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ABSTRACT

This report presents the results of an experimental study of
the stress-strain relation of annealed 25 aluminum when subJjected to
compression impact. Twc methods of securing a dynamic stress-strain
curve are considered; namely from the measurement of impact stress
ag & function of meximum plastic strain and impact stress as & function
of the impact velocity. The dynamic stress-strain curves ocbtained by
these methods lie considerably above the static curve. The elevation
in strecs of the dynamic relations above the statlic relatlon increases

progrcasively from zero at the elastlic limit to about 20 per cent at
‘a strain of 4.5 per cent. However, the two dynamic relations are not

coincident which indicates that the behavior of the material cannot

be described by a single stress-strain curve for all impact velocities.
A family of stress-strain curves which differ slightly from e % other
and which depend upon the final strain is postulated in order to cor-
relate both sets of data adeqﬁately.
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INTRODUCTION

The behavior of metals and alloys under dynamlc loading condi-
tions has received considerable attention in recent years (l-6)%, It is !
found that in the plastic range, the stress for a given strain is increased
when the rate of loading is increased. Taylor and Whiffin (7, 8) have
found that the strengths of annealed copper and steel under impact condi-
tions are increased above the static values. Habib (9) has shown that in
compression impact tests on annealed copper, the stress for a given strain
is somewhat greater than the static stress at the same strain. The results
of an investigation by Clark and Wood (10) indicate that the ultimate ten-
sile strength of all the materials tested 1s greater under dynamic condi-
tions than under static conditions.

However, the interpretatlon of many of the previous investigations
in terms of elevated stress-strain relations is questionable as pointed out
by Clark and Duwez (6) and Lee and Wolf (1l). Furthermore, few tests have
been performed in which the complete stress-strain relation followed by a
material during high-speed dynamic loading could be sccurately determined.
Kolsky (12) has performed tests on copper and lead in which the stress-
gtrain relation under very high rates of loading was determined. The results
indicate that the stress for a given strain at very high loading rates is
equal to about twice the stress under static conditions. However, it is
difficult to interpret the results of this investigation since the instan-
taneous distribution of stress in the specimen may not be simple due to
the shape of the specimen and possible boundary constraints acting upon
it.

The present investigation makes use of an experimental technique
which is belleved to provide a basis for the interpretation of the measure-
ments obtained in terms of the stress-strain relation of a material under
impact conditions with considersbly greater assurance than has been here-
tofore possible. The technique used to accomplish this is as follows:

A compression stress is suddenly applied to one end of a long cylindrieal
specimen by longitudinal lmpact with an elastic anvil bar of the'same

*Numbers in parentheses refer to the references listed at the end of this
report.
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diameter as the specimen. The stress-time relation at the impact end of
the specimen and the plastic strain distribution in the specimen are wmeas-
ured for various known impact velocities. The theory of plastic wave
propagation in long, thin bars, developed by von Kdrmdn (13, 14), is used
to deduce the stress-strain curve of the material from these measurements
and to describe the deformation process in the specimen during lmpact.

In the present paper, this technique is used to determine dynaumic stress-
strain relations for annealed 28 aluminum,



EQUIPMENT

The compression impact tests were made with the vertical impact .
machine shown in Fig. 1, which was described in a previous report (15).
Briefly, the features of this machine are as follows: A stationary tobin-
bronze anvil bar of the same dlameter &s the specimen 1s held vertically
in a central position between the rails of the machine by means of a guard
tube and expendeble spacer. An annealed copper cylinder positioned between
the lower end of the anvil bar and a fixed base serves to absorb most of
the impact energy in the anvil bar by plastic deformation. Since a slight
misalignment between the anvil bar and the specimen may occur, the top
end of the anvil bar is provided with & 19-inch radius convex spherical
surface to prevent initial impact with the corner of the specimen,

When the specimen impacts the anvil bar, a series of compression
gtrains are propagated through the specimen, and an elastic compression
wave is propagated through the anvil bar. Thus, any change in stress at
the interface between the anvil bar and specimen 1s propagated through
the anvil bar at the elastic wave velocity. The length of the specimen
is much less than the length of the anvil bar; hence, the time required
for the first reflecting wave from the lower end of the anvll bar to reach
the interfsce is greater than the time required for complete unlocading
of the interface by the waves in the specimen. Thus, the interface be-
tween the anvil bar and specimen is alweys unloaded by waves reflected
from the free end of the specimen; and consequently, all complex reflec-
tions from the lower end of the anvil bar need not be considered,

The hammer, which slides on the two vertical ralls, is provided
with a central hole through which the guard tube may pass. Twenty rubber
vands 3/8 inch thick and one inch wide, attached to the hammer and frame
of the machlne, serve as a means for accelerating the hammer to the de-
sired lmpact velocity. The specimen is held centrally in the hammer by
means of a lucite shear disk shrunk onto the bar and clamped in the hammer.
The shear disk strikes the top of the guard tube Just prior to the impact
of the specimen on the anvil bar in such a manner that the specimen is
released from the shear disk and impacts the anvil bar while 1t is free
from any constraints due to the accelerating mechanism. The hammer con-
tinues downward, passing around the guard tube, and is decelerated by
mesns of four vertical friction brakes.

3
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The velocity of the hammer, and, hence, the specimen impact veloc-
ity, is determined by measuring the time to travel between three fixed points
near the position of impact. This ls accomplished by causing electrical con-
tacts to be made at these three points as the hammer passes them, and the
signals so produced are recorded on a cathode-ray oscillograph together
with an appropriate time calibration trace,

Impact velocities less than 19 ft/sec cannot be accurately deter-
mined in the vertical impact machine. For this reason, tests at impact
velocities lower than 19 ft/sec were performed by supporting the specimen
in a horizontal position as & pendulum by means of six wires attached at
two positions along the specimen. The anvil bar was supported in a hori-
zontal position such that the specimen when released from & given helght
centrally impacted the anvil bar at the minimum point in the aswing.

The stress as a function of time at the interface between the
anvil bar and specimen is measured during impact by means of SR-4 strain
gages cemented to the anvil bar at a position 3 inches from the interface.
The strain gages are connected to a suitable recording system employing
a single sweep cathode-ray oscilloscope and recording camera. Mesns
for introducing known resistance changes in the strain gage circuit arn
provided in order to calibrate the stress axis of the records, and
appropriéte osclllators provide the required time calibrations.

The plestic strain in the specimen after impact is determined
with & comparator ruling machine. This machine is used for the purpose
of marking the specimen at various intervals along its length with fine
scratches before testing and to measure the change in diameter at these
positions produced by the impact. The difference between the diameter
at any position before and after impact divided by the original diameter
is the permanent circumferentisl plastic strain. The permenent longi-
tudinal plastic strain is equal to twice the circumferential plastic
strain since for the maximum strains reached in these experiments (about
5 per cent), no volume changes are produced. This fact was established
by static tests in which both circumferential and longitudinel strains
were measured.

The comparator ruling machine consists of a sliding carriage
which may be accurately positioned along the entire length of a station-

ary specimen. A scratching devide, a low-power microscope, and a diameter
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comparator are mounted on the carriage. The scratching device consists

of a slmple mechanism on which a rigid knife blade is mounted, and this

is used to make reference scratches on the specimen. The low~-power micro-
scope 1is equipped with an eyepiece contalning cross hairs which permit

the accurate positioning of the carriage with respect to any one of the
scratches along the specimen. The diameter comparator consists of two
knife edges in conjunction with a dial indicator for measuring the diam-

eter of the specimen.



J1K5 1 PROCEDURE AND EXPERIMENTAL RESULTS

Preparation of [mpact lest Specimens

The specimens used in this investigation were 1/2 in.-diameter
extruded 28 sluminum bars. The test specimens were cut from the extruded
bars and machined to a length of 23 or 46 in. After machining, the speci-
mens were annealed in & special furnace at 670°F for two hours and furnace-
cooled to room temperature. The temperature gradient along the specimen
length was less than 12°F,

Static Compression and Tension Tests

Static compression and tension tests were performed in a 150,000 1b
Olsen Universal Testing Machine having a least reading of 1 1b (corresponding
to a stress of approximately 19 1b/in.® in the gage section of the test
specimen). The machine was recently calibrated and showed an error of
less than O0.75 per cent. The static compression speclimens shown in Fig. 2
were machined from the impact specimens. Eccentric loading was reduced
by placing spherical loading blocks at each end of the compression test
specimen.

Three tests were performed in which the plastic longitudinal
and circumferential strain were measured. A given load was applied to_the
test specimen and maintained for a period of 20 min or until equilibrium
was reached. The load was then removed and the plastlc strain in the
specimen was messured. The longitudinal strain was determined by measur-
ing the change in the distance between pairs of scratched lines on two °
opposlte sides of the test specimen., This change in distence was deter-
mined by means of a filar eyeplece and a low-power microscope. The cir-
cumferential strain wes determined by measuring the change in diameter
of the test specimen. The change in diameter divided by the original
diameter is the circumferentiasl plastic strain. The longitudinal plastlc
strain ic the circumferential strain divided by Poisson's ratio which
is assumed to be equal to 0.5 for plastic flow. The longitudinal plastic
strain could be determined “oc within 0,0004 in./in. by both methods., A
comparison was made between the stress-strain relations obta’aed by the
two methods., The comparison indicates that the stress-strain relations
obtained by each method are the same within the accuracy of measurement.

‘The mean stress-strain curve up to 10 per cent strain, corrected for

[
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elastic recovery upon removal of the load, is shown in Fig. 3 by the upper
curve denoted "compression."

Two continuous loading static compression tests were performed
using SR-4 resistance sensitive wire gages to measure the circumferential
strain. The circumferential strain could be determined to within 2.3
per cent. The longitudinal strain is determined from the equation

€=‘_€£+E__ l_é (l)
L v E 7,
P P
where EL is the longitudinal strain,
Gc is the circumferentisel strain,
15 is Poisson's ratio for plastic flow,
4 1is the elastlc Poisson's ratio,
e
0” is the compressive stress, and
E 1s Young's modulus.

The mean static stress-strain curve for the two tests up to 1 per cent
strain is shown in Fig. 3 by the lower curve denoted "compression.”

Four static tension tests were performed to determine accurately
the stress-strain relation at low strain values., The statlic tension speci-
men 1s shown in Fig. 2. The strain in the tension specimen was determined
with the use of SR-4 resistance-sensitive wire gages and a Holz extenso-
meter having a least reading of 0,000025 in./in. The mean stress-strain
curve for the static tension tests 1s shown in Fig. 3. The lower curve
marked "tension" was obtained with the SR-4 gages, while the upper curve
marked "tension" was cbtained with the Holz extensometer.

A comparison of the static stress-strain relations obtained by
the above methods indicates that for the purpose of this investigation,
the longitudinal strain can be accurately determined from circumferential
strain measurements.

Determination of the Velocities of Elastic Waves
The velocities of elastic waves in the specimen and in the tobin-

bronze anvil bar were determined in order to compute the relations between
the strain wavee in the specimen and the anvil bar. The elastic wave
veloclties were determined by measuring the resonance frequency of the
bars in longitudinal vibration. The procedure of the previous investi-
gation (15) was followed.
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The resusbs of the determination of the vel-c.ties of propagation
ot elastic waves for the materials used in this investigation are given
in Table I. The resonsnce frequencies are given for the second and third
modes of vibration. The elastic wave velocities are computed for each
test, and the average velocity in each material is also given., Young's
mcdulus of each material is computed from the average elastic wave veloc~
ity and the uass density,/o » The value of'/b given for each materisl
in Table I iy an average of three densities obtained by weighing a known
volume of the material. It is estimated that the accuracy in the deter-
mination of elastic wave velocltles is within 0.6 per cent. The deviation
of values of elastic wave velocities from the uean value is less than 0.7
per cent,
Compression Impact Tests

A series of tests was made to determine the relations between
the compression stress, 01, at the impact end of the specimen, the
plastic strain distribution in the specimen after impact, and the particle
veloclity, Vs imparted to the specimen at the impact end. The particle
velocity, vy at the impact end of the specimen differs from the impact
velocity, VO, since the acoustic impedance of the anvil bar is finite.

The particle veloeity, vis is given in terms of measured quantities by

v, =V _ = —_ (2)

where Vo is the velocity of impact,
¢1 is the compression stress at the interface,
/ﬁi is the mass density of the anvil bar, and
cé is the velocity of propagation of an elastic wave in the anvil
bar.
The results of the compression impact tests are summerized in
Table II. The plastic strain distribution in the specimen after impact
was determined for most of the tests. The maximum plastic strain near
the impect end of the specimen for these tests is also given in Table II.
Impact velocities from 19.2 to 125 ft/sec were obtained in the vertical
impact machine. Impact velocities from 3.15 to 15.9 ft/sec were obtained
by supporting the specimen horizontally as a pendulum. The points repre-

senting the particle velocilty, v.

1» 8B & function of maximum compression
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Table I

ELASTIC WAVE VELOCITIES AND MODULI OF ELASTICITY

Resonance Elastic Wave Modulus of
Test Length Frequency Velocity Elgsticityﬂ
Number in. Mode Cycles/sec in./sec 10° 1v/1in.%
Determinations on Annealed 25 Aluminum
/2= 2.5k x 107* 16 sec®/in.*
1 48 2 Lo76 195,600
2 L8 2 Loe2 195,000
3 48 3 6154 196,900
L 48 2 Lo8L 196,000
5 47 31/32 2 Lo65 195,000
6 L7 31/32 2 4060 194,800
7 47 31/32 o 4060 194,800
8 47 31/32 3 6110 195, 40O
Average 195, 400 9.71
Determinations on Anvil Bar
(tobin bronze)
Vade 7.85 x 1o'h 1b secz/in.h
9 87 13/16 2 1587 139,200
10 87 13/16 2 1589 139,600
11 87 13/16 3 2387 139,700
12 87 13/16 3 2301 139,900
13 87 13/16 2 1585 139,100
Average 139,500 15.2
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Table

IT

RESULTS OF COMPRESSION IMPACT TESTS

Maxlimunm
Specimen Stress
Number 103 1b/in.2
20A 1.30
21C 1,82
20B 2.43
20C 2.78
20D 2.90
21B 3.23
Loa 3.35
L4OB 3.84
6A k.12
5A h.17
214 4,21
19F L, 65
oF 5.07
22¢ 5.23
5E 5.74
22D 5.81
19E 5.87
23A 6.23
19D 6.36
23B 6.68
Lp T7.45
LD 7.52
ke 7.56
4B 7.58
LF 7.60
La 7.65
1A 7.68
1B 8.22
1¢ 8.82
1D 9.39
5D 9.48
1E 9.94
1F 9.98
35A 10.4
35B 10.6
17E 11..5
184 11.8
18B 12.2
19A 12.4
18¢C 12.5
18D 12.8
18E 13,0
18F 13.4

Maximum
Velocity Maximum Permaenent
of Impact Particle Velocity Strain
ft/sec ft/sec per cent
3.15 2.16 -
4,50 3.12 --
6.21 4,36 -
8.00 5.88 -
9.82 7.61 --
10.0 7.54 -
12.4 9.83 --
14.6 11.6 --
16.8 13.6 0.30
16.8 13,6 0.35
15.9 12.7 -—-
19.2 15.7 0.25
19.7 15.8 0.35
25.3 21.3 0.45
26.6 22.2 0.50
29.9 25,5 0.55
31.1 26.6 0.70
33,2 28.5 0.70
37.6 32.8 0.90
38.2 33.1 0.90
4z.9 38.2 1.10
45.8 40.1 1.10
44 .8 39.0 1.10
44,3 38.5 1.10
s, 4 39.6 1.05
Lh.9 39.1 1.10
Li.s 38.6 1.20
52.0 45,7 1.45
58.2 51.5 1.65
67.1 60.0 1.90
71.6 6Lk 2.05
70.8 63.3 2,20
76.0 68.4 2.35
80.0 72.1 2,65
87.5 79.4 2.85
97.0 88.3 3,20
98.5 89.5 3.40
103 93.9 3.65
122 113 3.85
111 102 4,00
115 106 k.15
123 113 k.65
125 115 4,80
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stress, G ,, at the impact end of the specimen are plotted in Fig. k.

The pointslrepresenting maximum compression stress, 63} as a function
of the measured strain, 6&, near the lmpact end of the specimen are
plotted in Fig. 5. The strains are corrected for the elastic recovery
upon removal of the load. A tracing of a typical record of stress vs.
time at the ilmpact end of the specimen is shown in Fig. 6.

The stress~straln relation exhibited by the material may be
deduced rather simply from the experimentally determined 01 versus v,
relation 1f the following assumptions are msde, First, it is assumed
that the stress-particle velocity relationship during loading follows
this curve continuously up to the point corresponding to the given impact
stress. As 1s discussed later, however, this relation may only represent
the locus of the terminal points of & number of dlstinct stress-particle
velocity curves which depend upon the impact stress. Second, it is
assumed that the kinetlc snergy and shear stresses associated with the
lateral motion of the particles of the specimen can be neglected. .The
stress-gtrain relation obtained under these assumptions will later be
compared with other experlimental results to determine the validity of
these assumptions.

Under these assumptions, the strain corresponding to a given
stress may be expressed in terms of a definite integral which depends
upon the slope of the stress-partizle velocity relation up to the given
stress. Thus, the strain, E&, at the impact end of the specimen corres-
ponding to & gilven lmpact stress, 01, may be expressed in terms of the
experimental 01 versus v, relation by

- 7
51 =f»r§—’,—.‘j§— (3)
v
[-J

The slope of the 6'1 versus vl curve shown in Fig. 4 is determined at
conveniently located points, and the 51 versus éa relation is computed
numerically using Equation 3. This stress-strain relation is shown in
Fig. 7 by the curve designated as stress-velocity measurements. The
static stress-strain curve and the stress-strain relation, 0'1 versus

é 12 determined from impact stress and measured plastic strain are
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shown for comparison. The latter is designated by the curve, stress-
plastic strain measurements.

The stress-strain curve deduced from stress-velocity measure-
ments is somewhat different from the curve determined from stress-measured
strain, Thus, for a given stress, the strain deduced from stress-velocity
measurements with the theory of plastic wave propagation is less than the
meagured strain after impact. However, both of these stress-strain rela-
tions lie considerably above the static stress-strain relation. Thus,
the experimental results indicate that under these lmpact conditions,
the excess of the stress at a given strain over the static stress at the
same strain increases progressively from zero at the elastic limit to
about 20 per cent at a strain of 4.5 per cent.

Moderate Loading Rate Tests

A further series of tests performed at moderate strain-rates
indicates that for this materisl, the relatively large increase in stress
for a given strain under impact conditions 1s associated only with the
extremely high loading rates accompanying impact.

The moderate loading rate tests were performed in a rapid-load
testing machine by manipulating the load actuating mechanism in such a
manner that & nearly constant rate of strain was cbtained, The specimens
were the same as the static-tension specimens shown in Fig. 2. The load
acting on the specimen was measured by means of a dynamometer employing
type AB-14, SR-4 strain gages with suitable temperature compensation.

The strain in the speclmen was measured by means of an extensometer em-
ploying similar SR-4 strain gages. The load and the strain were recorded
on photographic paper by & recording oscillograph. Timing lines at inter-
vals of 0.1 sec were projected onto the test record to provide a time base.
The stress could be determined to within 1.5 per cent and the strain to
within *1 per cent. Two loading rates were used. These loading rates
corresponded to strain rates of 0.011/min and 0.040/min. The stress-strain
curves for the two rates are shown in Fig. 8, together with the static
stress-strain curve. These results show that no significant changes in

the stress-strain curve are produced by moderate loading rates.
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Lagrange Diagram

The process of wave propagation in the specimen can be deduced
from a stress-strain relation of the material and represented in a Lagrange
or position-time diagram. The stress, strain, and particle velocity are
determined as functions of position and time from this diagram. Thus, the
stress~time and strain-position relations deduced by means of a Lagrange
diagram {rom the stress-strain relation can be compared with the experi-
mentally determined relations. The dynamic stress-strain curve deduced
from maximum stress-impact velocity measurements was used in constructing
such a Lagrange diagram. It is assumed that the stress-strain path during
loading follows this stress-straln relation and upon unloading follows the
normel elastlic hysteresis relation. The theory and graphical sclutions
for strain propagation as developed by von Kdrmin, Bohnenblust, Hyers,
and Charyk (16, 17) were used in comstructing the Lagrange diagram shown
in Fig., 9. The details of the method of comstructing a Lagrange diagram
from a stress-straln relation are given in the appendix.

The Lagrange diagram was constructed for the maximum impact
stress, 0“1 = 13,400 lb/in.a, employed in the lmpact tests. The dlagram
conslsts of three reglons; namely, a plastic region, an elastic hysteresis
region, and the reglon representing the unloaded state ahead of the initial
elastic wave front. The heavy irregular line represents the boundary
between the plastic and hysteresis regions for the maximum velocity of
impact. The lighter lines indicate the appropriate characteristics in
the Lagrangean plane. The diagram includes the portion of the anvil bar
on which the strain gages are mounted so that the stress-time relation at
the gages may be determined and compared with the experimental measurements.
The line, x = O, represents the interface between the specimen and anvil
bar. Similar Lagrange diagrams were also constructed for impact stresses
of 9,500 1b/in.®, 7,500 1b/in.2, and 3,850 1b/in.2 The plastic hysteresis
boundary lines for these cases are indicated in Fig. 9 by the heavy dashed
lines, together with those portions of the heavy full line which are common
to the several diagrams.

A prediction of the stress as & function of time at the interface
between the specimen and anvil bar masy be determined from the Lagrange
diagram. Such stress-time relations for impact stresses of 13,400 lb/in.z,
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9,500 1b/in.%2, 7,500 1b/in.2, and %,850 1b/in.2 are shown in Figs. 10,
il, 12, and 13 respectively, together with the corresponding experimental
relations obtained from stress-time measurements. The plastic strain
distributions determined from the Lagrange dlagram for the first three

of the above impact stresses are shown in Figs. 14, 15, and 16, together
with the measured strain distributions.

The plastic strain distributions shown in Figs. 1k, 15, and 16
indi:ate that the maximum plustic strains at the impact end of the speci-
men which are computed from the Lagrange diagram are not equal to the
meesured strains., The measured plastic strain near the impact end of
the upecimen 1s greater than the maximum plastic strain computed from
the Lagrange diagram. A comparison of other plastlc strain distributions
indicates that in nearly every case the measured maximum strain 1ls greater
than the computed maximum strain. For this reason, strain as a function
of time during impact was determined experimentally at several positions
along the bar in an attempt to explein the discrepancy.

The strain in the specimen as a function of time was determined
during impact with the use of SR-U4 resistance sensitive wire strain gages
cemented to the specimen. Gages were mounted in such a manner thet the
clrcumferential strain was recorded. In this manner, tension strains
are measured. This was considered necessary since the reliability of
wire straln gages at large values of compressive strains is uncertain
(18). One channel of the recording system was used to determine stress-
time at the impact end of the specimen in the usual manner, and the
other channel was used for strain-time measurements. A reference timing
merk was simultaneously impressed on each oscillloecope screen trace of
stress-time and strain-time in order to establish the time at iwmpact on
the strain-time record.

FPour typical experimental strain-time records are shown in
Figs. 17, 18, 19, and 20, The strain-time relations are also determined
theoretically from the Lagrange diagram and shown in the figures for com-
parison. The results indicate that the meximum strain determined from
strain-time records near the impact end of the specimen is comparable
with the measured strain after impact. Furthermore, this maximum strain
is obtained during the initial loading of the specimen, and the strain

remeins neerly constant after Lhis maximum strain is reached.
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DISCUSSION OF RESULTS

The experimental results of this investigation indicate that
the stress-strain relation deduced from stress-velocity measurements with
the use of the theory of propagation of plastic strains lies asbove the
stress-streln relation determined from stress-plastic strain measurements.
Thus, for a given stress, the strain deduced from stress-velocity measure-
ments is less than the strain measured after impact. However, a dynamic
stress-strain relation determined from either stress-veloclty measurements
or stress-plastic strain measurements lies considerably above the static
stress-strain relation.

The dynamic stress-strain relation cannot continue to represent
the behavior of the material for an indefinite time, and the stress and
strain must approach some equilibrium position on the static stress-strain
curve if the load is maintained long enough. Thus, the plastic strain
measured after impact may represent the straln associated with the wave
propagation process and an additional strain due to relaxation which
takes place after the initial impact. The stress-strain relation during
relaxation cannot be determined from the experimental data, but the over-
all magnitude of the maximum strain relaxation compatible with experimental
observations can be estimated.

The initiation of any additional plastic strain at the interface
between the anvil bar and specimen after initial impact must be accompa-
nied by elastic unloading waves propagating through the specimen and
anvil bar. Thus, any increase in strain after the initial strain must
be accompanied by a decreese in stress at the interface. However, the
experimental stress-time records indicate that during impact the stress
at the impact end of the specimen remains nearly constant up to the time
at which unloading waves originating from the free end of the specimen
arrive. This can be seen in Figs. 10, 11, 12, and 13. Furthermore,
any increase in strain which might take place following the passage of
the initial strain waves would be expected to produce & nonuniform dis-
tribution of permanent strain in the section of the specimen adjacent
to the impact end., That this is not the case is illustrated by the typi-
cal experimental permanent strain distribution relations shown in Figs.
1k, 15, and 16. Furthermore, the strain-time records shown in Figs. 17

and 18 show that the full value of the permanent strain near the impact

o0
.
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end is attained during the passage of the initial plastic wave front. (The
rounding over in these records as the straln approaches its maximum value
is due to the limited high frequency response characteristics of the ampli-
fication system employed and does not represent any real effect in the
material.) For these reasons, it may be concluded that no appreciable
gtrain due to relaxation effects has taken place in the period of time
during which the impact stress is maintained in these experiments. (This
time may be seen from the lLagrange diagram in Fig., 9 to be from sbout
0.23 to about 0.33 millisec, depending upon the impact stresa) Therefore,
some other explanation must be sought to explain the differences between
the dynemic stress-strain relations as determined from stress-velocity
measurements and from stress-permenent strain messurements.

~ The desired correlation of the experimental date may be obtained
by abandoning the assumption that a single dynamic stress-strain relation
exists which 1is capable of describing the behavior of the material for
all impact stresses. A family of stress-strain relations, each member
bf which depends upon the impact stress, may be used to explain the dis-
crepancy between measured strain and strain values deduced from stress-
velocity measurements. Each member of this family of stress-strain rels-
tions must satisfy several conditions determined by the experimental
measurements. First, the end point of the curve must correspond to the
measured values of lmpact stress and permanent strain at the impact end
of the bar; that is, the curve must terminate on the stress-plastic strain
measurement relation shown in Fig. 5. This condition may be expressed
in terms of the wave velocity function

w(€) =/ 2 2L ()

associated with that particular stress-straln curve by means of the rela-
tion

¢
¢ - [pfoe} as (5)

where G(& ) denotes the desired stress-strain relation. Second, the
particle velocity due to the impact as gliven by
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v, = cx(€)ag (6)

must be equal to the particle velocity for that particular impact stress
as determined experimentally. Third, for strains in the elastic region,
the wave velocity must be equal to the normal veloclity of elastic waves

in long rods; namely,

(€ ) -/73- for €€6, (7)

where 8, is the elastic limit strain, and E is Young's modulus for the
metericl. Finally, the stress-strain relation must be such that by con-~
structing a suitable Lagrange diagram based upon it, curves of permanent
strain distribution in the specimen maey be obtained which agree with the
experimental strain distribution curves., It is not possible to express
this last condition in closed mathematical form, Hence s 1t will not be
used explicitly, but it will be shown later that the stress-strain rela-
tions chosen lead to an improved agreement between predicted and meas-
ured strain distributions, particularly in regard to the distance traveled
by the maximum strain, 61_, during the impact.

Thus, all of the explicit conditions to be satisfied by each
member of the desired family of stress-strain relations have been ex-
pressed in terms of the wave velocity as a function of strain, (€ ),
as given by Equations %, 6, and 7 above. Once C*( € ) is determined, the
corresponding stress-strain relation may be readily determined by the
use of EqQuation 5 with arbitrary values of G* and & replacing a"1 and
§ .. Of course, these three conditions are insufficient to dete;mine
¢*(& ) unambiguously; hence s the form of the function must be chosen
somewnet arbitrarily. The assumed form of the wave velocity function is

c*(€) =c,  for £56,
(€) =c(&) + AC(E) for & 2E2€,
with acE) =a(E-§,) (8)

where CO =-¢7=— is the elastic wave velocity,

c(g) = 7‘}— 'g%l" 1s the wave velocity corresponding to the
!

experimental stress-plastic strain measure-

ment curve shown in Fig. 7,
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éo 1s an undetermined constant representing the elastic limit
strain on the desired stress-strain curve, and
a is a second undetermined constant.
Both §, and a depend upon the final strain, 51 s corresponding to each
individual member of the family of stress-strain curves to be determined.

Substitution of the assumed form of the wave veloclty as given
by Equation 8 into Equations 5 and 6 ylelds two relations in the unknowns
6 and @ . A trial and error solution was used to determine the values
of a and &, corresponding to final strains of 2.0, 3.5, and 5.0 per cent.
The stress-strain relations are then computed from Equation 5. These are
shown in Fig. 21. The stress-strain relations determined from stress-
velocity measurements and from stress-plastic strain measurements are
shown for comparison.

The family of stress-strain relations deduced in the above manner
may now be compared with experimental results which are independent of the
data upon which the deduction 1s based; namely, from any particular member
of the family of stress-straln relastions, the distance which the maximum
strain, 51
structing & suitable Lagrange diagram based upon that stress-strain rela-

, should propagate along the specimen may be predicted by con-

tion. This predicted distance of propagation may then be compared with
the corresponding experimental value &g determined from the measurements
of plastic strain distribution. The required Lagrange diagrams need

only be partially constructed to determine the desired propagation dis-
tance, and this reduces the labor involved by a large factor. The above
procedure haes been carried out for the values of the maximum impact
atrain, é?l, of 2.0, 3.5, and 5.0 per cent. The partlal Lagrange diagram
for the case 61 = 5 per cent 1s shown in Fig. 22. The results of all
these computations are given in Table III, together with the correspond-
ing propagation distances predicted from the original Lagrange dlagram
deduced from stress-velocity measurements and the experimental distances
of propagation for the same values of 51. These results show that the
propagetion distances computed from the stress-strain relations which -
depend upon the final strain compare more favorably with the measured

values than the distances computed from stress-veloclity measurements.
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Table IIT
PROPAGATION DISTANCES OF MAXIMUM STRAINS

From Plastic
train Distribution

Maximum Strein Measurements A B
Per Cent In. In, In.
2.0 5!0 7'0 5‘9
3.5 h, 6.2 5.3

5.0 5.0 5.8 5.0

A - From Lagrange diagram deduced from stress-velocity measurements.
B - From Lagrange diagrams deduced from stress-strain relations which
depend upon the final strain, 61.

The stress-strain relations which depend upon the final strain,
shown in Fig. 21, are consistent with the generally accepted idea that
stress-strain relations are progressively raised as the rate of loading
is increased. In this present case, the rate of loading increases as
the impact velocity (and corresponding impact stress, Gjl, and final
strain 61) is Increased. The reason for this 1s twofold, First, the
rise time of the stress at the impact surface decreases as the impact
velocity is increased, because the time required for the end surface of
the specimen to deform into conformity with the spherical end surface of
the anvil bar decreases for increasing lmpact velocity. Hence, the mean
icading rate given by the ratio of the impact stress to the stress rise
time increases with increasing impact velocity.

The behavior of a specimen subjected to a given impact cannot
(strictly speaking) be completely described on the basis of the appropri-
ate member of the family of stress-strain relations if it is assumed, as
indicated above, that the diffe;ences between the members of this family
of curves are due to differences in loading rates. This is simply due
to the fact that in such an impact the loading rate varies rather widely
with position along the specimen and with time at any given position.

In general, the loading rates decrease with increasing distance from

the impact surface. Thus, since different stress-strain relatlons corre-
spond to each loading rate, no single stress-strain relation can be en-
ployed, strictly speaking, to describe the behavior of the entire specimen.
It may be noted that the family of stress-strain relations determined
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above were deduced from experimentel data measured at the impsected end
of the specimens, Hence, these stress-strain relations correspond to
the highest loading rates present in the specimens. The stress rise
times at the impact surface in these experiments are estimated to be

in the range of 2 to 20 microsec, with the longer times corresponding
to lower impect velocities. Thus, the mean loading rates at the impsact
surface were probably in the range 2 x lO8 to T x 109 lb/in.2 per sec,

A complete description of the wave propagation effects under
impact loading in a material exhibiting time-dupendent mechanical proper-
ties must be based upon a complete stress-strain-time relation for that
material. One attempt at such a treatment has been given by Malvern (19).
Unfortunately, the particular form of the time dependence of the stress-
strain properties assumed by Malvern does not seem to be capable of pre-
dicting behavior which is consistent with the results of impact experi-
ments. The problem of finding functional relationships between stress,
strain, and time which provide for agreement between theory and experiment
and are at the same time mathematically feasible to use is probably very
difficult.,

Fortunately, the complexities and difficulties of theoretical
treatment Just discuscsed are concerned with effects of rather minor maegni-
tude in many materials, as Judged from experimentsl investigations. Thus,
the results of the present experiments indicate that the behavior of
anneeled 28 aluminum under impact conditione may be predicted with good
accuracy, using a single time-independent dynamic stress-strain relation.
In this case, for example, & stress-strain relation which is an average
between the curve deduced from stress-velocity measurements and the curve
deduced from stress-plesgtic strain measurements could be used to predict
plastic wave propagation phenomena with good accuracy.

Qualitatively similar behavior under impact loading is to be
expected for materials which are similar to 25 aluminum Iin other respects.
Thus, pure metals and solid-solution alloys which exhibit the face-centered
cubic crystal structure may be expected to behave in the same general manner.
Examples of such materials are copper and austenitic stainless steel. How-
ever, low-carbon steel and probably other body-centered cubic metals be-

have quite differently under suddenly applied loads (15, 20).
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During the preparation of this report, a report of a similar
investigation by J. D. Campbell (21) was published. Campbell's experi-
ments differed from those reported here in that repeated impacts on the
same specimen were employed, and the impact velocities used did not cover
nearly as wide a range as in the present investigation. Nevertheless,
Campbell obtains & raised dynamic stress-strain relation for an annesled
aluminum alloy for strains up to 0.6 per cent which is very similar to
the results reported in this report. Campbell's data and analysis are
not sufficient to show that the dynamic stress-strain relation varies

slightly with impact strers.



SUMMARY

The results of this investigation show that the behavior of
annealed 25 aluminum under conditions of impact loading into the plastic
strain range can be represented to a good approximation by a single dynamic
stress-strain relation. This dynamic stress-strain relation lies above
the static stress-strain curve., The excess of dynamic stress over the
static values increases progressively with strain, reaching about 20
per cent of the static stress at a strain of 4.5 per cent.

However, the results also show that higher order effects can-
not be correlated with such a single dynamic stress-strain relation. A
detailed analysis of the experimentsl measurements by means of the von
Kdrmdn theory of propagation of plastic strains in long rods indicates
that the behavior of the material near the impact surface may be des-
cribed by a family of stress-strain relations. Each member of this family
of curves corresponds to & given impact stress, and the curves are arranged
consecutively in order of increasing impact stress. Ali of these curves

lie within 8 narrow region in the stress-strain plane.



APPENDIX

The present theory of the propagation of longitudinal waves
of plastic deformation in long, thin bars was developed by von Kdrmén
(13, 14). The methods of integration and graphical solutions for problems
of strain propagation were developed by von Kdrmdn, Bohnenblust, Hyers,
and Charyk (16, 17). Since these reports are not readily avallable, a
summary of the graphical solution used in this investigation will be
given.

Let the stress-strain relation for the material be given by
a function of the form ¢ = 0" (6 ) where 6° is the stress and & 1is the
strain. This relation holds for the first deformation of the material
beyond the elastic limit. If the load is decreased, the stress and strain
decrease according to Hooke's law.

Consider a long bar of the material in which one end of the
bar 1s suddenly put into motion by longitudinal impact. The character-
istic parameters which define the state of strain and motion of an element
in the bar are the following: ‘

o Qu _
§ = S - strein
G- = stress
ou _ _
v = 3t particle veloeity

where x is the distance along the bar, and

u is the longitudinal displacement of & cross section,
The equation of motion of a small element of the rod, neglecting the
kinetic energy and shear stresses associated with the radial motion of
the bar, is given by

.9.1_=.§9:‘

/° ot x

where,/: is the mass density of the material, Using the relation for

the velocity of propagation of & plastic strain as shown by von Kdrmdn (13),

the equation of motion becomes

59
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%—%=caﬁ_—. (9)

On the other hand, from the relations v = -g-lé- and & = g—-‘i , 1t foliows

that

Cr
<

—.=_é§. {10)

X ot °

&

By using & transformation of variables, the strain, & , and the particle
velocity, v, are introduced as independent variables. Then Equstions 9
and 10 take thg form

—a—x = 02 -Q—t-
o0& v
fg = g—é . (11)

The eque.téions become more symmetrical by introduction of the function
f = / ¢d€ . The equations become
[

2x . 0%
oF ov
§§=c-§7?-. (12)

The process of proupagation can be represdented in a Lagrangean
pisne wich x and 1t as coordinates, and & velocity piane with v wnd gﬁ 85
coordinates. The Equations 12 have fixed characteristics in the v, g
piane. They are given by the family of straight lines v - p! = consgtant
and v b ;6 = constant. The Lagrange diagram serves as a means of repre-
senting the values of stress, particle veloecity, and strain at any time
and position along the specimen. The details of the construction ol the
Lagrange diagram shown in Fig. 9 are given below.

Tne relavions ¢ vs. & , ¢ ve. & # vs. e, and g vs. U
gre. plotted from the engineering stress-strain curve of the materiwl,
Lompre sidion stresses will be taken to be positive, and pariticle veicoity

wili be taken to be positive when the material moves toward the right
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of the Lagrange diagram shown in Fig. 9. It is assumed that the behavior
of the material is characterized by the given stress-strain relation for
increasing or constant values of strain and that Hocke's law holds for
decreasing strain,

The Lagrange diagram consists of two regions: the plastic
region and the hysteresis region. In the plastic region, the quantity
V'+-" 1s constant along the characteristic of slope 1/c, while the
quantity v - " is constant along tbe characteristic of slope -1/c.

The plestic region 1s also described by the differential equations

.g_ﬁ = -ﬂ%x and 9L - . cz-é—!— Similarly, in the hysteresis
x t dt ox ° !

region, the quantity v + s is constant along the characteristic

¢
of slope 1/c_ while the quanfity v - 2

is constant along the
characteristic -1/c_. The hysteresis region is also described by the
differential e uatigns 20 = - _QJL and a0 = -M@c2 iLX

q 9X /Qat ot /ooax'

The construction of the lLagrange diagram consists in determining the

characteristics in the plastic and hysteresis regions. The determination
of the boundary between the plastic and hysteresis regions allows the
characteristics in both regions to be constructed.

The construction of the Lagrange diagram is simplified if it
is assumed that the specimen is initially at rest and a moving anvil bar
strikes the end of the specimen. At time, t = O, the anvil bar moving
with a veloecity, Vo, strikes the specimen, and a series of plastic strains
are propagated toward the free end of the specimen. The particle velocity
at the end of the specimen is equal to the value of ¢ corresponding to
the stress at the lmpact end. The values of ¢ and v are determined from
the relation given by Equation 2 and the ¢ vs. 6~ curve. The propaga-
tion velocity of the plastic strains vary from cy for the "elastic front"
is determined from the 9‘ V8., C

to ¢, for the "plastic front" where c

1
curve,

1

At time, t = l/co, where 1 is equal to the specimer length,
the elastic wave reaches the free end of the specimen and reflects as an
unloading "shock wave." This "shock wave" is stopped at a point, 2, which
ie determined from the equation

2 6“1 6,

/2 C =Y -/OCO (13)
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where GﬁL is the proportional limit of the material,
0'2 is the stress at the point 2, and
1s the particle velocity at the point 2.
Since 0° and v are known slong each characterictic, the point 2 can be
readily determined.

The Lagrange diagram now consists of two regione: the plastic
region below the unloading wave and the hysteresis region above the un-
loading wave. The stress and particle velocity are dlscontinuous across
the boundery since the unloading "shock wave" is of finite magnitude.
The remaining portion of the boundary between the plastic and hysteresis
regions is considerably more complicated than the boundery obtailned from
the unloading "shock wave." The stress and particle velocity are con-
tinuous across the remaining portion of the boundary between the plastic
and hysteresis regions, but in general theilr partial derivatives are not
continuous., Using the differential equation of motion and expressing
the fact that & and v are continuous across the boundary, the following

equation is obtained:

[2 @7 -2+ @] [0, - D] = (- [&D, + ¢H.]
(14)

where (g%)h denotes the value of the partial derivative on the hysteresis
Side;

(%%)p denotes the value of the partial derivative on the plastic

side, and
dx .
ey is the slope of the boundary.

The method of solution of the boundary is dictated by this equation.

In the solution of the boundary on the right side of the Lagrange

diasgram shown in Fig. 9, the plastic region is to the left of the boundary,

and the hysteresis region to the right. The boundaery is assumed to be con-

structed up to a cross section, t = constant, passing through a point F

of the boundary (see Fig. 23). A characteristic, & , is chosen arbitrarily

in the hysteresis region, and the problem is to determine the end peint,
P, of & where ol intersecte the plastic region. The boundary is given
by the line FP. The plastic and hysteresis reglions are then constructed
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up to the new cross section passing through P. The unknown point, P,

lies in one of five regions. A different method, determined by Equation

14, applies in each region, but in all cases the valus of v - 0"0 = kl
o

is known along the characteristic & . The five regions in which P may
lie are determined by the following conditions.

: Lo at (-1
Region A (Fig. 23a) =< A% .

Choose & characteristic d along which v -

Along /3 v+ ¢ k, (15)
(16)

Along ¥ . v-f=k

3

The value of v and ¢ at P can be computed from Equations 15
and 16, The value of @ corresponding to f is obtained from the @ - f
curve. These values of v and 6 must be compatible with o ,

at o 1
Region B (Fig. 23b) o <-=
In this case, %‘- = -g—;— = 0 along the boundary from Equation
14, This implies that /ob: + —C-Y- (%%) is constant along the boundary and,
o) o

therefore, equal to its value at F.
Choose & charascteristic & along which v -« g

¢ 1l
/° %o

(17)

v o,dxy _
— + o (g =k
(o] (o]

Along the boundary 3

Along /@ vk, (18)

The constant value of v + ¢ = k, along the characteristic of
slope l/c which abuts at P must be compatible with & and Equation 17.

' At 1
Region C (Fig. 23c) 2> 3
Choose a characteristic of along which v - o . k..
/2% 1
Along ﬁ v+ { =k, (19)

"= a« = g
At P, O mAX and f fma}: determined from the previous

boundary. The point P is determined from
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max _ }
£ + wax kE kl'

At L1
Region D (Fig. 234) l/co< =<3

In this case -g-‘fcl- = ﬁ = 0 along the boundary from Equation 1k.

This implies that -—a%- + -&1- (%xg) is constant along the boundary and, there-
0 0

fore, equal to its value at F.

Choose & characteristic ol along which v - g; = kl

o
g v &,

Along the boundary I + 2 ( dt> ky (20)

At P o = a"max.

The value of a.ma.x at P must be compatible with ¢ and Equation 20.

Region B (Fig. 23e)

Choose & characteristic & along which v -/:‘: = kl'
o
Along Fy v +/°0: =k, (21)
o)
At P G = G"max.

The following relation must hold

a2 0
max

r %
Finally, having found point, P, the Lagrange dlagram is extended
up to the line, t = constant, passing through P, At P, 6", v, and # have
been determined. The values of v * ﬁ and v # /—OIC— are known along the
characteristics starting from P with the slopes % i/c and il/co respectively.
The characteristics are then plotted in the plastic and hysteresis regions.
The boundary on the left side of the Lagrange diagram shown in

Fig. 9 is constructed in a similar manner. In this case, the plastic region

=k "ku

e 1

ARG

A weaes

ik
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is to thhhe right of the boundary and the hysteresis region to the left of
the bommdary. A condition equivalent to Region A for the right boundary
is usel to determine the left boundary.

The hysteresis region on the left side of the Lagrange diagram
is extmmded to the interface, x = 0, and an additional ccmputation must
be \made to determine the characteristics in the anvil bar and specimen,
The chroracteristics shown in Fig. 23 satisfy the following conditions:

2
Along o v -/°°o =k (22)
Along V4t =k (23)
/3 /° Cy 2
Along & Ve———=k; (2k)
~ %

where === 18 the acoustic impedance of the anvil bar, and

g
ﬁ-ﬁeo is the acoustic impedance of the specimen.

r

In allexeses, the value of v '/o T = kl is known along the character-
o
isticd . . Since the anvil bar remaeins elastic, kS is given by
kg = 2v - V_ (25)

where VOD 18 the velocity of impact. Tfe value of k2 is determined from
Equatinms 22, 23, 24, and 25, giving

o
_ _o© Y-1

k=1 -k (7D (26)
/2%

where /¥ is equal to . The stress and particle velocity at the

7%

interfie—e axre given by

(k, -~ k)
g =_?__2._l/0 co (27)
k. + k
=L 2 (e8)




k7

The values of @ , Vv, and ﬁ are tabulated for each characteristic
intersection and determined boundary point. The values between these inter-
sections and points are determined by linear interpolation. Thus, the values
of ¢", v, and f for any time or position along the specimen can be deter-
mined directly from the Lagrange diagram.

The plastic strain distributiorn in the specimen after impact is
obtsined from the Lagrange diagram. The highest value of % reached at
various positions along the bar ls detsrmined at the plastic-hysteresis
boundary, and translated into & values Irom the ﬁ- & curve, The strains
are then corrected for elastic recovery upon removal of load.

The strain-time relation at any position along the specimen is
similarly obtained from the Ilagrange diagram. The values of £ along a
line, x = constant, are determined by reading from the jﬁ -8 curve )
the values of 5 corresponding to the values of ¢ .

The stress-time relation at the interface between the anvil bar
and specimen is determined from the Lagrange diagram along the line, x = O,



(3)

(&)

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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