed by a 0.

being followed by:

0 1

0 P
Probability of: I Q P

(P is some probability between 0 and 1; Q = I - P, since a 0 must be

followed by something; the probability of a 0 followed by a 0 equals

the probability of a 1 followed by a 1 since the number of O's is to

equal the number of l's in the entire series.)
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This model is a special case of a "Markoff process" (of. [131).

The lag covariances for the process can be computed from (5.3) which
A

states that Q = - 1 where A is the number of matching pairs of l's
J N T~wh i

at lag J. Evidently A is equivalent to the total number of l's in the

entire series times the probability P that, if a 1 appears, another 1

will appear j responses later. But the number of l's in the entire series

N
is 8 Thus

(5.6 Q P 1=1(2Pj -1), where PI= P

Pl

The P can be related to the parameter P by enumerating the sequences

of O's and l's which can separate two l's by j responses, calculating

the probabilities of each, and adding. When this is done it turns out

that

1

(5.7) Qj -= ]7(2P - I) j

Choosing for T = 1.6 the value P = .80 and for T - 2.1 the value P = .75,

the Qj's were computed by (5.7) and thence the U 's were computed (from
j p

formula (4.)). Other values of P in the same general neighborhood

would do approximately as well; the particular values chosen are only

for illustrative purposes.

In summary, the empirical spectra for the short inter-stimulus inter-

vals in Day's experiment can be closely approximated by either of two

fits; one of these fits has no theoretical justification, although one

might conceivably be found. The other results from the hypothesis that

the probability of a stimulus being heard depends only upon whether the
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previous stimulus was heard or was not heard, being high (P) in the

former instance and low (Q) in the latter instance. This facilitative

effect is still present at longer inter-stiulus intervals in much lesser

degree. Day's experiment cannot be considered to have measured directly

a passively varying threshold, since the spectra for the short and long

inter-stimulus intervals are not commensurate with each other. Spectral

analysis has considerably sharpened the conclusions from Day's experiment,

although several questions remain unanswered.

Spectral analysis having passed these two preliminary tests satis-

factorily, we are now ready to apply it to the experiment on individual

differences in performance on routine, repetitive tasks.

I
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VI

EXERIMENTAL DESIGN

In Section I, the following hypotheses were suggested as being subject

to experimental test:

1. Reliable individual differences in the performance of repetitive

tasks can be discovered by objective analysis of long series of experimental

observations which are ordered along the time dimension.

2. The differences discovered by objective analysis in one task

situation are of a general nature, i.e., certain stable features of person-

ality are manifested on all repetitive, routine tasks. The concepts to

which these personality features might be allied are: rigidity, level of

aspiration, involvement, concern over errors, stability and attention.

The discussion of Sections III, IV and V has led to the decision to use

spectral analysis as a mathematical method in dealing with time-ordered

observations. The choice of an experimental task is subject to several con-

siderations: 1) A perceptual-motor performance task is more suitable than

a task which is predominantly perceptual or predominantly motor or predomi-

nantly mental, since it is more likely to involve the whole organism and

to avoid awkward breaks in the activity; 2) it is desirable to minimize

the factors of learning and fatigue, since they introduce too many un-

controllable variables, and complicate the mathematical analysis enor-

mously by making the time series non-stationary; 3) a long series of

observations (100 or more) is necessary for statistical reliability;

accordingly, the task has to be one in which the rate of production of

observations is rapid; 4) the observations should be easily measurable
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and in convenient form for analysis; 5) the goal of the perceptual-motor

task should be kept constant, for otherwise the results continge too

heavily upon the manner in which the goal changes,7 an extraneous and

complicating experimental variable; 6) on the other hand, the task must

not be so easy that no variability is manifest; in other words, errors

should be unavoidable; 7) insofar as is possible, skill factors and

other idiosyncratic factors not strictly psychological should not enter

importantly; 8) there should be a potential versatility in the relevant

experimental conditions.

In the light of all these considerations and a number of pilot

studies, the task finally chosen was that of jabbing a stylus at a target.

The subject stood alongside a table on which a rectangular box was placed

so that its long side was coincident with the edge of the table. A square

of paper atop the box was designated as the target area. (Figure 12A.)

The specific goal within the area was indicated by a black line or lines

drawn on this square of paper. Below the paper was a metal backing

covered with strips of typewriter ribbon. Between the paper and the

ribbon-covered backing was a tape which moved at the constant rate of

one inch a second across the length of the box (from left to right) and

7This is the difficulty with the study by Krendel (24) referred to pre-
viously as a case in which spectral analysis was applied to data of a
psychological nature. He used a pursuit tracking task in which the sub-
jects tried to return a continually moving spot of light to a central
position on a screen by means of a rudder control. The spectrum of the
position of the rudder was found to conform closely to the spectrum of
the position of the moving spot. From an engineering standpoint, this
is important, but for psychological purposes it is disappointing, since
it is the deviations from optimal operation which are psychologically
the most interesting (and most subject to individual differences).
These deviations are obscured by the large effect of conformity of the
subject's activity to the demands of the varying goal.
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registered a black dot wherever the subject jabbed (Figure 12B). The

impact of the stylus was sufficient to leave an indentation on the target

paper. To minimize the effect of the subject being influenced by the

knowledge of where his previous jabs had landed, the target papers were

prepared beforehand so as to be already covered with a large number of

indentations. The subject gripped the stylus in the middle, with the top

of the stylus touching a backstop placed fifteen inches above the target

area. When held in this position, the point of the stylus was eight

inches from the target area. After each jab at the target area, the sub-

ject lifted the stylus back up until contact with the backstop was made,

and jabbed again. The subject jabbed at his own rate and continued until

he had produced 100 jabs for each of five task variations.

The variations in task were achieved by changing the paper square

comprising the target area. Each of five paper squares had a different

goal indicated on it, namely:

1. A wide black band extending away from the subject vertically;

i.e., perpendicular to the direction of motion of the recording tape.

2. The area between two thin horizontal lines spaced respectively

26/50 inches and 74/50 inches from the edge of the box nearest the sub-

ject.

3. The area between two thin horizontal lines spaced respectively

42/50 inches and 63/50 inches from the edge of the box nearest the sub-

ject.

4. A single thin horizontal line spaced 45/50 inches from the edge

of the box nearest the subject.

5. A blank paper.



The five tasks were presented to the subjects in the same order that

they have been described above. The following instructions were given

before the presentation of each task:

Task 1. "Aim for the thick black line. Hit the line as often as you can.

Jab the stylus in a quick motion--don't 'sneak up' on the line. Make sure

you touch this backstop with the top of the stylus before each jab."

Task 2. "Aim between the two lines, anywhere between them."

Task 5. "The last series was just a warm-up for this next one, where

we've made things a little harder for you. Aim anywhere between the two

lines.

Task 4. "Now aim for this single line."

Task 5. "I am going to replace this paper by a paper with no line drawn

upon it. Aim for the same spot that you have been aiming at. Remember

the position of the line relative to the box and, after I have changed

the paper, pretend that the same line is still in the same place. Got

it?"

The subjects were allowed a few practice jabs before the beginning

of the first task to get the feel of the activity. Any confusion over

the instructions was resolved before the performance began. For each

task, the experimenter silently counted 100 jabs and then told the sub-

ject to stop. The entire succession of five tasks took a total of approxi-

mately five minutes to perform. The dots on the recording tape gave a

record of the distance of each Jab from the edge of the box nearest the

subject. (See Figure 12B.) This was the time-series measurement. The

serial order of occurrence of the jabs was given directly by the tape.



Task 1 measured whether the subject jabbed at the top of the line

or at the bottom of the line and constituted an attempt to see if there

were interesting individual differences in the way the subjects sought

variety in the task (since the place along the line where the subject

jabbed was irrelevant to the requirement that the line be struck some-

where). Tasks 2, 3, 4--where the lines demarking the goal area were

widely separated, moderately separated, and finally collapsed into one

line--made up a graded series from almost complete objective success to

almost complete objective failure, and were intended to be increasingly

difficult, involving and stressful. Task 5, wherein the objective stand-

ard was removed, was employed in the hope that those subjects who were

dependent upon the presence of an objective standard would show a deterior-

I- ation in performance.

8Task 1, then, was relevant to rigidity;8 Tasks 2, 3 and 4 to level

of aspiration, involvement, and concern over errors; Task 5 to stability

in the face of changing external circumstances, and all the tasks to

attention. The general assumption which related these effects to the

objective framework of spectral analysis was that the higher the level

of aspiration, the involvement, the concern over errors, and/or the

attention, the greater would be the tendency to attempt to compensate

for errors. This would result in a time-series showing sharp, quick ups

and downs, and thus a spectrum containing a preponderance of high frequency

components. On the other hand, a low level of aspiration, low involve-

ment, little concern over errors and/or inattention would tend to produce

8"Rigidity" as used here connotes the unwillingness to explore differing
available means of performance of an activity.
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a time series of a slow wandering character, and thus a spectrum with a

preponderance of low frequenoi components. Either instability or lack

of rigidity (i.e., either inability to maintain constancy of performance

on Task 5 or willingness to be variable on Task 1), meanwhile, would be

expected to increase the variance of the time-series measurements. Motor

skill undoubtedly enters to some extent in the jabbing activity and

would be expected to decrease the variance.

The subjects were thirty-three Princeton undergraduates, all of whom

are members of a special student group being studied by the Study of

Education at Princeton Project under the direction of Professor Frederick

Stephan. All these subjects were tested in March, 1952. Fifteen of

the subjects were retested on the same five tasks a month later.
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VII

EXPERMIENTAL RESULTS: MEASURES OF INDIVIDUAL DIFFERENCE

Statement of Results

For each of the five experimental tasks described on page 42, three

sources of individual differences are available: the spectral densities

2
Up, the variance, a2 , of the observations about the mean observation,

and the speed, s, with which the subject produces observations (in jabs/

second). Measures other than these have not been analyzed by reason of

being less fundamental from an analytic standpoint (i.e., the mean obser-

vation, the percentage of "successes" as defined by the task, etc.).

The spectral densities were computed from the first 20 lag correla-

tions by IBIA punch-card procedures explained in detail in Appendix C.

The values of U for p = 0, 1, 2, 5, 4, 7,* 12* and 17* are presentedP

in Table 1 for each subject and task for test and retest. The variances

were a by-product of the computation of the U . They are given in Table
p

2. The speed of jabbing was easily measured from the total length of

tape needed to record 100 jabs, since the tape moved at a constant rate

of one inch a second. The values of s appear in Table 3. These data

were first analyzed for reliability. The reliabilities of the measures

2 task by task, (based on the fifteen subjects, number 1 numberoand s,takbtak (bsdothfitesujcsnubr1-nxbr

15, for whom retest data was available) are as follows:

2
s5

Task 1 .159 .580
Task 2 .422 .833
Task 3 .379 .828
Task 4 .450 o830
Task 5 .463 .840
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TABLE 1

SPECTRAL DENSITIES, Up. FaR EACH TASK, SUBJECT, AND VALUE OF p

TASK 1, TEST

SUB- U 0  U 1  U2  U U4  U U.2 U
JECT - - - :- 2 17*

1 48257 27862. 4871 1072 lo65 856 911 608

21 2046 1650 1700 1967 1355 838 955 640

3 81830 50069 12810 6364 4922 2988 1336 1380

4 6556 3854 783 300 603 498 710 608

5 36572 24849 12954 8378 3220 889 477 572

6 38981 37197 29409 16129 10342 5940 1421 712

7 696o 6474 4456 2484 1679 874 646 651
8 4310 5046 5228 3915 2680 831 903 59l

9 19520 15488 7512 4072 5615 5402 3119 3356
10 19721 14459 7960 4940 2752 1291 1121 3363
11 109326 64533 13181 3oo8 813 965 855 1097
12 31806 19583 4652 1038 653 530 490 631

13 1825 2270 2846 3597 3909 1611 615 869

14 54816 40233 15167 3799 2326 679 9 505

15 6910 5999 3432 1296 951 1153 383 575

16 11345 7451 3127 2661 2654 1423 559 701

17 24143 28968 41884 54232 46372 11006 2564 1952

18 1014 909 748 537 331 535 498 506

19 12734 7689 2284 1884 1595 829 893 680

20 1462 1493 1009 563 821 886 447 667

21 5672 5803 5249 3304 1631 1891 1626 1255

22 5850 4905 4193 4233 3906 1392 657 384

23 10803 8451 4772 2321 984 1014 1102 1860

24 824 863 716 444 295 476 753 963

25 20091 11754 2271 724 695 373 286 305

26 12772 8994 4227 2572 2246 3104 2918 2518

27 57966 41575 15177 3688 3169 1824 950 2156

28 13191 8030 2365 1629 1713 1247 930 860

29 4266 2578 979 1264 1374 770 430 563

30 26612 37301 38030 21436 11631 2954 1350 1099

31 18215 15145 9094 4677 3223 2150 473 869

32 40956 29320 11942 4974 2861 689 9 609

33 37670 26029 11070 5047 882 911 106 1147

(For a random series with a = 10, all values of U = 196.)
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TABLE 1

SPECTRAL DENSITIES, U, FOR EACH TASK, SUBJECT, AND VALUE OF p

TASK 2, TEST

SUB- U0 U1 U2 U U4 U U32 U
JECT :I 17 21.

1 134 872 596 712 732 694 913 745
2 472 733 830 496 372 555 674 1184
3 935 1221 1292 816 668 1196 1456 904
4 457 327 202 310 448 528 639 955
5 195 347 755 1098 1035 735 823 668
6 1641 1848 2057 1845 1495 1930 2000 1983
7 2008 16o6 1229 1999 2051 957 1365 753
8 853 1047 1020 662 647 614 80 819
9 1485 2368 3536 3848 3281 2029 2464 34o6

10 768 803 738 568 627 710 1556 1379
11 97 328 970 1191 804 638 831 717
12 527 634 610 435 481 642 909 687
13 840 797 568 432 658 677 907 1180
14 403 338 318 385 362 789 550 799
15 6566 4481 2216 187o 1191 352 434 1235
16 777 824 676 420 327 406 833 653
17 580 1160 1429 807 561 lO87 1711 2029
18 174 225 211 159 236 374 773 549
19 866 967 999 975 1192 1255 1877 1639
20 2264 1704 1006 683 466 469 608 506
21 1489 1167 657 466 393 608 618 818
22 1440 1597 1526 1410 1626 747 457 383
23 1709 1384 962 990 889 753 875 1438
24 792 783 653 480 419 562 765 580
25 1888 1588 943 619 514 577 371 480
26 1616 1423 1119 920 1081 2147 959 1207
27 1401 1090 594 432 407 625 1519 1114
28 1561 1500 1706 1636 lO42 1356 376 830
29 1875 1677 1306 990 584 695 278 304
30 197 307 727 981 662 253 877 831
31 424 482 636 984 1095 778 744 816
32 4058 3020 1369 1036 1072 1082 1083 1176
33 687 723 715 572 559 675 773 462

(For a random series with a = 10, all values of U = 196.)
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TABLE I

SPECTRAL DENSITIES, Up, F R EACH SUBJECT, TASK, AND VALUE OF p

} TASK 3, TEST

SUB- Uo  U1  U2  uU u U 2 * U 1 7
JECT 2± ..

1 733 855 1129 914 349 621 533 778
2 772 691 517 345 211 452 469 873
3 555 590 618 500 322 704 933 2297
4 233 167 80 137 206 361 624 300
5 890 665 335 362 494 701 885 538
6 839 788 848 933 831 3208 1080 973
7 539 418 387 608 994 849 436 268
8 576 417 254 266 331 553 485 499
9 1871 1904 1718 1266 968 1396 2177 2192

10 651 642 524 397 440 675 1284 1319
11 530 461 370 472 557 686 1398 949
12 101 190 301 388 547 522 436 307
13 61o 570 521 587 6o2 452 41o 73

14 337 270 181 172 163 304 283 251
15 918 1259 1535 1104 875 614 880 605
16 405 451 546 507 561 877 407 494
17 408 543 883 1169 1108 1290 1771 1070
18 64o 632 529 347 313 440 483 613
19 300 355 495 551 463 781 369 698
20 2901 2355 1643 988 521 498 311 324
21 678 752 765 828 958 772 493 651
22 510 582 656 665 644 914 658 238
23 8o9 589 271 205 262 518 784 595
24 292 233 124 53 69 214 557 390
25 984 735 455 462 492 496 356 712
26 1377 889 425 583 772 813 665 813
27 805 632 388 322 418 612 771 585
28 942 706 423 472 569 610 797 659
29 322 280 172 168 381 276 247 22
30 472 535 736 1103 1435 816 4O 785
31 346 295 432 745 778 529 1024 612
32 1843 1341 633 269 177 617 815 12
33 169 367 622 643 591 741 928 668

(For a random series with a = 10, all values of U = 196.)
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TABLE 1

SPECTRAL DENSITIES, U P, FOR FACH SUBJECT,9 TASK, All]) VALUE~ O' p)

T!ASK 4. TST

SUB- Uo  U, u4  u 
JECT ..... 1-7 -7

1 192 1582 1508 1666 1113 623 89o 918
2 773 549 347 368 275 301 841 532
3 433 6n 815 761 685 913 784 704
4 493 430 396 419 363 681 435 65o
5 272 362 431 322 153 372 733 52
6 2459 2205 1843 1317 720 1809 1277 846
7 328 259 215 281 355 921 574 307
8 706 722 907 1004 663 423 638 285
9 2254 1823 1042 811 1105 1642 1095 1407

10 227 183 257 572 870 961 783 1272
11 147 198 371 637 666 lO00 1588 832
12 141 162 332 492 387 455 340 191
13 216 199 190 198 201 359 303 298
14 195 259 336 327 279 259 276 195
15 4561 3299 1377 694 1o1 923 556 980
16 513 563 62o 593 442 713 869 566
17 3208 1125 781 692 975 879 1o16 1546
18 143 138 164 222 320 581 719 478
19 363 368 355 327 342 561 672 433
20 975 1028 901 718 580 464 729 471
21 313 386 419 486 717 642 970 995
22 723 778 964 766 394 718 454 689
23 22 6o 186 335 297 293 743 288
24 139 283 575 651 492 515 406 258
25 307 289 347 483 531 456 332 306
26 709 701 572 316 181 631 514 671
27 192 326 605 614 467 486 712 715
28 1299 1176 903 788 651 614 387 590
29 580 497 406 411 291 179 176 180
30 454 467 962 2018 2568 1410 648 530
31 219 261 221 193 310 564 558 596
32 806 691 409 258 395 666 996 916
33 94 1 212 215 196 323 421 481

(For a random series with a 10, all values of U = 196.)
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TABLE 1

SPECTRAL IENSITIMS, Up, FC EACH SUBJECT, TASK, AND VALUZ DF p

JECT 0 , U2 U4 * -

1 3853 2659 907 599 1570 129 1o77 6c7
2 963 113 108 628 385 534 926 686
3 737 711 762 736 617 1300 1070 1319,
4 2950 1758 434 206 210 334 737 667
5 395 538 575 477 535 892 760 684
6 3431 2491 1723 1655 1235 1408 1813 898
7 2978 2030 743 410 370 325 191 279
8 1792 1413 727 410 342 335 592 200
9 687 926 1005 3203 1848 1264 746 964

10 1081 1036 898 787 730 667 1091 1095
11 1728 1088 446 484 782 1308 735 608
12 715 463 193 158 173 159 201 178

13 311 448 532 504 579 424 505 836
14 462 374 233 239 359 318 288 172
15 3688 3485 2536 1307 804 687 859 823
16 662 484 317 577 877 721 474 675
17 500 637 774 821 631 1015 1033 822
18 646 685 609 446 324 366 723 4
19 782 779 856 957 774 570 483 708
20 1730 1463 1035 762 969 685 434 468
21 144 2 11314 6276 3793 3035 1587 1108 789
22 401 398 445 437 320 267 374 365
23 366 336 241 213 383 480 730 377
24 595 41o 244 432 613 406 645 313
25 496 498 439 377 305 207 327 299
26 1472 1095 705 708 700 687 638 840
27 714 748 697 481 368 402 792 9O428 893 691 476 470 513 962 921 466

29 1832 1365 608 259 356 347 313 234
30 2834 2454 1554 880 823 857 482 593
31 1302 834 407 535 874 608 658 633
32 944 1217 1566 156o 1o99 879 126o 392
33 730 668 510 363 285 641 466 216

(For a random series with c = 10, all values of U = 196.)
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TABLE 1

SPECTRAL DENSITIES, Up, F EACH SUBJECT, TASK, AMD VALUE CF p

TASK 1, RETEST

J E C T - - ...

1 24782 18185 7484 3635 3198 1143 967 1624

2 3615 2425 1001 644 511 269 196 356
3 5951 3988 1664 1183 1875 1926 1412 556
4 18C2 1789 1i7 972 52 470 717 689
5 7301 6704 5860 3780 1497 1372 695 824
6 96863 63425 2272 12842 7724 1618 656 732
7 3822 2717 1240 729 559 1023 673 463
8 23255 16743 6686 2282 1278 1360 972 535
9 5741 6504 5994 5072 6054 3348 2415 2622

10 4849 3892 228 815 414 664 lo6i 1189
11 1394 1593 1443 n31 1071 1040 882 7011 12 38264 24793 7671 2120 629 471 401 239
13 594 564 503 676 699 592 512 754
14 560 696 835 1009 1065 583 771 668
15 15454 9631 3280 2207 1767 1274 603 416

TASK 2. RETEST

SU- U0  U1  U2  U4  U:2.N Ul 7
JECT

1 3625 3105 2032 1325 1141 1335 1326 1098
2 629 565 344 182 296 307 494 409
3 5579 4038 2433 2767 3035 1902 1463 1602
4 525 601 594 414 382 627 354 755
5 543 578 432 350 578 928 696 795
6 367 lo81 2793 3505 3286 1124 964 1452
7 -176 1323 1711 1710 1108 1193 535 736
8 7350 5o61 1966 777 719 io8 736 678
9 830 814 836 935 1022 1726 1583 1059
10 2997 2553 1500 1004 1109 591 658 1188
11 843 916 649 480 1129 2041 837 959
12 1826 3292 555 493 891 920 719 548
13 1154 947 670 585 832 501 658 1091
.4 414 46o 621 705 581 600 1032 502
15 1076 963 818 964 1416 1131 802 764



TABLE 1

SPECTRAL DENSITES, , , FaR EACH SUBJECT, TASK, AND VALUE OF p

TASK 3, RETEST

SUB- UUU U U
0UU U2u4 U32 *~137JECT ....

1 1589 1219 788 554 292 435 785 1345
2 1504 1044 363 208 305 275 254 369
3 o103 3181 ie4 655 562 lo85 191 1256
4 411 282 233 361 351 772 771 841
5 792 552 356 6O 1436 32o4 994 700
6 1392 1574 3290 1063 2090 2668 1686 3o53
7 789 675 539 444 350 933 591 772
8 1790 i194 417 307 490 994 665 606
9 544 541 617 703 651 532 980 655

10 1424 989 501 624 966 1164 938 865
11 4p 546 868 130 1221 162 586 270
22 303 335 390 317 183 641 410 200
13 259 307 248 232 307 378 865 705
14 539 394 218 264 366 358 275 480
15 1751 1308 659 446 748 1439 938 530

TASK 4, RETEST

SUB- U0  1  U 4  U T3 . U.
JECT 0. U. U2 4 27*

1 632 721 3222 1392 926 997 826 717
2 294 333 •262 193 266 469 369 162
3 751 687 679 644 532 1211 1016 1652
4 344 342 316 249 295 732 598 295
5 541 644, 745 617 698 917 883 643
6 688 758 673 487 529 1067 895 815
7 428 419 416 493 703 945 621 259
8 1532 1175 653 465 508 1032 899 -482
9 108 216 480 637 604 785 1049 4o5

10 118 329 232 313 287 464 708 1544
11 400 418 382 427 835 1486 913 532
32 3247 950 490 511 736 725 747 243
13 181 264 316 288 439 854 587 448
14 472 395 366 453 475 522 480 586
15 164 5 10890 4303 26oo 2000 3097 1634 895
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TABLE 1

SPECTRAL MMNITLE8, OR~P( EACH SUBIJCT, TASK, AND, VALUE O' p

TASK 5. RETEST

JEOT ....
I 1390 ni5 720 4 293 747 547 1138
2 74 72 127 29 W3 515 456 19

3 355 362 435 573 761 1672 io47 629
S4 % 8 388 24o 266 241 356 268 415

5 562 963 142 1111 701 e72 1094 700
6 1416 1490 1687 1797 1949 ,1362 1 046 686i o 230 1098 946 1236 3873 281
8 1214 13oo ii6i 594. 53o io77 io 989
9 JOc6 1121 1172 996 777 740 94o 1o87

10 1974 1419 710 469 388 464 411 490
11 184 298 558 761 757 64 639 858
12 1077 757 421 404 424 404 783 287
13 660 484 276 328 488 459 %A 511
14 i482 956 370 303 241 577 442 647
15 7597 4658 i44O iO13 1.2 780 871 1323

(For a random series with o 10, anl values of U - 196.)



TAI 2

VAUES O o2 (IN [F rJs-QF AIq_-NcH]2), TASK By TASK

TEST RETEST

ScU TASK 1 TASK 2 TSK 3 TASK 4 TASK5 TASK 1 TASK 2 TASIx 3TASK 4 TASK5

1 181.1 39.7 34.5 49.1 54.7 162.3 73.0 44.2 46.2 42.0
2 51.0 38.5 29.8 26.7 37.1 27.2 20.3 18.6 16.2 16.9
3 367.5 57.9 44.1 39.4 59.2 80.5 103.7 56.3 58.8 48.8
4 46.8 31.4 18.6 28.1 32.9 39.1 28.2 35.2 24.5 17.1
5 198.1 37.5 33.6 24.8 36.6 92.1 37.6 45.7 39.3 46.4
6 391.1 102.2 52.6 70.4 75.9 435.0 73.6 87.5 43.7 59.6
7 75.3 59.9 27.3 26.4 23.6 46.o 49.5 32.6 26.6 67.7
8 8o.1 39.2 24.3 26.7 24.4 135.5 64.1 38.1 40.6 52.o
9 265.1 139.6 95.0 70.3 52.5 175.2 69.3 35.4 34.2 48.2
1o 182.1 56.3 48.8 46.5 47.2 63.6 52.0 48.1 39.0 28.2
1 641.4 37.0 45.1 5o.4 43.4 49.1 58.9 42.4 43.9 34.2

12 229.0 34,9 20.1 16.4 10.5 153.4 38.8 19.7 30.6 26.0
13 74.8 44.0 27.3 14.9 28.6 32.3 38.4 28.8 28.3 25.4
14 242.1 32.1 13.6 12.7 14.1 36.6 34.2 19.2 25.6 28.6
15 65.7 59.4 40.9 =4.6 56.5 92.8 47.7 47.6 144.8 69.8
16 90.6 31.3 28.8 35.0 31.9
17 1114.8 77.9 64.3 55.7 45.1
18 28.6 24.5 25.4 25.1 25.6
19 83.0 74.2 29.5 26.1 32.6
20 37.9 33.4 32.5 31.6 33.8
21 110.1 35.7 34.6 39.4 325.9
22 82.5 38.1 30.5 33.3 17.7
23 113.0 52.6 29.3 .19.6 24.o
24 36.4 31.7 16.7 20.6 22.9
25 77.4 31.2 28.o 19.o 15.6
26 174.8 70.3 39.3 29.1 38.1
27 303.3 5o.6 31.1 31.0 34.2
28 92.0 51.0 34.0 32.0 37.0
29 44.4 30.8 12.4 11.9 20.7
30 380.3 45.8 36.6 50.8 43.8
31 149.1 39.6 34.4 26.2 33.6
32 194.3 66.8 45.i 39.8 47.7
33 185.0 32.1 36.8 18.0 22.6
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TABI 3

VAlMS CF (IN JABS/SECOVD), TASK BY TASK

TEST IETEST

SUT TAsx 1 SK 2 TASK TASK 4 5 TASK 1 TASK 2 TASK 3 TASK 4 TSK

1 131 2.11 2.19 2.40 2.34 2. 2.31 236 2.41 2.27
2 1.57 1.76 1.76 1.67 1.73 1.44 1.58 1.51 1.62 1.63
3 1.41 2.C2 2.05 1.98 2.24 1.73 1.78 1.93 1.93 1.99
4 1.77 2.02 2.03 1.90 2.05 1.70 2.04 1.99 2.10 2.15
5 1.89 1.89 2.29 2.23 2.45 2.09 2.25 2.31 2.40 2.4o
6 1.47 1.80 1.95 2.03 2.05 1.57 1.77 1.88 1.92 2.03
7 2.28 3.24 3.31 2.59 3.07 3.11 3.05 3.10 3.03 3.23
8 1.71 1.79 1.99 1.95 1.95 1.51 1.67 1.69 1.72 1.77
9 1.75 2.36 2.16 2.27 2.23 1.85 2.oo 1.90 2.08 2.12

10 2.44 2.36 2.57 2.63 2.73 2.53 2.68 2.61 2.82 2.64
11 1.93 2.27 2.41 1.96 2.O1 1.80 2.00 1.88 1.78 1.81
12 2.00 2.03 1.97 1.81 1.90 1.81 2.15 2.15 2.15 2.13
13 1.92 3.16 -. 07 2.20 2.40 2.44 2.72 2.55 2.32 2.65
14 1.26 1.96 1.58 1.53 1.77 1.51 1.68 1.63 1.78 1.89
15 2.33 2.74 2.85 2.73 2.91 2.33 2.39 2.40 2.41 2.2416 1.76 2.03 1.74 1.39 1.63

17 1.59 2.30 1.72 1.34 1.64
18 1.65 1.69 1.74 1.65 1.73
19 2.06 2.59 2.70 1.85 1.87

20 1.89 2.01 2.11 2.19 2.21
21 1.55 2.08 1.89 2.05 2.22
22 2.41 2.73 2.64 2.56 2.73
23 2.13 3.01 2.25 2.15 2.36
24 1.70 2.28 2.21 1.72 1.94
25 2.86 3.00 2.86 2.36 2.83
26 1.43 1.71 1.69 1.53 1.62
27 1.96 1.79 1.91 1.91 2.26
28 1.62 1.96 1.82 1.95 2.17
29 1.63 2.70 1.84 1.82 1.79
30 1.70 1.92 1.97 2.03 2.25
31 1.67 2.01 1.90 1.91 2.01
32 2.01 3.63 2.56 1.35 2.38
33 1.73 1.98 2.10 1.63 1.91
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The reliabilities of the separate estimates of spectral density cannot

be computed directly, since the frequency, p, is a relevant variable

(i.e., there are eight U values for each subject and task, one for each
p

of the eight values of p).

However, for every given subject, task, and value of p, the signifi-

cance criterion (4.6) may be used to compare U(test) with U(retest).

Under the null hypothesis that the time-series population of the observa-

tions in the jabbing experiment for a given subject and task is identical

U (retest)
from test to retest, the ratio is distributed as F with 9 and

Up (test)

9 degrees of freedom for p = 0, 1, 2, 3, 4, and with 27 and 27 degrees

of freedom for p = 7, 12, 17. (See Appendix C, footnote 11.) The ratios

U retest
(test) were computed for all 15 subjects, 5 tasks, and 8 frequencies,

a total of 600 ratios. Table 4 indicates which of these ratios are sig-

nificant at the 20% level of F (10% on each tail)0
9 The total number of

significant ratios is 198 out of 6oo, or 33.0%, which is considerably

more than the expected 20% under the null hypothesis. A certain amount

of unreliability in the spectra thus must be taken into consideration.
2

As was the case with a and s, Task 1 again proves to be the least reliable

of all the tasks, producing 49 of the 198 significant ratios.

9The one-tailed 10% level of F for 9 and 9-d.f. is 2.44. For 27 and 27
d.f. it is 1.65. A loss of degrees of freedom is encountered when the
spectrum departs considerably from flatness. For a discussion of this
effect, the reader is referred to the memorandum by Tukey and Hamming
(39). This effect is not of paramount importance here; on the basis of
corrections for loss of degrees of freedom applied to a sampling of 59
of the 198 significant ratios, 4 of these become non-significant. With
this correction, the percentage of significances would become approxi-
mately 31% instead of 33%.
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TABLE 4

U
OCCUMRENCES OF SIGNIFICANCES IN -(retest) FGt ALL SUBJECTS,Up(test)

TASES ,* AND VALUES OF p

SUBCT U U TOTAL NO.

0 U1 U2 - U4 7* U12* 1*~ OF SIGNIF'S

1 *245 2 2 1 15 2 5 135 13

2 45 5 5 12 1 123 1345 12345 22

3 12 12 1 2 12 - - 245 13

4 15 5 23 13 - 3 25 34 32

5 1 1 5 2 34 34 - - 9

6 124 4 4 4 3 1234 325 - 14

7 - - 1 1 135 5 25 35 10

8 123 123 - - - 2345 5 45

9 134 234 23 2 2 345 3 234 17

10 12 12 1 1 14 134 25 15 15

11 1245 125 1 2 - 235 34 3 i2

12 234 4 - 5 35 5 45 1 11

13 1 1 1 13 1 14 34 - 10

14 15 15 1 1 - 45 124 345 14

15 24 24 24 34 - 234 24 -

TOTAL
NO. OF _ 24 16 1 7 3 2 28 198
SIG'S

The numbers in each cell of the table denote the tasks for which sig-
nificances occur for the particular subject and value of p. The total
numbers of significances, task by task, are as follows: Task 1 - 49;
Task 2 - 42; Task 3 - 34; Task 4 - 37; Task 5 - 6.
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The general question of task differences was considered next,

From the composite spectra for all individuals, plotted in Figure

13, it is immediately apparent that Task 1 is quite different from the

other tasks and that Tasks 2, 3,4) and 5 are quite similar to each other.

In addition, Task 1 differs from the others on both a2 and so To test

the homogeneity of Tasks 2, 3, 4 and 5 with reference to the measures a

and s, an analysis of variance was performed on s and on log a. (The

logarithm is used to normalize the distribution.) These analyses used

only those subjects (number 1 - number 15) who were retested, so that

an estimate of the between-replications mean square would be available;

in both analyses Task 1 was excluded from consideration. The results of

these analyses are presented in Tables5 and 6. It is seen that the com-

ponents of variance due to tasks are considerably smaller than the com-

ponents due to subjects in both cases. Furthermore, and perhaps more

important, the subject-task interaction components are negligible.

Accordingly, it was felt that Tasks 2, 3, 4 and 5 were not producing

differential information of sufficient magnitude. All measures (U p, a 2

s) were summed over these four tasks for each individual.

Task 1 was excluded from all further analysis. (It might be argued

that since the reliability of s for Task 1 is not significantly lower

than the reliabilities of s for the other tasks, and since the apparent

2
unreliability of a on Task 1 is a function of the shape of the spectrum

for that task, that it is unwarranted to dispose of Task 1 so summarily.

However, there are other reasons for its abandonment. The preponderance

of low frequencies in the spectrum of Task 1 suggests that sudden shifts

in the mean observation may be present in the data. Such shifts might
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TABIE 5

ANALYSIS OF VARIANCE OF s FaR TASKS 2, 3, 4, 5

SUM OF NESTIMATED
SOURCE SQUARES D.F. SQUARE VARIANCE

, COMPOINENT,

Total 20.6200 119

Between Subjects 17.4147 14 1.2439 .145

Between Tasks .1050 3 .0350 (-.001)

Between Replications .1358 1 .1358 .001

Subjects X Tasks 1.2762 42 .0304 .008

Subjects X Replications .9567 14 .0683 .013

Tasks X Replications .1467 3 .0489 .002

Triple Interaction (Error) .5849 42 .0139 .014
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TABLE 6

ANALYSIS CF VARIANCE OF LOG a2 FOR TASKS 2 3, 4,5

sum CF MEAN ESTIMATED
VARIANCEso~cE S&UARES o.. SQUARE,

Total 692.37 119

Between Subjects 400.87 14 28.63 2.81

Between Tasks 54.69 3 18.23 .29

Between Replications 4.04 1 4.04 (-.16)

Subjects X Tasks 70.81 42 1.69 (-.0Q)

Subjects X Replications 86.46 14 6.18 1.11

Tasks X Replications 2.84 3 9.47 .52

Triple Interaction (Error) 72.66 42 1.73 1.73

ESTIMTED VARIANCE COMMENTS (OF LOG a
2)

WBN THE AXAIYSIS IS PMEJ) ON EACH TASK SEPARATELY

Task i Task 2 Task3 Task 4 Task 5

Subjects 6.45 2.21 3.02 3.79 2.14

Replications 4.66 (-.15) .02 .07 (-.24)

Subj. X Repl. (Error) 10.18 2.29 2.34 2.96 3.78



i

be transients presenting non-stationarity; this would weaken the validity

of spectral analysis. An inspection of the original data reveals a pro-

fusion of such shifts; it is difficult to specify the exact extent of the

effects of such shifts, but at any rate Task 1 is open to suspicion on

the grounds of possible non-stationarity. Further, the placement of

Task I at the beginning of the experimental series makes it vulnerable

to uncontrolled variations depending upon the subjects' initial lack of

adjustment to the experimental situation. Most of these objections could

be overlooked if Task 1 revealed interesting patterns of results but,

unfortunately, the impression is one of chaos rather than of regularity.)

The sumation over Tasks 2, 3, 4 and 5 reduced the four measures for

a and for s to one measure for each (Tables 7 and 8). With the spectral

densities, however, the problem remained as to how to surmnarize the in-

formation provided by the eight different values of U . The spectra for
p

test and retest (with the U's sumaed over Tasks 2, 3, 4 and 5) for each
P

of the fifteen retested subjects are presented in Figure 14. Inspection

of these graphs suggests that there is a fair degree of consistency in

the over-all shape of the two spectra produced by each particular sub-

ject, although the entire set of 30 curves does not seem to embrace one

particular shape or family of shapes. In order to summarize the consist-

ent characteristic of the spectra for each individual subject, an index

o( was devised to represent the proportion of the total area under the

spectrum which lay to the left of a particular value of p. It is true

from (B.9) that the total area under the spectrum is proportional to 2.

The index o( thus expresses the percentage of this total variance a2 which

is accounted for by component waves of frequency lower than some value.
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TABUIZ 7

VALUES F 2 ALL SUJECTS SUMMED OVE TASKS 2, 3, 4.5

somc2 (IN EMEHFANH2)
2UJC RETEST

1 178.1 205.4
2 132.3 72.0
3 200.7 267.6
4 111.1 105.0
5 132.6 169.o
6 301.3 264.4
7 137.4 176.4
8 14.7 194.8
9 357.5 187.1
10 198.9 167.3
11 176.o 179.4
12 82.1 115.1
13 115.0 120.9
14 72.7 107.6
15 211.5 309.9
16 M7.1
17 243.0
18 100.7
19 162.6
20 131.4

21 235.8
22 119.8
23 125.6
24 92.0
25 93.9
26 176.9
27 147.1
28 15.2
29 76.0

30 177.1
31 133.9
32 199.7

33 109.6
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TABLE 8

VALUES OF e FOR ALL SUBJECTS SUMMED OVER TASKS 2, 3, 4, 5

SUMCT s (IN JABS/SEcoND) REST

I 9.04 9.35
2 6.92 6.34
i 3 8.29 7.63
4 8.00 8.28
5 8.86 9.36
6 7.83 7.60
7 12.21 a2.41
8 7.67 6.85
9 9.03 8.1o

10 10.29 10.75
11 8.66 7.47
12 7.72 8.58
13 i0.82 10.24
14 6.84 6.98
15 11.23 9.44
16 6.79
17 6.99
18 6.81
19 9.00
20 8.52
21 8.24
22 10.65

I 23 9.77
24 8.14
25 11.05
26 6.55
27 7.87
28 7.91

4 29 8.15
30 8.17
31 7.83
32 9.91
33 7.62
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The value chosen (arbitrarily) was p = 3j, or 3.5 cycles every 40 observa-

tion points. The total area under the spectrum lying to the left of p 31

can be approximated by- U0 + UI + U2 + U3 . Thus

!u + U, + U + U
(7-1) 1 2 22

The values of GC are presented in Table 9.

2
, , and s are the three final measures of individual difference.

2aX is based on spectral analysis, while a and s are not. The test-retest

reliabilities of the three measures (as computed by product-moment corre-

lation) are:

0C
2

a .6oo

4. .896

Using only the measures for the test, and discarding the retest,

the values of these three indices for all thirty-three subjects were re-

duced to standard scores (Table 10). It is these standard scores which

were employed in the validating procedure (Section VIII). The intercor-

relations among the three indices are:

rds -. 304

r,(2 = .075

r s2 = .075

Further Results

The contention that task differences were unimportant requires

further explanation, particularly in connection with the estimates of

spectral density. Suppose that for each subject, replication, and
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TABIE 9

VAIDES CFO( (PER CLVT OF LaW nMqEuENcIs)

BASED (C SPECTRA SUMMED OVEIR TASKS 2, 3, 4, 5

SUBJECT TEST (RETEST)

1 25.6 22.7
2 17.6 18.5
3 13.7 18.4
4 15.9 12.6
5 13.7 14.4
6 20.1 19.4
7 24.3 21.1
8 24.o 27.5
9 17.5 14.0

10 11.2 20.8
11 12.0 11.9
12 15.8 20.2
13 14.5 2.8
A 14.5 16.5
15 39.8 35.716 15.6
17 IP.8

18 13.119 14.3
20 35.3
21 38.7
22 25.0
23 14.6
24 16.1
25 24.6
26 17.4
27 .4.7
28 22.0
29 35.0
30 21.2
31 13.6
32 22.0
33 15.3

( is expressed as a percentage.)
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TABIE 10

STANDARD SCORES ON THREE MEASURES OF INDIVIDUAL DIFFERENCE

2
SUBJECT INDEX_: C s

1 .75 .36 .32

2 -. 27 -. 37 -1.17
3 -. 79 .72 -. 21
4 -. 50 -. 71 -. 41
5 -.78 -.36 .19
6 .04 2.33 -. 53
7 .6o -. 29 2.55
8 .56 -. 65 -. 64
9 -.29 3.23 .31

10 -1.11 .69 1.19
11 -1.01 .33 .05
12 -. 51 -1.17 -. 61
13 -.69 -.64 1.57

* 14 -. 69 -1.32 -1.23
15 2.61 .90 1.86
16 -. 54 -. 45 -1.26
17 -. 91 1.40 -1.12
18 -. 87 -. 87 -1.25
19 -.71 .11 .29
20 2.03 -. 38 -. 05
21 2.47 1.28 -. 24
22 .69 -. 57 1.45
23 -. 66 -. 48 .83
24 -. 47 -1.01 -. 31
25 .63 -,98 1.73
26 -. 31 .34 -1.43
27 -.66 -.13 -.50
28 .29 -.02 -. 48
29 1.99 -1.27 -. 31
30 .19 .35 -. 29
31 -. 8o -. 34 -. 53

.29 .71 .93
33 -. 57 -. 73 -. 68
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frequency, a comparison is made between the U-values for Tasks 2, 3, 4

and 5. This comparison is best made according to the significance of

the ratio of two U-values; for this purpose, Task 4 is arbitrarily chosen

as a standard against which to compare the other three tasks. The ratios

UP(Task 2) UP(Task_3) UP(Msk 5) were computed for all values of p,

Up(Task 4) )Up(Task 4) pQI (Tsk 4)

all subjects, and both test and retest. Note was taken of those ratios

which were significantly greater or less than the 20% limits prescribed

by the F-test of (4.6). Of ll such available ratios, 357 are significant

(Table 11). This represents 1.0%, as opposed to the expected 20%. Now

U t )
remember that when the ratios p(retest) were tested for significance,

Up(test)

33.0% of such "reliability ratios" were significant. In other words, the

tasks are no more different from each other than anMy one of them is dif-

ferent from itself when replicated. Task differences are of the same

order of magnitude as experimental error. It is thus fruitless to claim

that the task has any effect on the performance. Further confirmation

of task indifference is supplied by examining the pattern of significances

in Table 11. These significances are distributed almost at random through-

out the table. To illustrate this, consider the number of significances

accumulated by subjects number 1 - number 15 on test and retest:
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U
OCCURRENCES OF SIGNIFICANCES IN p(Task 2, 3, or 5) FOR ALL

U(Task 4)

SUBJECTS, TASKS,* AND VALUES OF p; RETEST

SUBJECT U 0 U, U U U4 U* U32 U, TOTA NO. OF
02.. SIGNIFICANCES

1 *23 2 - 35 35 3 - 3
2 35 35 - - - 3 - 23
3 2 2 2 2 2 - - 5
4 - - - - - 5 5 23

6 - - 25 25 235 3 3 2 10
7 25 25 2 2 - - - 235
8 2 2 2 . . . . 5
9 235 235 - - - 2 - 235 10
10 235 235 25 2 23 3 5 35 1
11 - - - 3 - 5 - 25
12 3 3 - - 3 5 3 2 _

13 25 2 - - - 235 - 2 7
14 5 - - - - - 23 -
15 23 23 235 235 3 235 235 3 18

TOTAL
NO. OF 20 1 10 11 10 14 21 112
SIG'S

*

The numbers in each cell of the table denote the tasks for which
significances occur for the particular subject and value of p.
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TABLE 11

OCCURBENCES OF SIGNIFICANCES IN U(Task 2, 3, or 5) FOR ALL
U(Tk 4)

SUBJECTS, TASKS,* AND VALUES OF p; TST

SUBJECT UTOTAL NO. OF
0 U1 U2 74 J 1 132* U17* SIGNIF~ICANCES

1 *3 - 2 5 3 - 3 5 6
2 - - 5 - - 25 3 2 5
3 - - - - - - 35 2
4 5 35 3 3 - 35 25 3 10
5 3 - - 2 235 235 - - -
6 3 3 . . . . . 2
7 25 25 25 2 23 5 25 2 1
8 5 - 3 35 - - - 23
9 5 - 2 2 2 - 23 2

10 235 235 25 - - - 2 -
11 35 5 2 - - - 25 -
12 25 25 - 5 - 5 25 2
13 23 23 235 35 235 2 25 235 18
14 - - - - - 2 2 2
15 3 3 - 2 - 2 - -
16 - - - 2 35 -

17 3 - - - - 23 5
18 35 35 35 5 - 5 - -
19 - 2 2 25 2 2 23 25 10
20 3 - - - - - 35 -

21 25 25 5 5 5 5 3 - 9
22 - - - - 2 5 - 235
23 235 235 2 2 2 235 - 23 1?
24 25 2 3 3 3 3 2 2 2
25 23 23 2 - - 5 - 3
26 - - - 2 235 2 2 2 1
27 235 2 - - - 2 -

28 - - - - 2 35 -
29 25 25 2 3 - 25 5 2 10
30 5 5 - - 25 3 - -
31 5 5 2 235 25 - 3 - 2
32 2 2 25 25 25 - - 5
33 25 25 23 23 23 235 23 5

TOTAL
NO, OF 4.1 26 26 26 O 34 g 4
SIG'S

The numbers in each cell of the table denote the tasks for which
significances occur for the particular subject and value of p.
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U
Number of significant ratios p (Task 2, 5, or )a

U Tkalvalues of pup (Task 4)

Subject No. Test Retest Total

1 6 9 15
2 5 7 12
3 2 6 8
4 10 4 14
5 8 0 8
6 3 10 13
7 13 9 22
8 6 4 10
9 7 10 17
10 9 15 24
11 6 4 10

9 6 15
13 18 7 25
14 3 3 6
15 4 18 22

TOTAL 109 1J2 221

An analysis of variance of these numbers of significances according to

subject and replication follows:

Source Sum of Squares D.F. Mean Square

Total 548.97 29

Replications .30 1 .30

Subjects 262.47 14 18.74

Interaction 286.20 14 20.44

The between-subjects mean square is less than the interaction mean square;

that is to say, there is a negative correlation between the number of

significances accumulated by a subject on the test and the number accumu-

lated on the retest. Thus it is not consistently true that some subjects

respond alike to all tasks (producing few significances), while others

respond differentially to them (producing many significances).
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In assigning measures of individual difference to all thirty-three

subjects, it has been tacitly assumed that the fifteen subjects who were

retested are representative of the entire group of thirty-three. (These

fifteen were chosen for a retest on a volunteer basis.) In other words,

certain conclusions were based on the reliability demonstrated by the fif-

teen retested subjects. It is desirable to determine whether these fifteen

are homogeneous with the non-retested eighteen on the three measures, el,
22, So Accordingly, the mean and variance of the standard scores on the

three measures for the retested group have been compared with the mean and

variance of the standard scores for the non-retested group:

Retested Group Non-Retested Group(N= 1)(N = 18)

Mean Variance Mean Variance

-.139 .858 .116 1.086
2

a .203 1.472 -. 169 .542

s .216 1.169 -.179 .787

The means are significantly different for none of the three measures.

(If a t-test is used, all three values of t are less than 1.) The vari-

ances differ significantly only in the case of a 2 , where F = 2.75,

.05>P>o0l. In general, we reach the conclusion that the group of fif-

teen retested subjects is an unbiased sample of the entire group of

thirty-three subjects.

It has been stated in several places throughout this paper that learn-

ing and fatigue factors are outside the present concern. In particular,

if either or both are present in considerable degree in the jabbing tasks,

the time-series populations must be considered non-stationary, and the

assumptions of spectral analysis are not strictly met. In what way would
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learning and/or fatigue affect the time-series populations? Not in a

change in the mean observation, certainly, since there is no more reason

to expect a rise in the mean than a fall in the mean; these two changes
2

are symmetrical and indifferent from each other. The variance, C , of

the observations would be expected to change, however. Learning (that

is to say, increased skill in the motor activity) should decrease the

variance, and fatigue (either motor or central) should increase the

variance. To test the presence of these effects, the series of 100

observations for each particular task and (retested) subject was divided

into halves: the first 50 observations vs. the last 50 observations.

A table of the variances of the observations within each half appears

as Table 12. There is an apparent tendency for the variances to decrease

on the test and increase on the retest. A four-way analysis of variance

(of log a2 ) performed on Table 12 yields the following non-negligible

estimated variance components: Subjects, 5.15; Tasks, 1.11; Halves-

Replications Interaction, .52; Subjects-Replications Interaction, 2.82;

Subjects-Tasks-Replications Interaction, 1.27; Error, 3.04. No other

component exceeds .30. The Halves-Replications Interaction Mean Square

is significantly greater than the Error Mean Square at the 1% level.

(F - 10.62 with 1 and 42 degrees of freedom.) But the Halves-Replications

Interaction is a less important factor than even task differences, which

are in turn much less important than subject differences. It is plausible

to suppose that the downward trend in the variances on the test is an

accommodation or learning effect, while the upward trend in the variances

on the retest is a boredom effect. At any rate, these trends are a group

phenomenon. No consistent individual differences in the tendency toward

changing variances can be found, (The Subjects-Halves Interaction vai-
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TABIE 22

VARIANCE WITHIN FIRST 50 OBSERVATIONS AND WITHIN LAST 50 OBSERVATIONS

TASK 2 TASK 3 TASK 4 TASK5,- SUBJECT
TEST RETEST TEST RETEST TEST RETEST TEST RETEST

la* 47.4 45.1 41.9 33.4 45.7 42.1 60°6 49.4
ib* 27o5 93.4 32.4 51.2 49.2 54.5 50.2 38.4

2a 41.1 25.8 33.5 20.3 30.3 17.2 51.3 18.9
2b 34.4 21.1 29.2 16.0 24.8 15.2 33.1 19.7

3a 69°3 94.9 63.1 43.9 36.4 53.1 56.5 37.4
3b 55.8 88.2 33.1 67.0 46.9 65.5 57.8 61.6

4a 35.5 25.3 19.0 32.3 32.5 26.3 21.2 16.3
4b 31.3 30o1 20.5 37.6 22.1 23.0 32.7 19.9

5a 26.4 51.9 38.3 42.2 27.1 27.6 28.5 46.1
5b 45.9 30.8 30o.0 46°5 22.2 48.0 44.8 42.8

6a 321.9 53.0 75.4 81.2 66.2 43.9 64.1 74.3
6b 79,7 90.2 54.6 92.4 71.8 53.7 69.0 46.4

7a 74.2 42.9 33.0 36.6 22.4 31.0 25.4 57.1
7b 44.1 59.5 22.5 35°4 30.4 28.3 16.8 71.7

8a 3903 72.3 28.6 21.0 28.4 31.2 19o0 42.0
8b 36°9 52.8 15.4 51.5 23.4 42.5 27.3 64.4

9a 150.2 68.6 99.5 40.2 64.8 25.8 52.9 33.5
9b 122.0 80.5 97.7 29.2 81.1 43.6 53,7 57,7

la 5o3 70.9 51.8 46, 58.1 44.2 609 23.7
l0b 57.5 32.7 46.3 42.9 32.7 37.3 32.8 25.4

11a, 44.8 47.4 48.8 32.4 5.4 41.9 37.1 41.2
lib 37.5 71.2 37.4 52.2 44.8 48.1 34.1 33.2

12a 20.8 35.6 26.2 21.2 17.9 35.4 17.6 27.6
12b 46.4 34.3 18.0 20.6 12.9 26.7 9.9 26.3
13a 47.3 41,6 25.6 33.8 17.1 27.9 22.2 23.8
13b 45.7 35.3 28.7 28.0 13.5 29.2 33.7 24.1

14a 33.4 35.4 14.9 17.7 14.2 27.6 13.2 31.6
14b 29.0 35.3 12.1 20.2 11.4 25.4 16.9 28,5
15a 43.7 44.3 53.0 34.0 605 68.5 54.1 39,5
15b 52.2 47.0 35.4 50.2 40.0 174.8 45.4 67.2

adenotes first 0 observations
b denotes last 50 observations
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ance component is negligible.) The trends in variance probably do not

seriously impair the validity of the rneasuresC~ C(r a, and s. Though sta-

tistically significant, they are not numerically large. A small degree

of non-stationarity can be tolerated by spectral analysis, so that K is

little affected. We might expect, however, that C2 would be rendered some-

what unstable, and, indeed, this expectation is consistent with the low

2
reliability of a . It is unlikely that trends in the variance have any

direct bearing on the speed of jabbing, s.

Remarks

It is disappointing that task differences did not appear. The reason

for this is probably that the tasks are ambiguously stated and the sub-

jects restructure all the task situations into a constant pattern to which

they can conform. In all the jabbing tasks, the-subject realizes that

the best he can do is to jab generally within a certain band, and this is

exactly what he tries to do, regardless of the limits prescribed by the

specific target. The experimental situation is not stressful enough to

force the subject to attempt to narrow his "tolerance band." The entire

question of the effect of stress is left open for future experimentation.

The absence of between-task differences is fortunate in one respect.

Due to the task similarity, the individual differences stand out in bolder

relief. That the measures a and s appear as reliable indices of indi-

vidual difference on routine, repetitive tasks is not surprising; they

have turned up in the psychological literature before (16, 34; 8, 21).

The measure 01 is more interesting because it is new; it derives solely

from the spectrum. Perhaps 0( is not the best index with which to sum-

marize the information provided by the spectrum; for one thing, its defi-
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nition rests on an entirely arbitrary decision (the cut-off point at

p - 3). Ideally, a general curve-fit to the spectrum (as was done with

.1 Day's data) would be preferable. At any rate, -( is surprisingly reliable.

>4 It remains to be seen whether it is valid.

I Individual differences pervade the performance of all five of the

experimental tasks. The task differences are surprisingly slight. Task 1

was discarded because of unreliability and danger of non-stationarity, and

the results on the other four tasks were sued together. Three reliable

measures of individual difference have been discovered. They are:

1. Differences in the proportion, o, of low-frequency components

in the spectrum of the observations.

2. Differences in the variance, a , of the observations about the

mean observation.

3. Difference in the speed, s, of jabbing. The test-retest relia-

bilities of these measures are .85, .60 and .90 respectively. The measures

are essentially uncorrelated with one another. The validation of these

measures is presented in the following section.
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VIII

VALIDATION OF THE MEASURES OF INDIVIDUAL DIFFERENCE

The expectation of Section VI was that individual differences in the

proportion of low frequency components in the spectrum were indicative of

individual differences in attention, involvement, and concern over errors;

individual differences in the variance of the observations were expected

to be indicative of individual differences in stability, level of aspira-

tion, and possibly motor skill. There was no expectation concerning indi-

vidual differences in the speed of jabbing. The factor of rigidity was

expected to influence Task 1 alone.

The three reliable measures of individual difference discovered in

the analysis of the experimental data and discussed in Section VII are:

O, the proportion of low frequency components in the spectrum; d2 , the

variance of the observations; and s, the speed of jabbing. Task 1 proved

unsatisfactory on several counts and was abandoned, and Tasks 2, 3, 4 and

5, which were intended to provide a graded series of increasing stress-

fulness, proved to be insignificantly different from one another.

The independent personality data available on the thirty-three experi-

mental subjects consisted mainly of a series of extensive personal inter-

views with the subjects by Mr. Roy Heath of the Study of Education at

Princeton Project. Sinct Mr. Heath had an intimate knowledge of the sub-

jects, and the author had only a general idea of the personality variables

with which the experimental measures of individual difference might be

correlated (see above), the following validating procedure was decided

upon:
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The author supplied to Mr. Heath a list of the naes and standard

scores of all subjects with standard scores above +1.00 or below -1.00 on

each of the three measures r, a 2, and s. (Due to skewness in the distribu-

tion of , it was necessary to include cases with scores below -.80.) The

measures were noncommittally entitled Factor I, Factor II, and Factor III,

respectively. Mr. Heath was asked to induce the nature of such person-

ality factors as might have produced the given divisions of the subjects

into two extreme groups. With no further instruction (and with no knowl-

edge of what the experimental measures were) he was able to do this for

Factor III (s). When Factors I (CA) and II (c 2 ) proved difficult, a list

of "clues" was provided. He was asked to consider the following list of

words: "Motivation, persistence, consistency, action, attention, concern

over errors, concentration, motor skill" in conjunction with the list of

V names of the high and low scorers and give free play to any ideas arising

from consideration of the key words in order to find personality charac-

teristics differentiating the high and low scorers. With his task thus

made more specific, Mr. Heath was able to induce the nature of a person-

ality factor to correlate with the author's Factor I, and two, to corre-

late with the author's Factor II. His statement of the three factors

follows.

Factor I (c):

"This factor would be named persistence of focus. Like Factor III

(see below) it is a persistence factor, but basically different in that

Factor III refers to long-term persistence, i.e., the tendency to persevere

in a task lasting beyond one minute in length. Factor I is more an "atten-

tion" factor, i.e., the ability to focus the attention on the perceptual
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scene without distraction. Those in the minus group fote: Those with a

preponderance of high frequency components in the spectru are most likely

to hold a focus for 10 to 20 seconds without distraction from either an

internal or external source. The plus group gote: Those with a prepon-

derance of low frequency components in the spectrU3 are more scattered;

because of distraction or dissociative tendencies they would be apt to

miss something (be off focus) in split seconds during the task. Some are

probably distracted by internal sources while others are distracted from

external sources. What matters with the plus group is the "state of mind"

that exists at the time of testing. The internally distractable are more

liable to distraction at some times than at others."

Factor II (a 2):

"This factor appeared less palpable than the others. In general the

plus group fote: High variance are more tigid in their approach to a task,

more prone to persist in one mental set without considering other ways of

looking at the task. The minus group gote: Low varianc are more flexible,

more imaginative in their approach to a task.

"Another possible factor is manual dexterity. In general, the minus

group [ote: Low variance are quite agile with their hands."

Factor III (s):

"This factor seemed intuitively to be a meaningful psychological

factor. Basically, it should be labeled emotional commitment vs. non-

commitment. The plus group fote: High spee] , in contrast to the minus

group fote: Low speed, are cautious :], wary of extending the self,

and therefore often behave in a desultory, casual, dabbling manner, often

appearing less active and not inwardly caring about a task. The minus
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group are more deeply motivated, and therefore are more active, persistent,

intense, and involved in the task. It might be mentioned in passing that

the minus group, although all usually well motivated in task performances,

vary considerably in the nature of their motivation; e.g., some strive for

status whereas for others the task itself may be intrinsically interest-

ing.

To check the validity of these induced factors, Mr. Heath was asked

to rate on a ten-point scale all thirty-three subjects (including the ex-

tremes) with regard to his four personality factors (two possibilities

had been suggested for Factor II). These ratings appear in Table 13.

J. The ratings of all the unextreme subjects (i.e., those whose scores had

not been used in the induction of the personality factors) were then cor-

related with the standard scores (Table 10) on the corresponding experi-

mental measures. Of course this correlation procedure is subject to

severe attenuation, due to the omission of the extreme cases. The valid-

ity coefficients are as follows (due to the definitions of high and low,

a negative correlation is always in the expected direction).

Validity of Measures, Omitting Extreme Cases

Experimental Personality
Measure Factor n r

Persistence of Focus 24 +.010

2 Manual Dexterity 25 -. 432
( Flexibility 25 -. 163

s Emotional Commitment 21 -. 193

2
Of these, only the correlation between a and the manual dexterity rating

is significant. The validities of q and s are of course disappointing.

It is not known how unreliable the rankings might be over the severely
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TABLE 13

RATINGS ON FOUR PERSONALITY VARIABLES

(10 Is the highest rating; 1 is the lowest)

SUBJECT I II I' III
1 2

1 9 5 7 4
2 6 7 4 4
3 6 5 4 5
4 7 5 7 4
5 5 5 8 8
6 8 2 4 9
7 4 8 4 2
8 8 5 5 4
9 7 4 4 3

10 3 4 5 2
11 8 5 6 6
12 4 7 6 4
13 8 8 7 8
14 2 8 7 9
15 2 4 2 2
16 9 8 4 5
17 8 5 4 6
18 9 7 10 8
19 7 5 4 8
20 3 6 7 8
21 2 6 5 4
22 7 8 5 6
23 8 5 3 4
24 5 3 2 3
25 4 8 3 7
26 8 7 7 7
27 7 6 4 8
28 5 8 8 9
29 1 9 7 7
30 4 9 5 6
31 6 5 4 4
32 4 6 8 4
33 3 9 8 6

Factor I ' Degree of persistence of focus
Factor I11 Manual dexterity

Factor Il Degree of flexibility

Factor III Degree of emotional commitment to situations

I
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limited range of the neutral (unextreme) subjects. As a further step,

the extreme cases were included in the analysis and the validities re-

computed (although the personality ratings of the extreme subjects are

potentially biased in the direction of conforming to expectation, since

it was on the basis of the knowledge of these extreme subjects' scores

that the personality variables were originally induced).

Validity of Measures, Including Extreme Cases
Experimental Personality

Measure Factor n r

Persistence of Focus 33 -.513

a ( Manual Dexterity 33 -.540
( Flexibility 33 -.262

s Emotional Commitment 33 -,340

All of these correlations are significant at the 5% level in the expected

2
direction, except for the correlation between a and flexibility rating.

Discussion

Although the validity coefficients for the three measures are subject

to bias, the original inductions of the personality variables are not.

Let us inquire into the rationale for the connection between the experi-

mental measures and the respective personality variables.

That a2 should be indicative of manual dexterity is not surprising.

It is hardly necessary to comment further, except for the observation
2

that our hopes for a connection between a and some variable more strictly

in the personality domain were not well realized. The postulated connec-

tion with rigidity is quite moot. At first blush, it would seem that the

rigid individual--the individual who is unwilling to tolerate variety of
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performance--would generate a consistent run of performances, that is,

a low variance. This conception would contradict the postulated connec-

tion between rigidity and high variance. On the other hand, it can be

argued that a flexible individual will experiment until he improves his

performance, thus producing, in the end, a lower variance than the rigid

individual. On this latter basis, one would predict that individuals

with high variance on Task 1 would show lower variance on the other tasks

than would individuals with low variance on Task 1. This is not borne

out. The entire case for a correlation between rigidity and high vari-

ance in the present experimental situation is on very shaky ground.

The induced personality factor for s is somewhat paradoxical. The

people who jab at a faster rate are adjudged to be more cautious and

reluctant to commit themselves to the performance of a task. The people

who perform slowly, meanwhile, are adjudged to be more venturesome and

apt to commit themselves persistently to a task. The picture which

'1 emerges here is evidently that the slow performers are taking the task

seriously, whereas the fast performers are anxious to get the job finished.

I i If this be the case, then the measure s is essentially a fortuitous index

t! lacking generality of application to routine, repetitive tasks. The ex-

planation is nevertheless amusing, and the index is of possible interest

in some situations.

The main interest centers on the index or. The expectation was that

inattention, low motivation, and/or little concern over errors would lead

to a greater preponderance of low frequency components in the spectrum

(i.e., a high value ofcC). The first of these alternatives has been

verified. (Apparently the tasks did not involve the subjects deeply
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enough for motivation to be a factor.) Let us examine the manner in which

this comes about. Whenever the subject is inattentive or distracted, he

is apt to produce a deviant observation. Unless he immediately re-focuses

his attention, a series of deviant observations may be produced, all on

one side of the mean. A succession of such incidents will tend to pro-

duce a series of observations of slowly-wandering wave-like character,

as in Figure IC. Thus the spectrum will tend toward low-frequency com-

ponents.

If the spectrum is indeed a sensitive indicator of the power of atten-

tion, spectral analysis may open up for re-examination a good deal of old

data from attention studies0 In addition, since continual alertness is

of vital importance in so many industrial and military tasks, spectral

analysis provides a way to test for those individuals who are alert and

those who are not. A recommendation for further experimentation is as

follows:

Set the subjects a repetitive task to perform. Vary experimentally

the conditions of distractability, from an optimum working situation to

one in which there is a maximum of distraction. Study the effects on the

spectrum, especially with an eye toward a more precise specification of

the exact shape of the spectrum under the various conditions. Of course,

individual differences in the distractability of the subjects will have

to be taken into consideration.
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A IX

SUMMARY

For the purpose of studying individual differences in certain char-

acteristics of the performance of repetitive, routine tasks, several

methods of analysis of time-ordered data were considered. Much previous

psychological work with time-ordered data had been characterized by highly

arbitrary decisions based upon inspection of the data. This mode of pro-

cedure was rejected, as was the more objective method of quality control.

Autocorrelational analysis was judged to be suitable except for the unde-

sirable sampling properties of autocorrelations; finally, spectral analysis

was chosen, since it possesses as much generality as autocorrelatioAl

analysis, and in addition, the sampling properties of the measures derived

from it are convenient and orderly. Spectral analysis decomposes the

total oscillation of a time-series into oscillations of varying rates,

specifying the relative contribution of each of the components of oscilla-

tion.

Spectral analysis as an analytical tool was applied to previous psycho-

logical data; in one case, to a study of mental blocking, and in another,

to a study of serial patterns of response in an auditory discrimination.

In both cases, spectral analysis led to a modification and clarification

of the conclusions that had been reached by the previous authors. Spectral

analysis was then applied to the experimental data of the present paper.

The experimental task was that of jabbing a stylus repeatedly at a target

line or lines. The deviations of the jabs from a reference line were

measured in serial order, and the series were then subjected to a spectral



analysis. Thirty-three subjects were tested on five variations of the

main task. Fifteen of the subjects were retested a month later. Task

variations proved unimportant, but reliable individual differences were

found in three measures, two of which did not depend on spectral analysis

and one of which did. These three measures were:

1. C(, the proportion of low frequency components:in the spectrum.

2. a2, the variance of the observations about the mean observation.

3. s, the speed of production of observations.

It was disappointing to find that spectral analysis yielded only one measure

of individual difference, since it had been hoped that a general model for

the particular time-series process would have emerged on the basis of

The three measures were related to general personality characteristics,

by means of an inductive process. An individual who had had considerable

contact with the experimental subjects in interview situations over a

period of two years was asked to suggest personality factors which might

have produced the differences found on each of the three measures. Without

knowledge of the nature of the experimental measures, he suggested the

following corresponding personality factors:

I. Degree of persistence of perceptual focus (i.e., power of

attention)

II. Manual dexterity

III. Degree of emotional commitment to task situations.

On the basis of a subsequent rating procedure, the three experimental

measures were found to be significantly valid in terms of the three person-

ality factors, although there is a possibility that a bias influenced
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the rankings in a favorable direction. Factors I and II were deemed to

be rationally related to the corresponding experimental measures. Indeed,

Factor I conformed precisely to previous expectation with regard to the

meaning of the measure 6 Factor III was somewhat of an accident and a

paradox, although a rationale was found to give the factor meaning in

terms of the experiment.

Suggestions for future experimentation on individual differences in

the performance of repetitive tasks include (1) an attempt to increase

the power of spectral analysis by concentrating on the attention factor

and trying to relate the spectral results more generally and more directly

to the process of "attending"; (2) an experimental study of the effect of

stress on performance.
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APPENDIX A

SPECTRAL DECOMPOSITION OF VARIANCE

The variance of a time series population for any arbitrary, fixed

value of t is defined as the average squared deviation of the potentially

occurring values of X t from the mean value of X. Defining ave. fXtI to be

the average of X t over the population, the variance is:

(A.1) ---- ave. t - Lave. [Xtj] 2

For a stationary time-series, the variance is independent of the particular

arbitrary value of t.

Consider the simple, single cosine-component population 
X t

a cos(w1 t + 01) , where aI and wI are fixed, and 01 is uniformly (i.e.,

rectangularly) distributed over the interval 0 to 27r. (That is, f($l )

do1
do, = 2-T). It is this distribution of phase angles 01 that determines

the distribution of potentially occurring values of X. Now

ave. X a1 cos(wlt + 01) f($l)d$l = a1 cos(wlt +01) do1

0 0

a1 sin(w t + 01) a1 t + 2W) - sin w t 0

T1 1 = [oin w1

(A.2) ave. t(xt = 0
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a X 2 7T d-ot[ sin(wlt + 0,) cos(w t +

0

+ (w t + 01)] 0

2
a 1-[sin(wlt + 27T) cos(wlt + 27T) si wlt cos wlt

+ (wlt + 27r) - w t]

a2  (since sin(w t + 27r) - sin wit

cos (wIt + 27T) = cos w1t)

I(A.3) ave.fx[)= -, a2

Thus, from (A.1)

2 ~2
(A.4) aX7 a,

For a general eosine-conponent time-series population,

00
jXt = E ai cos(wit + 0 I )

i-l

as is given in (4.1) as the basis for spectral analysis, where all ai and

wi are fixed, and the 0i are independently and uniformly distributed over

the interval 0 to 2Tr. (That is, f(ol.2 .... 0i....) dod02 ....doi....

=d$ d02  d0i
2 27T Of ..... )
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(A.5) ave. t 2-r 2 7r .... a cos(wit +

0 0 0 0

27 21T ?Tr i

--7a i  .. cswt + i )  0
1 2 27 2..

0 0 00(A.6) ave =J0 2 r J  - .. - .... Eaics(wit + i

The square of the sunmation will produce terms of the form aia cos(wit + Oi)

cos(wjit + Cj n where i --- J, of the form a2 c0s2(W i t + ¢i . The cross-

product terms (i J) will all integrate out to zero in the manner of (A.2)

or (A.5), since the integrals over 0i and 0 are independent. The remain-

ing non-zero terms of (A.6) yield

j221 7 1
(A.7) ave. ai -os (wit + 0i)

o 0 0

S 27
0

The integral over 0i yields , in the manner of (A.3). The integrals over

each of the other 0± are unity. Thus

(A.8) ave. [2 = E a2•



From (A.1), (A.5), and (A.8),

(A.9) ax a,

This is the result (4.2) stated in Section IV.
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APPENDIX B

ESTIMATION OF SPECTRAL DENSITIES

To devise a means for estimating spectral densities, it is necessary

to relate the spectrum s(w) to the lag covarianoes QJ In the notation of

Appendix A, the lag covariances are expressed by

(B.) ave. tXt Xjt+j

Due to tationarity, ave. X } = ave. X 0X . Using the general

cosine-component population tXt= Z ai cos(wit + 0i ) , the relation

for Q becomes:

(B.2) ave. tXjX ave.{['COE a cos(iwi + ive il i

ave. ai cos 0i cos(j + 0]
i=l l

a0 aO av.Cs0 iBjW+0

where we have simply replaced the product of summations by a double suImna-

tion over i and a substitute index A.

Consider a single term in the summation (B.2) with i X, remember-

ing that the averaging process proceeds over the joint'distribtion: of

the 0i" The 0i have been assumed independently and rectangularly distri-

buted.
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(T do rd1r d0 7rd(B ave 0V8* 008rj W + 20TI- 27? S7T i C
L 3) J v J 7 7

0 0 0

.. . T " Co o (j w, + 0 ..

0

005 0 % 2 cos(jw~t + )I

0 0

The double integration is identical with the product of the single integra-

27-I

tions, since they are independent. Butfcos 0i do, 0. Thus

(B.4) ave. fos ¢ cos(JW2 + 0;)} =0 if i #2

On the other hand, if i = , then

2T_ 2T

(S.5) ave. [Cos oi cos(jwi + oi 2 r 2-r

0 0

]o oos 01 cos(jw± + 0i) ....
02 fd

2 os i C o( iW + 0i)
0
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0 2-W Cos 0i Jw cos - sin Jwi sin

0

=Cos jw 2i diC082 0 i sin jw,

II 0

-r sin i cos 0i
0

The first integral is equal to and the second integral vanishes. Thus

(B.6) ave. fCos 0 COS(iwi + 0i)1 COB i

Substituting (B.4) and (B.6) into the surnation (B.2) yields

00 2
(B.7) Qj E a2 icos Jwi

i=l

But, from (4.3), 1 a2 is equal to the increase in S(w) in the neighbor-

hood of the frequency wi .

(B.8) j A [ A (wi)]cos jwi

If we deal with the continuous instead of the discrete case, then the

su nation over i becomes an integral over w, A [S(W becomes dS(w), or

s(w)dw, and the formula for Q reads
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(B.9) cos Jw s(w) dv

0

This equation expresses a unique one-to-one relationship between the

and s(w). If one is known, the other is determined. Note here that if

7r
s(w) = k, a constant, then Q- k cos jw dw = 0 for J 0, confirming

0

the statement in Section IV that the spectrum of a random series is flat.

Note also that with j - 0, (B.9) reads Q fs(w) dw, which is the
0

proper expression that the variance is equal to the area under the spectrum.

Equation (B.9) provides a key to a method for computing estimates of

spectral density at various values of the frequency. For a given time-

series sample, estimates of Q can be calculated from (3.2). Consider a
m

linear coambination of the Qj, namely E b Q co Jw0 , where the b are

a set of "magic numbers" to be explained below, w0 is the frequency at

which we wish to estimate the spectral density, and m is the total number

of lag covariances which have been calculated. Using (B.9),

m m .7

(B.10) Z bj Qj cos Jw0 = E b1 cos 3w0 f cos Jw S(w)dw

aJ0 J-0 0

- S(w)dw b3 cos Nw cos

0

Now the summation in the square brackets constitutes the first m terms

of the Fourier expansion of some function of (w-w0 ), say V(w-w0 ). If

the b are chosen properly, V(w-w0 ) can be foreed into the form of a
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high, square peak centered around w-wO . That is,

0'(3oi1) V(W-Wo)t constant, a Wo - <W<Wo & (& small)

0 otherwise .

With such a function, mI
(B.22) E b Q 0s jwo O v(w-w o ) S(w)dw= 2Gc S(w o ) k S(w 0 )

imo 0

yielding an immediate estimate of spectral density.

One possible selection of the b is

(B.13) bj = ( - i -)

In this case,

!2
0 si (w-w )]-\

which is a reasonably good approximation to a square peak centered about

-w 0 with width T and only small ripples about zero outside of this.

range. The value of b given by (B.13) can be used to good advantage in

computing spectral densities by (B.32).

Lt

1 0 The wider the peak, the greater the "computational blurring" referred
to in (4.7).
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An even better set of bi's exists, however. The derivation is too

involved to enter into here; only the numerical values of these b are

presented. (Professor Tukey very kindly supplied these to the author.)

Table 14 gives the values of b for J-0 through 20. These may be used

when exactly 20 lag covariances have been computed (i.e., when miueO).

Using these tabulated bj, define

w~m

(B.15) P =-- and

(B.16) T =b cos Jw b 005 =

Then, from (B.22)

20
(B.17) U= Q T

is proportional to an estimate of the spectral density s(P-2). The

matrix T is given in Table 15. The Q are computed from (3.2). If

U is calculated for each of the values p = 0, 1, 2, .... 20, estimates

of spectral density are available at equally spaced intervals all. along

the frequency range from w = 0 toir. Formula (B.17) is seen to be a

matrix multiplication. The row vector Q, consisting of the 21 entries

(N Q ... 0 '.. Q), multiplied by the matrix Tjp, yields the row

vector U with the 21 entries (U0 U1 ... Up o. U2 0 ).
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TABIA 14

VA=US OF b USED

It b

0 3566.74
1 3481.16
2 3392.97
3 3250.37
4 3059.62
5 2800.13
6 2582.o8
7 2296.*42
8 2001.86
9 1708.78

10 1441.79
11 1147.6o
12 917.14
13 7:12-37
14 535.84
15 3 76.25

16 287.50
17 180.33
18 104-79
19546
20 27.61
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TABIE 15

T-MATRIX, COLUMS 0-10

P: 1 1 2 4 6 8 2 10

0 1783 1783 1783 1783 1783 1783 1783 1783 1783 1783 1783

1 3481 3437 3311 3102 2816 2462 2046 1580 1076 0544 0000

2 3393 3227 2745 1994 1048 0000 -1048 -1994 -2745 -3227 -3393

3 3250 2896 1911 0508 -1004 -2298 -3091 -3210 -2630 -1476 0000

4 3060 2475 0945 -0945 -2475 -3060 -2475 -0945 0945 2475 3060

5 2800 1980 0000 -1980 -2800 -1980 0000 1980 2800 1980 0000

6 2582 1518 -0798 -2456 -2089 0000 2089 2456 0798 -1518 -2582

7 2296 1043 -1350 -2268 -0710 1624 2184 0359 -1858 -2o46 0000

8 2002 0619 -1620 -1620 0619 2002 o619 -162o -1620 o619 2002

9 1709 0267 -1625 -0776 1382 1208 -1004 -1523 0528 1688 0000

10 142 0000 -1442 0000 1442 0000 -1442 0000 1442 0000 -1442
11 1148 -0179 -1091 0521 0928 -0811 -0675 1023 0355 -1133 0000
12 0917 -0283 -0742 0742 o283 -0917 0283 0742 -o742 -o283 0917

13 0732 -0323 -0419 0704 -0220 -0504 o678 -0111 -0576 0635 0000

14 0536 -0315 -o166 0510 -0433 oooo o433 -0510 o166 0315 -0536

15 0376 -0266 oooo o266 -0376 0266 oooo -0266 0376 -o266 oooo

16 0288 -0233 0089 0089 -0233 0288 -0233 0089 0089 -0233 0288

17 0180 -O161 Oo6 -0028 -0056 0128 -0172 0178 -0146 0082 0000

18 0105 -0100 0085 -0062 0032 0o0o -0032 0062 -0085 0100 -0105

19 0055 -oo54 o052 -0049 o044 -0o39 0032 -0025 0017 -0009 0000

20 oo14 -oo14 oo14 -oo14 oo14 -oo14 oo14 -oo14 oo14 -oo14 oo14

. i
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TABLE 15

T-MATRIX, COLUMNS 11-20

P: U. 12 j 14 15 16 17 18.6 j2 20

0 1783 1783 1783 1783 1783 .783 1783 1783 1783 1783

1 -0544 -1076 -1580 -20o46 -2462 -2816 -3102 -3311 -3437 -3481

2 -3227 -2745 -1994 -1048 0000 1048 1994 2745 3227 3393

3 1476 2630 3210 3091 2298 1004 -o5o8 -1911 -2896 -3250
4 2475 0945 -0945 -2475 -306o -2475 -o945 o945 2475 3060
5 -1980 -2800 -1980 0000 1980 28oo 198o 0000 -1980 -28oo

6 -1518 0798 2456 2o89 00o0 -2o89 -2456 -0798 1518 2582

7 2o46 1858 -0359 -2184 -1624 0710 2268 1350 -1o43 -2296

8 0619 -1620 -1620 0619 2oo2 0619 -1620 -162o o619 2002

9 -1688 -o528 1523 lo4 -1208 -1382 0776 1625 -0267 -1709

10 0000 1442 0000 -1442 0000 1442 0000 -1442 0000 1442

11 1133 -0355 -1023 0675 0811 -0928 -0521 1091 0179 -1148

12 -0283 -0742 0742 0283 -0917 0283 0742 -0742 -0283 0917

13 -0635 0576 0111 -0678 o5o4 0220 -070o4 0o419 0323 -0712

14 0315 o166 -o51O o433 oooo -o433 o51o -o166 -o315 o536

15 o266 -0376 0266 o0oo -0266 0376 -0266 o0o0 0266 -0376

16 -0233 oo89 oo89 -0233 0288 -0233 0o89 oo89 -0233 0288

17 -0082 0146 -0178 0172 -0128 0056 0028 -0106 o61 -0180

18 01o0 -0o85 oo62 -0032 00oo oo32 -oo62 oo85 -0oo o05

19 0009 -0017 0025 -0032 0039 -0044 o09 -0052 o054 -0055

20 -oo14 oo14 -oo14 oo14 -oo14 oo4 -oo14 oo14 -oo14 oo14
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APPENDIX C

COMPUTATIONAL PROCEDURE

The computations of spectral densities for the present experimental

data and for the data of Section V were carried out on IBM punched-card

machines. For each series of 100 observations (or for whatever number

of observations was available in the case of the data of Section V), the

first 20 lag covariances were computed. This gives high enough accuracy;

more lags would not add enough information to justify the additional

labor. Instead of computing U for all values of p from 0 to 20, only
p

the values p =, 1, 2, 5, and 4 were computed separately. In addition,

three more U-values representing averages were found, namely:

(C.1) U7. =NUT + U6 + U 7+U8+ U)
* 5 5 6 9)1

U 5(1Ulo + Ull + U1 + l3 +O

1+U

U17* -(U15 + Ul6 + U17 + U18 19

Machine time was greatly reduced by the use of these averages, and

the information loss was small, especially since the most interesting

effects in the data showed up at the lower end of the spectrum.

The relevant formulas for the computation of the U are (3.2), (B.17),
p

and (B.16).

These read (with m=20 and N=l00)

100-J 00-i t [10-i
Ej X[ Xt L Xt+

(C.2) 100-,loo-j(1oo, J)2,
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20
(C03) u = E Q Tup J-0 i P

(Co4) Tjp T j c 2 0

where the numerical values of b are given in Table 13. The averaging

involved in 7 , U12, and U17. was achieved by averaging columns of

Tjthus:

U7 = !(U5 + U6 + U7 + U8 + U9 )

1(20 20 20 20 20
E iT 5+ E QiT j6+ E JT P+ E Q T8+ E 339j)

j= j= j6 j j7 Qj(

20

11

Or,

20

=0

Similarly,

20
=O

20
17. = = j Jl7.

the star denoting an average taken over the indicated value and the two

values on either side. If (C.2) is substituted into (C.3), we may

write



2 =00 1) (100-i 10- xx -

Written in this way, the formula is much more cnein o B

purposes, since the factor of (100-i)2cnb nlddbfrbn na

adjusted T-matrix and the quantity in the brackets can be easily programmed

for a calculating punch machine. The final computational procedure in-

cluded one further simplification. Certain of the terms in EX 1tXt~1 EXt,

and EX + of (C.6) were dropped in the interest of neat IBM procedures,

as follows:

(C.7) For J=0, the terms t = 1, 2, 3, 4, 5 were dropped
J=1, t=l1, 2, 3, 4 V ift
J=e t=1, 2, 3ft f

ft4 ftI

J-51 none
J-61 t = 1, 2, 3, 4

J-7, t=l1, 2, 3It f

J--91 t =
J=10, none i
J=1.11 t 11,2, 3,4 it
J=J.2, t 1, 2,3 it IT

J=13, t 1, 2it f
J--14, t= Ift ft

J=-15o, noneit t

j=16, t =1, 2, 3, 4 IT i

J=17, t -l1,2, 3IT i

J-19, t =l it I

J-201 none I

The effect of this was to retain

(c.8) 95 values of t for J = 0, 1, 2, 5, 4, 5
*90 values of t for J =6.,7, 8,9,j10

85 values of t' for j = 11, 12, 13, 14, 15
80 values of t for J = 16, 17, 18, 19, 20
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The number of values of t retained for a given J will be denoted by NJ.

The number of terms dropped constituted 2.4% of the total number of avail-

able terms. 3- (The schema for this abandonment of terms will be made

clearer for the reader by reference to Figure 15.)

With all these modifications (averaging columnE of T for p = 7, 12 and

17; factoring out 1 . dropping certain values of t) considered the
(100-j)2

final computational form can be written:

20
(c.9) Up= Tip Cj

where Tip is an element of the adjusted T-matrix, presented in Table 16,

and

100-j 100-j 100-j
(C.10) C=j -Nj i XtXt+j - . t  E Xt+j

t=CK t=_ t

where ( - 100 - N - J + 1 and N is given by (C.8).3 1

11 The dropping of terms serves to reduce the number of degrees of freedom
available for the significance tests given in (4.5) and (4.6). With
N = 100 observations and m = 20 lags, the degrees of freedom should be

2N = 10. But in view of the dropped terms, 9 d.f. have been employedm
instead throughout this paper. The averaging of U-values in (C.1) also
affects the degrees of freedom. Since neighboring U-values are not
independent, but "neighboring-save-one" U-values are independent (see
(4.7)), an average of 5 successive U-values deserves 3 times the number
of degrees of freedom for each U-value; the two U-values on the ends
of the string of five and the one in the middle each contribute degrees
of freedom independently. Thus for p - 0, 1, 2, 3, 4, the d.f. are 9;
for p --7*, 12*, and 17*, the d.f. are 27.

I
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TABLE 16

1' *,THE ADJUSTED T-MATFIX

p: 0 1 2 4 2* 17

0 1976 1976 1976 1976 1976 1976 1976 1976
1 3857 3810 3669 3437 3121 1708 -1163 -3353
2 3760 3576 3041 2210 1162 -1998 -2750 1998
3 3602 3209 2117 0563 -1113 -2816 2306 -0448
4 3390 2743 1048 -1048 -2743 -o678 o678 -o678
5 3103 2194 o000 -2194 -3103 1059 -1498 1059
6 3188 1874 -0985 -3032 -2579 0945 0307 -o945
7 2835 1287 -1666 -280o -0876 o065 0336 0410
8 2471 0764 -1999 -1999 0764 oooo 0000 0000
9 2110 0330 -2OO8 -o958 1707 0222 0077 -0113

10 1780 0000 -1780 0000 1780 0000 -0356 0000
, i1 1588 -248 -1511 0721 1285 -0344 0119 0175

12 2269 -0392 -1027 1027 0392 -0254 0254 -0254
* 13 0986 -0448 -0580 0974 -0305 0033 -0173 0211

14 0742 -0436 -229 0705 -0600 0132 -oo36 -0112
15 0521 -0368 0000 0368 -0521 0031 0043 0031
16 0449 -0363 0139 0139 -0363 0000 0000 0000
17 0282 -0251 0166 -0044 -0087 0022 o018 0003
18 0164 -0156 0132 -0096 0051 0014 -0019 -0014
19 oo85 -oo84 oo81 -0076 0o69 -0007 -0005 oo14
20 0022 -0022 0022 -0022 0022 -0004 0004 -0004
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The IBM procedure proceeded in three main steps.

100-j 100-J 100-J

1. Calculating E Xt X , Z ,Xt  and Z X

2. Calculating C by (C.10)

3. Calculating U by (C.9)3p

The discussion which follows pertains to the set of 100 observations

for a single subject on a single task. It is understood, of course, that

all 240 subject-task units underwent each computational step together be-

fore the next step was undertaken.

The card layout for step 1 is presented in Figure 15. To get the

cards in this form required an "off-set gang punch." Only six master

cards were originally punched, as follows: !
Field: 34 33 32 22 21 20 19 1 0

Card No. 100 X66 X67 X68 .... X78 X79 X80 X81 .... X99 X100

Card No. 86 X5 X53 X5 .... X64 X65 (Blank)

Card No. 72 X38 X39 X40 .... X50 X51  (Blank)

Card No. 58 X24 X2 X26 .... X36 X37  (Blank)

Card No. 44 xlo Xll X12 .... X22 X23 (Blank)

Card No. 34 C X1 X2  .. X9  (Blank from field 24 to field 0)

Between these master cards were collated blank cards, one for each missing

card number (except numbers 1-5). The entire deck, in consecutive card

number order from number 100 down to number 6 was passed through a repro-

ducer wired to off-set gang punch. This operation punches the information

in field (J+l), card (k+l) into field J, card k, for all j and k. It will

be seen that the result of this step is to produce cards punched according
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to the layout of Figure 15. The sums and sums of cross-products needed

for (C.l0) were computed by progressive digiting (20), using field 0 for

the master sort. (Since the X's were two-digit numbers, the two alterna-

tives for progressive digiting were a double sort or the preparation of

a "reverse-digit" deck. The latter was used.) The cards were run through

the tabulator twice, once for computing the progressive totals for all

fields in Sections III and IV of Figure 13 vs. field 0, and again to treat

all fields in Section I and II of Figure 15 vs. field 0. Any cards that

included control punches within a particular section were automatically

excluded from the totals for that section. A card count within each sec-

tion was used to check the exclusion and to provide the values Nj in

the summary cards.

The operation of progressive digiting produces one summary card for

each digit of the master sort. The card corresponding to the zero digit

100-j 100-J
contained the information E Xt and Z Xt+j . The cards corre-

spudiding to the remaining digits, when summed, produced the information

100-j
E ' XtXt+ j , in addition to Nj, which was carried along. Thus a pair

t= O(

of cards contained the four quantities necessary to compute the C from

(C.10). (Step 2.) (Actually, since the progressive digiting was done

in two runs through the tabulator there were two such pairs of cards,

one pair with the information for j = Oto 10, the other covering j -

.U to 20.)
I

Step 2 was performed on a calculating punch. Behind each pair of

cards was placed a trailer card on which was punched a single calculated
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100-j 100-j 100-j
value of Cj -Nj £ XtXt+ j - Xt  E Xt+ j  Due to the limited

t- ( t- ( t-O(

storage capacity on the machine, 21 runs were necessary to calculate all

21 values of C Each C was punched on a separate trailer card. Then,

into the card with a particular C3 on it was punched the J :th row of the

p-matrix; that is, the values r, ,,7iP J J7o121t

Step 3 was also performed on the calculating punch. With 21 cards

for each subject-task unit grouped together and followed by a trailer card
20

the machine cumulated the sum of products E C 1j and punched the

1-0 1 iP

result into the trailer card. Eight runs through the machine were neces-

sary, one for each value of p. The same trailer cards were retained

throughout all eight runs, only the punching field changing. Thus one

card was produced for each subject-task unit, and contained all eight UpJP

for that unit. All digits were retained in all computational steps up

to the matrix multiplication. At that point, the last 8 places of the

U were dropped, retaining from 2 to 5 places. No decimal points appear
p

in the U , since an arbitrary multiplicative factor is implicit in all

the U
p

The computational checks carried at each of the three main steps

were:

1. A comparison on field 0 (with a collator) between the standard

and reverse-digit off-set gang-punched decks (which were produced inde-

pendently). There was no check of the tabulator steps.

2. One out of every ten computations of C1 (Step 2) were spot-

checked on a desk calculator. A complete re-run through the calculating
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punch would have been preferable, although no errors were found during

the spot-check.

3. For the matrix multiplication, the sum row over all subject-task

units of the C was multiplied by the V-matrix and checked against the

20 240 240

sum row of the U over all units. That is, 2 I, r C 2. U0
P J= Jp '0: 1  I 9G=1 p

where d denotes the unit.

In addition, eight units (of 100 observations each) for which the

spectra were known were Bent through the computational machinery and

the results checked against the known values.

I.
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ABSeaCT

U For the purpose of studying individual differences in the performance

of routine, repetitive tasks, mathematical methods of analysis of data

which is ordered along the time dimension are considered. Spectral analy-

sis is chosen as the best method, since it gives a complete summarization

of the stationary properties of time-ordered data, and the measures derived

from it possess convenient and orderly statistical properties. Spectral

analysis decomposes the total oscillation of a time-series into oscilla-

tions of varying rates, specifying the relative contribution of each of

the components of oscillation.

Spectral analysis as an analytical tool is applied to available psycho-

logical data; in one case, to a study of "mental blocking," and in another,

to a study of serial patterns of response in an auditory discrimination.

In both cases, spectral analysis leads to a modification and clarification

that had been reached by the previous authors. Spectral analysis is then

applied to the experimental data of the present paper.

The experimental task was that of jabbing a stylus repeatedly at a

target line or lines. The deviations of the jabs from a reference line

were measured in serial order, and the series were then subjected to a

spectral analysis. Thirty-three subjects were tested on five variations

of the min task. Fifteen of the subjects were retested a month later.

Task variations proved um portant, but reliable idMvidual differences

were found in three measures, two of whioh did not depen4 on spectral

analysis ,nd An.od'w- o:did

± . . ..



These three measures were related to general personality character-

istics by means of an inductive process. An individual who had had con-

siderable contact with the experimental subjects in interview situations

over a period of two years was asked to suggest personality factors which

might have produced the differences found on each of the three measures. j
Without knowledge of the nature of the experimental measures, he suggested

personality factors corresponding to them. These personality factors and

their relation to routine, repetitive tasks are discussed.
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