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SOME. RESULTS ON TRUNCATFD LIFF. TFSTS
IN THE EXPONENTIAL CA3E

by
BenJamin Epstein

Department of Mathematica
Wayne University

I, Summary
In this report we consider 1ife tasts which are truncated as follows.

n liems are placed on test and it is decided in advance that the experiment

will be t-emim.ted at min (x "y To), vhere x T is a random variable

equal to the time at whieh the ry ‘th fallure oceurs and T is a truncation

time, beyond which the experiment will not be run, Both r, and T, are

assigned bHefore experimentation atarts. If the experiment is terminated

at X, . (Lce., r, fallures occur before time T ) then the action in ternms
O’

of hypothesis “2sting is the rejestion of some epecified null-hypoinesis.

If the experiment is terminated at time T  (i.2., the ry 'th failure occurs
aiter time To) then the astion in terms of hypothesis testing is the accept=-
ance of some specified null=hypothesis, While truncated procedures can be
considersd for any life distribution, we limit ourselves here to the case
whore the underlying 1ife distribution is specified by a p.d.f. of the ex~
ponential form (1) , #(x;0) = % e.x/e, x>0, 98>0, Two situations ars con-
sldered. The first is the non-~replacement case where a faillure when it occurs
during the test is not replaced by a new item, The segond is the replace=-

ment case where failed items are replaced at once by new items drawn at

e © OrC D

(1) fhe practical Jjustification for using this kind of dletribution am
first approximation to a number of test situations ie diecueaed
:Ln a recent paper by Davis 711,
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st e s ary s U as o apdpion) v dhe ce B adna e mleany figy
P‘.é(r) s the expected nunber of obsorvations to come to a decision; EB(T>’

the expucterd walting time for reaching a decisicn; and L(8), the probubility
of acecepting the hypothesis that @ = 9, (9, being the value asroclated with
the null-hypothesis) when 6 i8 the true value, Some proceduree are worked
out for finding truncated tests mesting specified conditione and a praectical
illustration ia given. Detailed tables will appear eisewhere, Truncated
tests ccnsidered as speclal cases of sequential procedures will also be

treated in another place,

1T. The Derivation of a Truncated Test in the Non-Replacement Case

Let n 4tems drawn at random from a population be placed on life

test, Let the underlying p.d.f, of life be of the form £(x;9), Items

that fail are not replaced and the experiment is truncated at time (2)

ia the time when the x-o "th fallure oecurs

A\
min (xro’n, T,), where xro’n

and r, and T, will be taken as preassigned, T, is a truncation t¢ime beyond
which the experiment Joee not run, If we define ?(To;e) in the usual way
as F(To;e) = f:: f(x39) dx, then it follows ab once that the probability
of rvashing a ‘dacision requiring exactly k failures ias given by

(1) Pr(reki8) = ()1 P(To30) 1¥ -1 30)] ", k=1, 2, ..., 2
and
r-l
(2) Pr(rer }8) » 1 =« 5~ Pr{r=kfe),
° k=0

O R
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(2) For convenience we consider the variate to be time. 1t ie perfectly
clear that it can be other things depending on the physical application
one is soncerned with, Generally the wriate (e.g., if it is time) will

be non-negative,



Furiher the expected number of observations to reach » declelon le givan ny
Yo

() )‘::‘3(1') ok Pr{rek ),
k=0

The formula for Ee(‘r), the expected waiting time for rcaching a desision is

given by (3)
n
(4) BT) = L Pra(rekio) Eg(mrek)

bl

* To’ 22:1 Prit(pey B)? + i Pra(eek S)By(Xp pir=k ).
k=0 - ker, Tyt

In (4), Pri(r=k|d) ~ (2)}:9(1059)] k[laF(To;e)] n-k’ k=0,1,2 ooy N

Suppoge the Lruncation rule 1s such that a hypothesis H, assosiated with
9 = 8, ia accopted it min (xro,n’ Ty) ™ T,s 1:8,, in the particular sample
of size n, the waiting time required to observe xr n? the ro'th failure,

o?
is more than To. Then if L(8) is defined as ths probability of uccepting

0= 8, vhen 8 is true, it follows that
=)
(5) 1(8) = ‘Z’: Pr(r=k|8),
=0

In the special case where the p.d.f. of the 1ife of items is given

~x/9
x/ s x>0, 8>0, the formulae (1)=(5) become substantially

by £(x;0) = 35 e
simpler, This is in particular true for Eg(?). PFor th» exponential density,

(1) and (2) become

(3) 1t should be noted that there is an essential difference Letwesn
Pr(reki8) and Pr#(r=kig) for », < k < n. Pri(reid 8} is simply the
probability that exastly k out’of n failures will ocour in the inter-
val (0, Tg) while Pr(reki@) is the probability that a desisien will
be reached after exaotly k fallurss are obseryed., Cleariy from the
definition of the truncation procsdure Pr(rek!8) « Pr#(r=ije) for
0 < k € rg=lo Further Prir=k!8) = 0 forr, +1 <k <n,
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. T/ k  =(n-k)T./0
(11) Pr{r=k|B) = (2)‘_1 -0 O/J e netile/ o o= 0, 1, 2, 000y Py=L
and
, Pq':l
(2%) Pr(rer,j0) =1 - kz_ Pr(reki8).

In the case where the underiying p.d.f. is exponemtial, (3) becomes

r =1 To=1
(3") Ee(l‘) bod é k ﬁ(klnape) + r°[1 = é h(kinope-)] »

. | nek
where p. = l-e and b(ksn,pg) = (:). Py (1=pg

It can be readily shown that (3') simplifies to
r -2 ro-l :
(37) Ey(r) = npy [ kg:O b(k;n-l.pe)] . ro[l - kg b(k;n.pg-

This is in a eonvenlernt form for ecaltculation., For any preassigned m, T,
and r_, Eg(r) can be found easily fram the Binomial Tables [ 87) or the

Tebles of the Incomplete Bsta Function [ 6],

We now derive a simple formula for Eg(T) in the exponential case.

We first note that for any £(x39), Eg(X, ,n)' the expected waiting time for
o]
the to!thﬁriflure, is given by

r.=l n .
(&) Byf% ) " g Pra(reid ) B (X, i) < go Pre(r=k| 6) BlX Lreke
Q

Comparing (4) and (6) it is clear that

' ro-l
(7) E(T) = Ee(xro.n) * Pr(r-x1e)[ T, - Ee(xro’nlr-k)j,

Formila (7) is perfectly genersl. Let us now make use of ths properties of
an exponential p.d.f. to simplify (7)., This is best done through two lemmas.
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lemma 1: If (.6 underlying p.d.f, of tha 1ife distr-ibution 16 £(x;9) = %} ux’/:’,
X >0, 8 >0, then the canditional expacted waiting t.ime for the Fy'th
fallure in a sample of eize n given that exactly k fallures, O < k < rg-l,

have oseurred by time To is given by
(8) E(xr n'Pk)‘T *E(xf .kn..k)’ k.-"’ 29 ocoyg '10
In (8), Ee"r nax--k) = Ee(x,. nlxk n S 'ro, Xgel,n 2 Tods kK =0, 15 2, 40o o=l

18 the conditional expscted waiting tine for which ws seek a formla,
Ee(xroak, n-k) is the unconditional expected waiting time to get the
(ro=k)'th failure in a random sample of size (nek). The proof of Lewma 1
follows directly from results in [3].

Lema 2 Eol%y i) = Bl o) = BgR )y OSk<r,

where Ee(xo ) 18 defined as zero for all n 21, The proof of Leoma 2 is
immediate. In 2] it was shown that
(9) E (% ).,N_. ¢ ves ¥ md) o

<] "gsl N D=l I
Thus for any mtegar k such that O fk<&r 0¥ it !’ollows (nb:}ect to the con~ -
vention sbout k = 0) that

| 1 1 1
(10) Ee(xro’n) - Ee(xk,tz) - e(n.:E A m * 400 .-—..n“ro"l Ee(xreekgn»'k)"

Thus Lemma 2 folluws,
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replacement which has the following properties:

Using both Tewrmas 1 and 2, (7) becomes

A - i
] ] o - ‘4 -
(1) B < B X, )~ S Prirexle) )-E@(zro,n' (%, o)

b o §

r -1
-3 Pr(re=ki 6)Eg(Xy,n) *+ [1 o k% Pr(r-kle)] Ee(xrwn)

P
- E: Pr(r=kl @) Eg(X, 1), since Eo(X; ) = 0.
Thus, in the exponential case, formula (4) for E_,)('I') simplifies to (7¢).

We remark paranthetiocally that for any underlying life distribution
(including the exponential), the e.d.f. of the waiting time T, Gg(t), is
given by

_ 1
(1) Ggr) = Pr(T S tO) = Prlx, <o), a26< 1,

!1. iftzTa
o

This result ean be ussful in finding out more about the waiting time that
Just its expestatiocn, ‘
In a practical situation one might want a truncated test without v

(1) T 4is preassigned,

(41) '1;19 0.C. curve should be such that L(8,) > 1 -  and
L(Bl) SB. &, and 5, are preassigned and 8, > 6,4

It is quite easy %o accomplish this since conditions (1) and (11)
mean in effect that we are dealing with a binomial situation in which ws
are testiﬁg Py "1~ e~To/% agsinst p; = 1 - o&T 21 with L(po) 2l-a
gt L(pl) < 8. Stated in binomial terms, we are seeking a sample size n

and a rejection number ro sugh that we will socept the hypothesie that
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P = p, & the rumber of defestives (failures) in the semple ie < r, -1.
The hypothesin that p = P, will be rejectsd 1f the number of defsctives
in the sample of siza n is 2 r,. The detailed caleuletions in any glven
situation are greatly facilitated by the Binomirl Tables [ 8] or Tables
of the Incamplete Beta Function £6) . Tebles of practical interest will
appear elgawhera,

III, Formulua in the Rerlacement Case

In this section we assume throughout that the underlying p.d.f.

-x/0

of the life of items is given by £{x;8) = % e ¥° x>0, 850, The test
ia started with n items and any item that fails is replaced at once by a
new item drawn at random from the underlying p.d.f. The experiment is

is the time (measured from
T ,n

the beginning of the entire experiment) when the r 'th failure ocours and

truncated at time m.in(xro’n, To)’ where T,

T, 18 a truncation time beyond which the experiment does not run. It is
then easy to show that the probability of f.erminating the experiment after
exactly k fallurau have occurred is given by

‘ 1
(12)  Pr(reki©) = - P10 (nn /o), ka0, 1,2 ...,
and
o=l
(13) Pr(r=r,|0)=1- ‘% Pr(r=ki8),
k

The expected number of observations to reach a decieion is given by

3 z'o:l b JEV N
W) Ee) =3 kEGede) = 2k plin ) ¢ r(1- & pha) |

- wrf}‘
where p(k;/‘\e) ='/*?Bk e " 9/xi and '/\e = n TO/eo
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It can be readily shown that (14) simplifies to

e

- r “2 - r ,.1 -
(15) Efe) e Al 2 plkg A ~v |1 & pix;)
a 2 k=0 e) Q k>:'0- ,A e’

This is in a ¢onvenisrt form for ecommitation. For any preasstim~ n‘I‘o ard
T s Ee(r) can be found sasily from Molina's tables on the Poinson distri-
bution [ SJ or from the tables on the méomplete P-function [_7:{

The expected wajting time EG(’I‘) is given LY 2 particularly simple

formala, Tumaclly as in the non-replasement case 1t ceau be showm that

ro-l1 u ) .
‘ : (T) = B¢ = beleek (D) | T s 0 <) | .
(6) BT =B ) ¢ pelnk]) L %l |

Formla (3.0) can be aimplifind by uaing coms properties of the exponentisl

p.d. £, Two lemmas are ruw siated.

Lomma 3: Le% the underiyiug p.d.f. of the liie distribution be {ix;@) » 5 @

i

x-~0, @ > Let n iteps be drawn at random {rem this p.d.f, and put on
1ife test. Let an item that faile be replaced at onece bj a new item drawn
from the under.-lying p.d.f.; then the conditional expected waiting time Jor
the r, 'th failure (time measured from the beginning of the sxperiment)
given that exactly k failures, 0 < k £ Ty -1 have occurred by time T, in

given by

J k=1, 2, ..., -1,

¥ \ - n
an Ea(X rek) =T +E e(xroukpn ;

T N
a’

This lezma depends on results proved elsewhers 3],

(r ~k)2
Q

s O

LR
e
A
)

' + B} = 1o (7 } e Bl )=
lemma b 6(tro-k,n) Eall o) = Fol Y.n’

of i

M™is 18 a eonrequence of Lthe fact that T ()(ﬂ n) = 3 n for any integer 9,

0

~x/0

SRS Ay N TPV YR RCT
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From Lemmas 3 and 4, (16) becomes
. T (e -k)o )
(18) B (T) = Ee("ro.n) - %;0 Pr{r~kla) [ | ~«-~§~«-» |
8]l r =1 ‘ r =3
-o k Pr(r=kio© 13 Pr('-kle]
n[kg Pr(rmk{) +x, (1= T Prirkio)
9
4'9 - Es(l')o

Alsc in analogy with formuls (7') in the non-replacement case, cne can write
r
a8 B =3 Prirekle) Eolx, )

as the formila which expresses the expested waiting time for the trunecated
procedure in terms of the unconditionai waiting times to get the first Lo

failures,
In (7*), E{X Y=o/ l . ..‘l. ¢ 400 * a—l-- ) (non-replacement),
' 8 k,n n N=l Djed]

ko
In (18°), Ee(xk’n) -~ (replacement),

Also Pr(rki@) is given respectively by (1'), (2') or (12), (13),

Fornula (18) bears a strong analogy to Wald's fundamental identity
in sequential analysis in which it is shown that under suitable conditicns
i:l;l, E(Z?.i) = §(2) E(n). The Zi‘a are identically di:tributed random
variables and n is the smallest integer for which & < 3 zi <b is not
satisfied and +here a and b are preassigned comtanto;i.%hofe is the
important differenns, however, that in the Wald case information beccmes
availéblo in disorete amounts, whereas in the 1life test situation informa-
tion bocomes available comtimiously, In the Wald vase a deoision can be
made only after some integral number of observations has been taken, In

the present case it is possible to stop, howevar,' id it takes too long to
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=10 -

make the k’th observation, 0 <k S r,. In a life tect, information becomes
available in auch a way that one does not actually fail a first item, if
it taites too lovig to wait for the first item to fail. lMore generally, if
one has k fallures and a decision has not yet been reached to either zccupt
or reject, then one does not astually fail the (k+l)st iten if it takes hoo
long to get it. Mueh more will be said about this question vhon e treul
vequentialized iife tsnts.

In - practical situation one might want ¢o find a truncabed tost
with roplacement which has the following properties:

(1) T, is preassigned,

(41) The 0.C. curve should be euch thatl(8,) 2 1 - a amd L(el) <R
whgre Qo and 0l are preassigned and eb > 910 Viewed es o test of onws Poisson
parameter i.}%‘;““ l/eo against another ')\;n 1/91 (the 7\ 8 sre expscted number
of faiiurea per unii time), this is eguivalent to finding z test procedure
whieh will ental’ observing a Polszson proeeas having uaverage occurrence
rate Mg = 1/0, for o lenghh of time equal to AT &nd taking the action
of accepting H, if the numbaer of oseurrences observed in the time nTy is
£ ry; ~ 1 and rejosting Ho if the number of occurrcnges in the tirme nT,
is 2 rg.

The details for carrying out the foregoing in any given situation
are facilitated by Molina's tables| 5] and the tables on the incomplete
r function[:jj o Using these tables, suitable integers n and r, can
always bte found so as to make L(eo) >1~aand L(el) < B. Several tables
dealing with the truncated replacement test have heen prepared and will

appoar olgsewhere,

|
H




IV, A Test Which Is Not Trumcated At A Fixed Time T,

In [ 2) it was proved that the "best" region of accoptance for

llo in the Neyman-Pearson sense, in the non-replacament case, for testing

L

(9 > 91) based on . the first r out of n ordered observations from an

,,\
ryn

a hypethesis Ho that & « eo against alternatives of the form @ =» 6

exponential distribution 48 of the form‘@. = > C, where

. + + PN
(19) () A,n ”‘2,:1 oo | Xr.n (n- )xhn .

r,n

r

Both r and n are preassigned integurs. It is caeily verified that

(20) X *xz Mo-tx - +(n-r);‘_ n"nxy n*(n-1) (x2 xl’n)noﬂ(nﬂwl) (’S-,n'”"x-al,n)“

Introducing now random variables. %1 defined by

() §J. N nxl,n

§i = (n"i'ﬂ-) (xi’n = x:l.-l,n) N 1= 2’ 3, seo0y I
it is clear that er n > C can be rewritten as
]
(22) §1¢§2¢ooo+§r>wo

It is now asserted that (22) carries with it the implication that the test

is truncated, This is evident since the 3 1'8 are positive random variablee
whieh are monotonically non-decreasing as time goes on., More precisely the
experiment will he truncsted at time ¢; (with acceptance of H,) if no failures
have oceurred by time ty = » C/n. NMNore generally, supposs that i failures
(1 £ 1 € r-1) have scourred, without reaching a decision; i.e., suppose

i
that 3_ E g < TC, then the experiment can be trumcated befors the (i+l)st
k=1

failure ccours, i1f the time ¢ between the 1 th and (1 + 1)st fallure is such

i+]
thatn

I I S TV SR P

t ———— D e
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Truncation would oceur afler en additlonal waitlne .ime of ¥ beyind Lhe

time x {whon the 1 th failurs ceeuwrs), 18 .one of Lhe inequallties (23)
)n -
i
are trig Ior any 0 X i < vl (defina 5 %’ | © Op if 3 © 0) then the
¢

k=]
experiment, will be terminat.d atfter the occurrence of the first r failurcs

in this cay

(24) 71.'_5\ i< rG.
The action tsken on the basis of (2%, is the rejection of Ho,. and
the total time required before taking this action would be xr,n"
We now proceed to derive certain rroperties of the test based on
é\r,n‘ To do 8o we recall, [21, that the %-1 are independ'ent random variables,
aach of whieh is distribvvted with the same p.d. 2. i e ~x/8

e

s X>0, 8%0,
Thus the problem has been reduced to one to which the theory of section 3
can be applied, From the theory developed there ii follows at once that
(25)  pe( ()9- k} a) = plik; 'La),. k@0, 1, 2, vao, 1=

and

rel

(%)  pris | @) =1~ Z’_ p(k; ).
=0
In (25) end {26} Y= r /6 and plks b -}ué “ e "F’/}cg

Thue in analogy with {14) and (15) we have

r 2 ] B
(27 Ei©)Ye3 kPe{e=kl6)s l—‘"‘* : - J-.a = pl b,
L SRR o) fol & #19 f‘ﬂ T it} :}

Turther Eo(T), the expected waiting time to reach & decisiun, can be

written as
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(28) () = ;5.:1 Pr( @ = k| ) Eglt, )

where Pr( O = k! 9) is given by (25) and (26) and Eg(Xy,n) 12 given by (9)
with ro replaced by k.
Fin&lly L(e) , the probability of aceepting 8 = 9 when 6 is true

»

is given by L(8) = % P(kl/x-e)o

Up to this point in the present secilon ws liave Leen treatirg the

non=rerlacement situation, It 1s interesting to see what happens if failed
=x/3 in

items are replaced at once by new items drawn from the p.d.f, % [} °

in Section 3, let %e,n be the time when the k th failure ceccur (whether

it be an original item or replacement item) measured from the beginning of

the experiment. It can be shown, in the replasement case, that if one atarts

with n items, then the "beat" region of acceptancs for H in the Neyman-Pearson

sense tor testing a hypothssis H that 9 = e against e.ltaernat.ives of the form
® 8 (el > 8,) based on the first r failure times ﬁ n,r Lt 000 xrnn is

of the fom er’ > 0, whore e is now simply equal to

ryn
~

(29) ersn -n %"',n/ °

Thus the region of assceptance for Ho is of the form X > C*a

»
But this means, of course, that we are dealing with a truncated test,

::r a > C#* as a region of acceptance means in words that the test i3 terminated
¥
at, min (xr o' C*) with acoaptance of HQ if truncation oecurs at Ct and

rejection of H, if truncaticn osours at xr n° Thus the theory of Sestion 3
]

%8 completsely applicabls,

Vo A Numericsl Examnie

As an 1llustiation of the theory we ccensider three test procedures

which have essentially the same 0.C. curve., Spscifieelly, it is sesumed that

e s faes ey - 41
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that the underlying p.d.f. is £(x;9) = é e x>0, >0, Vo wish io
tast Hos Go = 1500 hours sgainst Hlx 61 = 500 houyrs, with a = 8 = ,05;
1.6,, we want L(8;) =1 =a = .95 and 1L(8,) = B = .05, Lue to the feat
that we are limliting discussici te non-randomized tests, we will be satis-
fled with a test procsdures for which L(Ga) = .95 and L(el) < .05,

Using the results in [2]&1:1 in the earlier part of this rei:orb
it eaﬁ b2 readily verified that the following three tests have virtually the
sare 0.C. ourve:

(A) 20 items are taken at random from the lot and placed an
test. Items which fail are not replaced. At each mement %, compute
- (nsk*l)xk:n o(nei) (tnxi n), whers i is the number of faiiures which

. » 1

=1

have osourred bef.. : time t. I this sum exseeds 8150 for any i such
that O < 4 € 9, stop the experiment at time ¢t and ascept B e If 10 faile
ures oceur and ihis wum is less than €130, then reject H_ (accept K)). Ae
pointed out in Section 4 this test is equivalent %o acoepting “o ir 3;0 20 > 815
A ?

and rejrsting Ho if 910’20 < 815,

(B) 20 items are taken at random from the lot and plassd on test.
Failed itens ave not replased, If min[X ., 840 | = 540 truncete the

’ S
experiment at time 540 hours \ith the acgeptance of H . If min(X ,mfl- x
o b= 10,3) lo’m
truncate the experiment at xlo 20 with the rejection of Hou
. _

(C) 20 items are taken at random fram the lot and placed on test.
An item which falls is replaced at once by a new item from the original lot.
The time xinwhohtheithrdlure ceours is measured from the bagiming of

9 .
the expsriment, If Ain[Xm 20° WJ] = 407.5, truncate the experiment
at 407.5 hours with the acceptanse of H If muin : z.ovogs_]-x

_ -, ]’_xm’m. 10,20

trunaate the experiment at Zm’ 20°
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It follows from Sections 3 and L thet the 0.C. swrves and the
probability of terminating experimentation with exactly r = k observations
(0 € k € 10) and hence (in particular) Eg(r) are exactly the same for pro-
cedures A and C. In Table 1 we give L(d), Eg(r), and Eg(T) for the tests
A, B, C &b selected values of 6,

LR S

s,

e R i Tt |5 | A

PRATEL =]
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Table 1
Properties of Three Test Frocedures
. L(0) Eq(r) Eg(T)

Mean Lifs O A B c A B ¢ A B ¢
250 000 | ,000 } ,000 |10 10 10 167.2 167.2 125,0
500 038 |.063 {.038 || 9.93 | 9.94 | 9.93 [ 3314 | 331.6 | 28.3
750 o355 |.366 |.355 || 9.10 | 9.25 | 9.0 Jaue7 | w35 | 2003

1000 698 |.702 |.698 || 7.68 | 8.06 | 7.68 [lusr.8 | 509.1 | 384.0

1250 876 | .87 |.am6 || 6,39 | 6.93 | 6.39 [uen.e | 529.2 | 399.3

1500 950 |.950 {.9% || 5.39 | 6.02 | 5.3% | am.7 | 536.0 | ao4.5

1750 979 10979 1,979 || bbb | 5.70 | h.64 || u66.0 | 538.3 | 406.3
2000 2991 |.991 |.991 || £.07 | 4.73 | 4.07 [ 4583 | 53%.4 | 407.0

2250 (996 1,996 1.996 |I 3.62 | 4.27 | 3.62 ||452.3 | 539.7 | 407.3
2500 2998 |.998 |.998 || 3.26 | 3.88 | 3,26 Jlwun.3 | 539.9 | 4O7.L

It is easy to verify that for all three procedures lim Ee(r-) =10

and lim Eg(r) = 0, Further for procedures A and B, lim By(T)/F-(X)4 o) = 1o

& oo
Hence EG(T)="“,668773 as B30, For procedure C, 1im Eg(T)/8 = 1/2, As
e30

8;o0, lim Ee('r) s 407.5 in procedures A and C &nd = 540 in procedure B,

3t ®
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A6

Tt i quite =leay bhat Procedures A, B, und 20 aee not soffmom dn gevoers?

respects, It should bo possible to truncate with a smaller Eg(r) as 8 gets
smeli and wii . 2 smeller Ey(T) as O gets large. We shall study this question
in a rorort dealing with sequentialized 1ife tests. In any event wc can aee
ilready that by taking advantage of the fact that failures are ordered in
tina, 1t will be possibla:

(1) to come to a deeision (rejection of Ho) after a short waiving
time (small EQ(T) )1f ¢the mean 1ife {8 low and

(2) to come to a desision (acesptance of Ho) after a small number

of fatlures (smnll Ee(r) ) 1f the mean 1ife is large. If the mean life ~—~3 o,

it will be possible to stop (with aceeptancs of HQ) gt some tims T without

any failures at all oussurring,
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