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RESEARCH MEMORANDUM

FORCE AND PRESSURE RECOVERY CHARACTERISTICS AT SUPERSONIC
SPEEDS OF A CONICAL SPIKE INLET WITH A BYPASS
DISCHARGING FROM THE TOP OR BOTTOM OF THE
DIFFUSER IN AN AXTAL DIRECTION

By J. L. Allen and Andrew Beke

SUMMARY

An axially symmetric nacelle-type conical spike inlet with a fixed-
area bypass located in the top or bottom of the diffuser was investigated
in the Lewis 8- by 6-foot supersonic tunnel. The bypass was sized to
discharge in a nearly axial direction about 10 percent of the maximum
mass flow captured by the inlet. Force and pressure recovery data were
obtained at flight Mach numbers of 1.6, 1.8, and 2.0 over a range of
angles of attack from 0° to 9°.

Top or bottom location of the bypass within the diffuser did not
have significant effects on diffuser pressure recovery, bypass mass-flow
ratio, or drag coefficient over the range of angles of attack, flight
Mach numbers, and stable engine mess-flow ratios investigated. At a
flight Mach number of 2.0 and angles of attack from 3° to 9°, a larger
stable subcritical operating range was obtained with the bypass on the
bottom. Higher 1ift coefficients and more positive pitching moments
were obtained with the bypass on the bottom over the range of angles of
attack and flight Mach numbers investigated.

At zero angle of attack and a flight Mach number of 2.0, about
14 percent of the maximum stream tube entering the inlet was bypassed
with a drag increase of only 20 percent of the additive drag that would
result for equivalent spillage behind an inlet normal shock. Diffuser
total-pressure recovery was not significantly reduced compared with
results obtained without bypasses.

INTRODUCTION
Previous investigations (refs. 1 and 2) of an axially symmetric

spike-type nose inlet indicated that discharging mass flow in excess of
engine requirements by means of a bypass increased the drag by only a
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2 CONFIDENTTAL NACA RM ES3Az29

fraction of the additive drag that would result for equivalent normal-
shock spillage and did not significantly reduce diffuser total-pressure
recovery. The data of reference 2 were obtained with two fixed-area
bypasses on opposite sides of the model in a horizontal plane, and the
total mass flow bypassed was about 20 percent of the free-stream tube
entering the inlet. At angles of attack other than zero, various cir-
cumferential locations of the bypass may result in significant variations
in performance because of differences in the external flow field near the
bypass exit as well as internal flow differences near the bypass entrance.
In addition, bypass mass flows less than those of reference 2, which would
be necessary for a variable mass-flow bypass system, may not result in
proporticnal gains in performance compared with normal-shock spillage.
Therefore, in order to extend the results of reference 2, the same inlet
model was investigated with one identical bypass installed in the top or
bottom of the diffuser. The investigation was conducted in the NACA
Lewis laboratory 8- by 6-foot supersonic tunnel and the results are pre-
sented herein.

SYMBOLS

The following symbols are used in this report:

A area
Ap maximum external cross-sectional area
Cp drag coefficient, external drag plus internal and external drag

due to bypassing mass flow, D/qOAm

Ct, 1ift coefficient,
megsured 1lift minus internal 1ift due to engine mass flow

Y0hAn

Cm pitching-moment coefficient about base of model,
total minus internal pitching-moment due to engine mass flow
Aohmn!

Cp.p  thrust-minus-drag coefficient, (T - D)/qpA,

D drag force, external drag plus internal and external drag due
to bypassing

L length of subsonic diffuser, 46.9 in.

1 over-all length of model, 58.7 in.
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M Mach number
m mass flow
my, /) bypass mass-flow ratio, CyPass mass flow
PoVoA1
5 : engine mass flow
my /mg engine mass-flow ratio, S2& SCToks
P total pressure
P static pressure
(Ps/Pj) bypass or nozzle pressure ratio, surface static pressure with-
out bypass (station 33.0) per total pressure of jet
q dynamic pressure, ypMZ/2
T thrust, net force in flight direction due to change of momentum
of engine mass flow between free stream (station O) and dif-
fuser discharge (station 4) including balance base force
Vv veloclity
X longitudinal station, in.
a nominal angle of attack, deg
Y ratio of specific heats for air
o] mass density of air
Subscripts:
b bypass
X longitudinal station
0 free stream
1 leading edge of cowl
4 diffuser discharge at constant diameter section, station 46.9
4,1 diffuser discharge at constant diameter section (sting out),

station 46.9
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Pertinent areas:

Ap maximum external cross-sectional area, 0.360 sg ft

Ay inlet capture area defined by cowl lip (measured), 0.155 sq ft
Ay flow area at diffuser discharge, 0.289 sq ft

A4,l flow area at diffuser discharge (sting out), 0.338 sq ft

APPARATUS AND PROCEDURE

The model, which was identical to inlet B of reference 1, con-
sisted of a single-conical-shock inlet without internal contraction, an
annular subsonic diffuser, and a fixed-area bypass which was identical
to the bypass of reference 2 except for circumferential location (fig. l).
Tip projection of the 25°—half—angle cone was selected so that the
conical shock would intercept the leading edge of the cowl lip at a
flight Mach number of 2.0 and provide a mass-flow ratio of unity. At
this condition the streamiine behind the oblique shock was nearly alined
with the slope of the external portion of the cowl lip. Coordinates of
the cowl and centerbody are presented in table I and the longitudinal
area variation of the subsonic diffuser is shown in figure 2. The area
ratio is expressed as the quotient of the local flow area based on the
average normal to the annulus surfaces and the maximum flow area at the
diffuser discharge (station 46.9). The leading edge of the bypass was
approximately 6 inlet diameters downstream of the inlet entrance and
corresponded to a position slightly forward of the compressor inlet of
a turbojet engine or the combustion chanber of a ram-jet engine.

The bypass insert and the outer body, or shell, formed a convergent-
divergent asymmetric nozzle, shown photographically in figure 3 and in
detail in figure 4, which was capable of discharging in a nearly axial
direction about 10 percent of the maximum mass flow captured by the
inlet. Theoexternal surface of the bypass was a channel set at an

angle of 3% relative to the model axis of symmetry and did not protude
beyond the external cylindrical contour of the model.

The model, which was sting-mounted from the tunnel strut, had an
internal three-component strain-gage balance. Balance normal and
moment readings were used in conjunction with a static calibration of
model and sting to correct the angles of attack for deflections due to
aerodynamic loads. Actual angles of attack were as much as 0.4°
greater than the nominal angles; however, all data were reduced for the
nominal angles of attack. Differences in actual angles of attack
between the model with the bypass located on the top or bottom were
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within 0.1°. Regions of inlet instability, or pulsing, were determined
from time-force histories of axial-force variation and by means of high-
speed schlieren motion pictures.

The sum of the mass-flow ratios of the engine and the bypass, based
on the mass flow of a free-stream tube defined by the cowling capture
area, is the mass-flow ratio of the inlet. Methods of instrumentation
and calculation are given in reference 2. The accuracy of the engine
mass-flow ratio is approximately 1 percent at zero angle of attack and
within 2 percent at an angle of attack of 9°.

In order to account for the thrust developed between the plane of
survey (station 36.7) and the diffuser discharge (station 46.9), the
diffusion between these stations was assumed to be isentropic. The
measured thrust-minus-drag coefficients correspond to diffusion with
the support sting removed inasmuch as the force (determined by measur-
ing the static pressure) acting on the base of the strain-gage balance
is, within about 1 percent, equal to that obtained by diffusing isen-
tropically from area A4 to A4,l' Accordingly, the diffuser-discharge

Mach numbers are based on the area A4,l' The Reynolds number, based
on inlet diameter, varied from 2.10 to 2.19%x10°.

RESULTS AND DISCUSSION
Presentation of Results

The variation of bypass mass-flow ratio, total-pressure recovery,
diffuser-discharge Mach number, and coefficients of thrust-minus-drag,
drag, 1lift, and pitching-moment with engine mass-flow ratio are presented
in figures 5 to 8 for the bypass mounted in the top of the diffuser and
in figures 9 to 12 for the bottom bypass location. Data obtained at
flight Mach numbers of 1.6, 1.8, and 2.0 are presented in figures 5 and
9 for a nominal angle of attack of zero and in figures 6 and 10 for a
nominal angle of attack of 6° for the inlet with the bypass on the top
and bottom, respectively. Data for nominal angles of attack of 3° and
9° at a flight Mach number of 2.0 are presented in figures 7 and 11,
and 1ift and pitching-moment coefficients for all flight Mach numbers
and angles of attack investigated are presented in figures 8 and 12.
Schlieren photographs showing the flow field in the region of the bypass
discharge are presented in figure 13 for the two bypass locations and
angles of attack of 0° and 9°.

The thrust-minus-drag coefficients were obtained from the strain-
gage balance readings and correspond to the net force on the model in
the flight direction with sting removed and can be used for general com-
parisons of the data. Since the over-all thrust of the propulsive unit
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6 CONFIDENTIAL NACA RM ES3A29

is composed of the net forces of the inlet diffuser, engine, and exhaust
nozzle, the thrust-minus-drag coefficient can be used directly in com-
puting propulsive unit performance. Drag force was obtained by subtract-
ing the measured thrust-minus-drag from the thrust computed from the mass
flow consumed by the engine (see SYMBOLS). The drag coefficient thus
includes the external drag of the model plus the net internal and exter-
nal effect due to bypassing mass flow. Similarly, the 1ift and pitching-
moment coefficients are the difference between the measured value and the
computed internal 1ift or pitching moment caused by the engine mass flow.
The additive components due to mass-flow spillage behind the inlet shock
system are included in the drag, 1lift, and pitching-moment coefficients.
Pitching-moment coefficients were computed by assuming that the turning
of the engine mass flow occurred at the cowl lip.

Effect of Top or Bottom Location of Bypass

For symmetrical bodies at positive angles of attack, it has been
observed that the high-energy portion of the internal flow tends to con-
gregate in the upper portion of the diffuser (ref. 3) and that the
external flow field near the afterbody is characterized by vortex cores
or lobes near the upper surface and by a thinner boundary layer on the
underside due to the effects of viscous crossflow (ref. 4). Differences
in bypass and inlet performance might be anticipated for a bypass located
in these various flow fields. In general, however, top or bottom loca-
tion of the bypass had little effect on diffuser total-pressure recovery,
bypass mass-flow ratio, and drag coefficient over the range of angles
of attack and flight Mach numbers investigated in the region of stable
inlet flow. At angles of attack from 3° to 90, slightly lower drag
coefficients were obtained for the top location of the bypass. This
lower drag may be associated with the flow of the jet over the inclined
upper surface.

Of particular interest is the larger stable subcritical operating
range obtained with the bypass located on the bottom of the diffuser for
a flight Mach number of 2.0 and angles of attack of 39, 89, and 9°.

This is probably associated with the effects of bypassing the internal
flow. For example, the lower location of the bypass may eliminate (or
reduce) separated flow over the lower surface of the internal shell,
whereas bypassing air from the top may increase the crossflow to the
top and thus accentuate separation on the lower surface.

Lift coefficients were slightly higher and pitching-moment coef-
ficients were more positive over the range of flight Mach numbers,
angles of attack, and engine mass-flow ratios with the bypass located on
the bottom of the diffuser, probably because of incremental 1lift result-
ing from turning the bypass mass flow downward at the exit and because
of an effective change in body shape due to the jet (figs. 8 and 12).

CONFIDENTIAL
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At a flight Mach number of 2.0 and a nominal angle of attack of 0O°
(actual angle about 0.4°), the 1lift coefficient, compared with results
obtained without bypasses, was increased 0.02 with the bypass on the
bottom of the diffuser and decreased 0.015 with the bypass on the top.

Other small performance differences between top and bottom loca-
tion of the bypass exist over the range of conditions investigated;
however, no other consistent trends are evident.

The schlieren photographs in figure 13 indicate that the jet from
the bypass was discharged behind an oblique shock wave (similar to the
exit flow from a sonic symmetrical nozzle), and further, that the boun-
dary layer of the body had been displaced in a vertical direction by
the jet, a phenomena which was also observed in reference 5 where the
jet was discharged normal to the surface. Iosses attributed to the
oblique shock could be reduced by designing the bypass nozzle to re-
expand to the local exit conditions. Mixing phenomena of the jet,
boundary layer, and local stream are believed to be similar to those
discussed in reference 5.

Comparison With Previous Results

In an actual installation or application of a bypass system, the
amount of mass flow bypassed would have to vary in order to maintain
critical inlet flow over a range of engine mass-flow requirements.
This could be accomplished by varying the minimum area of the bypass
or by varying the number of open fixed-area bypasses; in either case
the sonic discharge area would be a variable. Therefore, the critical
inlet flow data obtained in this investigation, with two bypasses
(ref. 2), and without bypasses (ref. 1) represent three design points
which, considering first-order effects, define an envelope curve for
the operating characteristics of a variable mass-flow bypass system.
A comparison of these data is shown in figure 9.

At the design point of the bypass (critical inlet flow, My = 2.0,
a = Oo), the increase in drag attributed to bypassing 14 percent of the
maximum mass flow captured by the inlet is only 20 percent of the
additive drag that would result from equivalent mass-flow spillage
behind an inlet normal shock. In reference 2, 23 percent of the
critical mass flow was bypassed and the increase in drag was also
20 percent of the corresponding additive drag. At flight Mach numbers
of 1.8 and 1.6, drag coefficients at critical inlet flow are somewhat
higher than those obtained with two bypasses. This apparent discrepancy
may be within the accuracy of measurement of the comparatively small
force differences. Additional contributing factors are the small com-
putational error in mass-flow ratio and the difficulty of accurate
definition of the point of critical inlet flow.

CONFIDENTIAL
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Diffuser total-pressure recoveries were about equal to those
obtained with two bypasses (ref. 2) and slightly lower than those
obtained without bypasses (ref. 1).

Comparisons of the thrust-minus-drag coefficients (thus including
the net effects of pressure recovery and drag) indicate that maintaining
critical inlet conditions by means of a bypass increased the net force
on the model in the flight direction about 4 percent over that obtained
with inlet normal-shock spillage at a flight Mach number of 2.0
(fig. 9(b)). Further comparison at critical inlet flow indicates a
monotonic increase in thrust-minus-drag coefficient as the bypass mass-
flow ratio is increased (by addition of one and then two fixed-area
bypasses to the basic inlet model) at flight Mach numbers of 2.0, 1.8,
and 1.6. This increase in thrust-minus-drag is the net result of
increased diffuser thrust and the drag rise due to bypassing (diffuser
thrust increases because the diffuser-discharge Mach number decreases as
the engine mass-flow ratio is decreased). The increase in diffuser
thrust is the primary cause of the increase in thrust-minus-drag since
the change in bypass drag is comparatively small.

Application of the bypass is not necessarily restricted to main-
taining critical inlet flow conditions. The amount of mass flow in
excess of engine requirements can be proportioned between normal-shock
and bypass spillage and higher thrust-minus-drag coefficients compared
with those attainable with normal-shock spillage alone can be obtained;
however, this may not be so efficient as operation at critical inlet
flow.

CONCLUDING REMARKS

Diffuser total-pressure recovery, bypass mass-flow ratio, and drag
coefficient were not significantly affected by vertical location (top or
bottom) of the bypass over the range of angles of attack, flight Mach
numbers, and stable engine mass-flow ratios investigated. For angles
of attack from 3° to 9° at a flight Mach number of 2.0, a larger stable
subcritical operating range was obtained with the bypass on the bottom.
Over the range of angles of attack and flight Mach numbers investigated,
the 1ift coefficients were higher and pitching-moment coefficients more
positive for the bottom bypass location.

At a flight Mach number of 2.0, the bypass discharged about 14 per-
cent of the full-stream tube that entered the inlet with a drag increase
of only 20 percent of the additive drag that would result for equivalent
spillage behind an inlet normal shock. Diffuser total-pressure recovery
was not significantly reduced compared with results obtained without a
bypass.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio
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8Region of 25°-half-angle cone.
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Centerbody Cowling
Station, | Radius, Station, | External | Internal
in. in. in. radius, | radius,
in. in.
-2.86 a0
-.2 a).24 0 2.671 2.671
0 1.32 .015 2.686 2.656
.1 1.36 .5 2.79 2.73
.2 1.39 1.0 2.89 2.80
.3 1.42 1.5 2.97 2.86
.4 1.45 2.0 3.04 2.92
.5 1.48 2.5 3.11 2.98
.8 1.56 3.0 3.16 3.03
1.0 1.61 4.0 3.25 3.12
1.5 1.73 5.0 3.32 3.20
2.0 1.84 6.0 3.38 3.25
2.5 1.92 7.0 3.42 3.30
3.0 2.01 8.0 3.45 3.33
4.0 2.14 8.67 3.47 3.35
5.0 2.24
6.0 2.31
7.0 2.37
8.0 2.42
9.0 2.44
10.0 2.46
12.0 2.46
14.0 2.44
16.0 2.40
18.0 2.32
20.0 2.19
22.4 2.03
24.0 1.95
28.0 1.75
32.0 1.61
37.1 1.50
46.9 1.50
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Figure 5. - Concluded. Variation of inlet characteristics and force coefficients with mage-flow
ratio at zero nominal angle of attack for range of Mach numbers. Model with bypass on top.
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flow ratio at nominal angle of attack of 6° for range of Mach numbers.
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Model with bypass on top, nominal angles of attack, 0°, 3°, 6°, and 9°.
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Variation of inlzt characteristics and force coefficients with mass-
flow ratio at zerc nominal angle of attack for range of Mach numbers. Model with bypass
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Figure 10. - Concluded. Variation of inlet characteristics and force coefficients with mass-
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Figure 11. - Variation of inlet characteristics and force coefficients with mass-flow ratio at
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(b) Force coefficients.
Figure 11. - Concluded. Variation of inlet characteristics and force coefficients with mass-

flow ratio at nominal angles of attack of 3° and 9° for Mach number of 2.0. Model with
bypass on bottom.
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(¢) @ = 9°; bypass on bLottom; 1114/m.0 = 0.81; Ps/Pj = 0.18.

Figure 13. - Schlieren photographs of bypass discharge st Mach number of 2.0.
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