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ABSTRACT

An arbitrary load impedance is matched over a wide band of

frequencies to a oonstant-resistanoe generator by means of a passive,

dissipative 4-pole. Theoretical limitations are derived which relate

the powez dissipated in the load to the impedance mismatch seen by the

generator. The optimum matching network from the standpoint of maxi-

mum power transrission efficiency is a 4-pole which requires no more

than one resistor in its synthesis.

The theory can also be applied to the wide-band matching of an

arbitrary generator to a constant-resistance load. Normalization methods

are described which can tAke account of the variation with frequency of

the available power ofthe generator.
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1. Statement of the Problem

The load impedance Z(p) is given as a function of the complex
frequency variable p -60+ jt where U' is the negative of the damping eon-
stAnt andrais the radian frequency of an exciting wave. The jeaxis of
the p-plane oorresponads to steady-state sinusoidal waves.

The matching network of Fig.MRI-13039a is to transmit power from
the unit internal resistance generator to the load and also to limit the
impedance mismatch at the generator terminals. The impedance mismatch is
specified by a voltage reflection coefficient

S z in- 1()1 z 'Zin + 1 i

which is a function of the complex variable p. Zin is the impedance seen
looking to the right from the generator terminals.

In addition to the specification of load impedance, two quantities
Sre pres med to be of engineering importance. These are the magnitude
8iZ(j)|of the input reflection coefficient and the power P(&) which

reaches the load at steady-state sinusoidal frequencies.

Lossless matching networks are desirable in many problems because
they permit all the power, except that which is reflected back to the
generator, to be transmitted to the load. That is, for a lossless match-
ing network

- 1 - 181l(jo )f2  (2)

and if the reflection coefficient is kept small over the frequency range
of interest, P(Ca) will be nearly the total available power of th3 generator
which, in the case of Fig. MRI-I13O39a is one watt.

Over any given frequency range fsll(j w)I cannot be made arbi-
trarily small by means of a lossless matching network. The limitations
on the performance of lossless matching networks were first investigated
by Bode (Reference 1) for simple load impedances. Fano (References 2,3)
later extended the analysis to the most general load impedance.

There are at least three reasons why lossy matching netwo-ks may
be better than, lossless matching networks in specific applications. First,
Slosslesq matching network may not be able to provide the desire1 small

SI(CJW)I over the required frequency range. Second, P(&> ) and IS1(j w)
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are not independently controlled when a lossless matching network is used.
This means, for examples that if P(W) is to be decreased in some frequency
range for attenuation equalization purposes, the reflection coefficient
811(jc) must automatically increase in magnitude in accordance with equa-
tion (2). Third, a dissipative matching network might have a simpler form
than a lossless n tworko In some oases, the increased simplicity is an
advantage which offsets a slight waste of power in the lossy matching net-
work.

Theoretical limitations will be determined which relate ISl (jC)I
and P(tj) to the given load impedance when the matching network is composed
of lumped inductors, capacitors, resistors, and ideal transformers connect-
ed in any fashion without regard to complexity. The use of the scattering
matrix description must be introduced in order to aocotnplish this aim.

2. Scattering Matrix Realizability

A network is here defined as a system of lumped inductors,
capacitors, resistors, and ideal transformers# n pairs of terminals are
provided for the purposes of connecting this system to other networks.
Each pair of terminals is called a "port". A network with n ports is
called an " ti-port". If the network does not contain any resistors it
is a lossless n-port. If the network is not prevented from containing
resistors it is a lossy n-port. The word passive is consistently omitted
beause any device containing -a source of energy will be called a generator.

The open-circuit impedance matrix [ZJ is an n x n matrix which
relates the v..ltages at all the ports to the currents which flow in the
acoessilq terminal pairs defining the ports. The short-circuit admittance
matrix LYJ is also n x n and gives the currents at the ports in terms of
the voltages. Impedance and admittance descriptions are useful in network
analysis and synthesis but for the purposes o; his paper, another des-
cription is essentials the scattering matrix LSJ.

If polarities of voltage and current are oho e as in Fig. MRI-
13039bo the following matrix relations are true where I is the identiry
matrix of order n

zJ yl- (3) 2

[S. [-3j [j+.1 1  [1-Y] [i-Yj 4  (4)

rzl [1-8l 5+sj (5)

131 - [1+s1- 1i-si (6)
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The scattering matrix has a physical interpretation in terms of
incident and reflected voltage waves. The main diagonal element Skk is
the voltage reflection coefficient at port k referred to a one ohm source
when all other ports except k are terminated in one ohm. That iL. if the
impedance looking into port k is Zk when all other ports are terminated
in one ohm, Zk'.l (7)

Zk +

The off-diagonal elements of [a] are transmission ooeffioients* For ex-
ample' 8. k is the voltage of port j when a one watt, oze ohm generator is
oorneote to port k and all other ports are terminated in one ohm* This
is ustated in Fig* M-13039o. 21sho l be noted that this definition
of L8J depends on the existence of or ,YJo A more general formulation
is possible which does not involve either o these matrices. This is im-
portant since for many physical networks rZi or iT may not exist, but L]
always exists.

Two papers by Belevitoh (References 4,5) give the realizability
requirements for a scattering matrix and these are stated below as theorems.

Theorem 1

The necessary and sufficient conditions for [8] to correspond to
a physically realizable n-port are:

(a) t's] is symmetrical and its elements are rational functions
of p - dr + jiand are real for G$ - 0.

(b) Elements of [S] have no poles in the interior of the right
hand half of the p-plane, ice. the regiona where ir > Oo

(o) [1 - 8*(Jw) S(J&u)] is the matrix of a positive-definite
Er positive-semi-definite hermitian form for 4 4 s@* 4%

Th asterisk denotes the complex conjugate, S (J )=S(-Jw)]

Theorem 2

The necessary and sufficient conditions for 1I1 to correspond to
a physically realizabs lossless n-port aret

(a) (S] is symetrical and its elements are rational functions

in p = ef 4.-j and are real for w -0.

'A(The original Belevitch statement (Reference 4) includes the f -0 boundary

but this is unnecessarj since it is insured by parts (a) and (o)).
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(b) Elements of CS] have no poles in the right hand half of
the p-plane.

(o) (8] is unitary for4- 0.b That is, [*T (j) s(jw) - .

3. Darlington Represent tion of z(p)

Any realizable impedance Z(p) may be obtained as the input imped-
anoe of a loasless 2-port terminated in one ohm. This idea, shown by Dar-
lington ( Reference 6), is very useful becaume it permits the load impedance
Z(p) of Fig. MRI-13039a to be transformed into the lossless 2-port E of'
Fig. MRI-13039d terminated in one ohm. The matehing 2-port D and the loss-

less 2-port E in ttl4em can then be treated as a single 2-port 8 whose
scattering matrix IJ contains the relevant quantiteas III(J&)I which
measures the degree of input mismatch and ISI 2 (J)tI which is equal to P(&).

The load impedance Z(p) immediately specifies the input reflection
coefficient Ell(p) of the loseless 2-port E according to

31l(p) -* (8)

The lossless 2-port 3 is uniquely specified by Z(p) except for
the possible addition of all-pass phase-shifting networks in tandem with
end 2 of the minimum network. The minimum network has an S12(p) contain-
ing the smallest number of right-hand zeros. The additional phase-shift
networks have the effect of putting additional right-hand zeros in EI (p)
and S22(p) without changing the magnitudes of these functions along de
p - Jo axis, because these additional right half-plane zeros are always
paired with corresponding zeros in the left half-plane.

In the matching problem, the extra phase-shifting sections are
undesirable because they complicate the problem -with useless information
that eventually drops out of the calculations for P(Q)) and IS11(Jw)1.

A complete discussion of the derivation of matrix [E] from the
specified Z(p) in included in Reference 76

bThe subscript T denoting the transpose of lS*(J )l is 6ot necessar

because of the symmetry of the scattering matrix i.e. *(J&) S(Jgrzla
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49 Restrictions on the Overall Soattering Matrix 1S1
The given Z(p) has been changed into a lossless 2-port terminated

in one ohm by means of the theory described in Section 3. This lossless
2-port in tandem with the matching network D forms a 2-port S whose input
end is connected to a one ohm generator and whose output port is connected
to a one ohm load* This is an ideal system for analysis by means of the
scattering matrix description.

The elements of the scattering matrix [S] o' the overall network
are related to the elements of scattering matrices [DJ and LII by the
following equations:

2
D12 21

1, D1 + 1 - D22 I

D12 112 (10)

2
+ 12 D22  (11)

22 11

As stated before, Is, a Il(j& ) 2 , p(a) are quanti-
ties of engineering interest an the desired solution to the matching
problem is a relation between these two functions and the given load im-
pedancse The properties of the load which are relevant t9.$he matched per-
formanoe are more easily seen from the scattering matrix LJ thaa from the
load impedance Z(p). The significant properties, as first shown by Fano
(References 2,3) are the right-hand and boundary zeros of E and certain
coefficients in the Taylor expansion for 322 about each of Rese zeros"
The intuitive physical reason for this is that the passive matching net-

work D cannot act as a power amplifier for steady-state sine waves or (
exponentially increasing waves of any frequency. Therefore, if 2-port 3
will not transmit such a wave, the tandem combination of D and E will not
transmit the wave. Moreover, at such right-hand and boundary zaros of El2,
the matching network D cannot be "seen" from the output end of 3 because E
is "opaque". Thus, right-hand and boundary zeros of 112 appear in Sip and
certain coefficient 4n the S2 2 expansions about these zeros are independent
of the elements of LDJ and are equal to the corresponding coefficients in
the expansion for B22.

The formal, mathematical restrictions on [S] come from two scurces:
(1.) the overall network S must be realizable and (2.) the matching network
D must be realizable as a separate entity, The first group of restrictions
is independent of the load, while the second group is intimately connected
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with the aforementioned significant properties of t.h# load The restrictions
of groups 1. and 2 come from applying Theorem 1 to L1] and tDI respectively

Satisfaction of Part (a) of either realizability theorem is taken
for granted in what follows because all matrices are assumed to be sycmetri-
oal and their elements are real for real values of the complex frequency
variable p. Nothing is done which is inconsistent with this assumption. All
functions considered are rational funotions.

Applying Theorem 1 to faJ, Part (b) requires that elements of

have no poles in the interior of the right-hand half of the p-plane.

Part (o) requires that1-1811 j- Ifl21 (.j ) (zz)

- ls 12 - Isl1l >Q (p- 12) (13)

(1 - S2j)2 - I2si - +112 11182212
*2 * * 2

a 11822812 - ol 822 812 * 0 (p . J j) (14)

The left-hand sides of (12), (1? are the two pringipal diagonal
elements and (14) is the determinant, of Li - S*(jW) SQ j&)J. Either (12)
or (13) may be disregarded because positiveness of one main diagonal element
and the determinant insure positiveness of the other diagonal element.

i The above statements are necessary and sufficient to insure that
is the matrig 9f a physically realizable 2-port. The second g o~p of

requirements on W.J will be found by applying Theorem 1 to matrix ID].
These requirements will insure that network S is composed of two realizable'
networks in tandem, one of which i. the lossless 2-port speofied by the f
given load impedance Z(p).

Part (a) of Theorem 1 is taken for granted as before and Part (o)
is considered next elause it has already been satisfied by the first group
of requirements on LS_. .

Section 5.16 of page 148 of Reference 8 explains that 1l - S*(J&)
B(j~l) is the matrix of the herimitian form which gives the power entering
2-port S in terms of the incident voltage waves at ports 1 and 2. Positive
definiteness or semi-definiteness of this matrix for allco insures that for
any combination of magnitudes and phases of waves incident on ports 1 and 2,
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the power entering S is always positive. The matrix 1 - S*(J) S(Jo)]
may be ifentioally zero for all t if the matching network is losuless,
but in the general case of a lossy matching network the determinant of themati~ix and all its principal minors are greater than zero except for dis-
crete values of w .

The matrix Eu(JW)] is unitary for all values of 4,1. This means
that lossless 2-port E neither absorbs nor produces power no matter what
tombination of incident amplitudes and phases is applied to its two ports
at any frequency.

None of the power dissipated by S is absorbed in E, nor cah any
be generated. Therefore, matching 2-port D is the only power absorbing
structure of the D, E tandsm combination at all frequencies and for any
combination of amplitudes and phases of incident voltage waves on the ac-
cessible ports of the system, i.e., the ports of S. Port 2 of D is not

accessible when D and E are connected in tandem and treated as a single
unit. Except at boundary zeros of I any phase and amplitude of incident
voltage wave at port 2 of D may be oaLined by applying a suitable wave
to port 2 of S. By this means, waves incident on ports 1 and 2 of D may
be independently controlled.

At boundary zeros of El2, however, the incident wave on port 2
of D comes from the wave which passes through D and is reflected back into
port 2 of D by network 3 which will not pass that particular frequency.
Hence, at these isolated frequencies, the voltage waves incident on both
ports of D are not subject to independent control. This lack of independent
ntrol exists only at discrete , isolated frequencies. If the matrix
- D* (jw) D (jb))J is positive-definite or semi-definite in.the neighbor-..

hood of these E (j w) zeros, the matrix will retain these properties at
the frequency of-the zero because all its elements are continuous functions.

It is now known that network D absorbs power for all frequencies
and all mplitudes and phases of voltage waves incident on its two ports.
This mea&V that 2-port D saisfies the requirement of Theorem 1 Part (o),
namely, 11 - D5 (j w) D(J.)J is the matrix of a positive-definite or semi-
efinite herimitean form for all t , when the sufficient condition that

- s*(Jgj) S(jw)J be positive or semi-definite is satisfied. Further
is reasoning is e sily inverted starting with the hypothesis that

Ll- D*(Jw) D(J )J ii positive or semi-definite. This meant that D can
only a~sorb power and Lince B is lossless the result is that 1 - S (Jw)
S(JG))J is positive or semi-definite.

Thus, the necessary ,ad sufficient conditions on i have been
determined which insure that 0Dj satisfies Parts q) and (o) of Theore;
and it remains only to find the requirements on [BJ which insure that LDJ
satisfies _art (b).
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Fano has shown (References 2,3) that if D22 corresponds to any
realizable impedance aocording to

Z 1+ D22  (15)
2 1 22

then oertain restrictions are imposed on 822(P). These may be determined

by examiiing equations 10 and 11. At each boundary and right-hand zero of

E12& 822; (P) and 322(P) are expanded in Taylor series. If a particular
right-hand zero is of order n, then corresponding coefficients in the two
series are equal up to and including those of (p - pc) 2n -l. In the case
of a boundary zero, corresponding coefficients are equal up to and inolud-
ing those of (p _ Jj0)2n2 or (i/p)2n-2 in the case of a zero at infinity.
The coefficients of the (2n-1) power of the variable may be equal or they
may differ in a certain, prescribed ways, If they differ, the difference in
the coefficient is such as to cause the vector representing s22(j) to have
a slower clockwise rotation than EE2(jo) as t in increased in the neighbor-
hood of the El2 zero. The 8224( locus and the E2 2 (4) vectors must always
rotati clockwise at a point of tangency to cause the right-hand half of the
p-plane to map inside of the unit circle in the 82or E plane. Therefore
the slowing up of the S22(J) clockwise rotation- equivalent to keeping
822(i6) in the neighborhood of its point of tangenoy over a greater fre-
quenoy range than E2(Jo). A detailed discussion, derivation, and inter-
pretation of these s atements is given in Reference 7.

References 2, 3 and 7 also show that these requirements on 8 are
sufficient to insure that D22 corresponds to a realizable impedance function,
i~e., that D2 2 is the reflection factor of a realizable driving point imped-
ante. This means that D22(p) has no poles in the right-hand half of the
p-plane.

Equations (10) and (11) yield:

812 22~l(16)
r D1 2  T. ( 1 D2 311

12

1- D 1 - 2 311(1 D22 11) (17)
2 211 2El12

From equation (16) it may be seen that in order for D,2 to have
no poles in the right-hand half-plane, S12 must contain all right-hand zeros
Of El2 with at least the same multiplicity because the factor (1 - D22ElI)
cannot have right-hand zeros. This is due to the maximum modulus Theorem
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which states that since D92(p) and Ell(P) are known to be analytic in the
ght-hand half-plane and on the p - j w boundary, the maximum value of
22 (P) Ell(P)| 4 the interior of the right-hand plans is less than the

maximum value of D22 (JW)E 1 1 (J ")I. This latter quantity is known to be
no greater than unity because D22 and Ell correspond to realizable im-pedanoes,

From equation (17) it may be seen that DII will not have poles
in the right-hand half-plane as long as D12 does not have any poles in this
region*

Thus# the necessary and sufficient conditions have been establish-
ed which insure that 2-port D is realizable. These may be summarized in thefollowing Theorem.

Theorem 3

The necessary and sufficient conditions that E] represent the
matrix of the 2-port composed of matching 2-port D in tandem with a given
lossless 2-port E are:

(a) Matrix Is] should be realizable.

(b) Right-hand and boundary zeros of Bl2 should appear in 812with at leat the same multiplicity.

(o) At each nth order zero of El2, in the interior of the right
half plane (S22-E22) should have a zero of order 2n at least.

(d) At each boundary zero of EI2 , (822-222) has a zero at least
of order 2n, or order (2n-l), In the latter case, the first
term in the expansion for 8 _2-E22 makes 822(c1) have a slow-
er alockwise rotation than 22(OW) in the neighborhood of
the Bl2 zero.

The restriction on the coefficient of this (2n-l) power in the 82
. series specified in Part (d) of Theorem 3 is easily interpreted in terms OF

physical elements in the lossless network E. Any lossless 2-port can be con-
structed as a chain of simple networks as described by Darlington (Reference 6).
These simple network responsible for any boundary zero at the end adjacent to
the matching network. When arranged in this way, the coefficient of the
(2n-1) power can identified with either a series reantance pole or a shunt
susoeptance pole whose effbotive residue msj only be increased by incorporat-
ing a similar reactance or susceptance pole in the matching network.
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B. Integral Representation of S,.2 Restrictions

It wiil be rec lled that, when the matching problem was stated#
Illl(JW)I and SI2(Jca were to be quantities of engineering importance.
Theorem 3 musy be expressed in such a way that it is interpretable in terms
of these quantities. Ability to t ansform parts (o) and (d) of Theorem 3
into integral equations involving Is22(j)l is due to Bode (Reference 1) and
Fano (Reference ,3)i. Ali of the Fano work in applicable here because the
restrictions on lS22 J )I are independent of whipther the matching network D
is lossy or lonless. Derivation and tabulation of all the integral formulas
involves too much duplication to be repeated here so the reader is referred
either to Reference (2) or (3). Formulas used in the illustrative examples
of this roport will be derived as needed.

All the integral formulas are of the form:

lgIf (w)r d. ,F (18)
22

where f(w) = P(jt) and F involves one of the first (2n-l) coefficients in
the expansion for I/S22(p) about a particular right-hand or boundary zero
of El2* F also involves right-hand zeros of S 22 (p), some of which are pre-
scribed, and some of which are inserted as adjUstable design parameters. The
prescribed zeros in S22 are the right-hand zeros of 32 " which are coincident
with El2 zeros (See Equation (11)). The function f(& involves the location
of a particular B13 zero and the order of the coefficient involved in F.

The integral equa ion (18) may be interpreted as a restriction on
the area under the In|I/$c,2| curve plotted with the weighting function f(e).
An nth order zero of E12 at p n 0 or p = aoontributes n such equations, a
pair of finite boundary zeros contributes 2n equations, a right-hand zero
on the real axis contributes (2n - no) equations, and a conjugate pair of
right-hand zeros contributes (4n - 2no) equations where no is the order of
a coincident zero in E224

All of these integral equtions mu t be satisfied simultaneously.
This is done by suitable choice of |.2(JW)| function, by inserting some
arbitrary right-hand zeros in S2J, and by changing those F values which
cor.respond to the last controlled coefficients at each boundary E12 zero.
In accordance with the di3oussion following Theorem 5, those values of F
which can be .obnged are associated with reactanc or susceptance poles
whose residues can be increased by elements in the matching network. Satis-
faction of all the integral formulas with all prescribed right-hand zeros in
S22 is equivalent to satisfying parts (o) and (d) of Theorem 3.
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6. Magnitude of [I(j w)] Elements

It is nowpgsoible to derive a theorem oonoerning the magnitudes
f the el ents of LSJ along the j c*3 axis of the p-plane. First, any
82 2 4)rfunotion which saVifiles tje integral restrictions is permitted
in a given problem provided 182 2(jW) . 1. From the magnitude function,
822(p) is uniquely determined because all its poles are located in the
interior of the left-hand plane, and no interior, right-hand zeros are per-
mitted except those specifically inserted to satisfy the integral formulas.

Second, any 181 2 (Js4)I function is permitted as long as:

3.- !812 jui) - IS' (J,)I 2 , o (1)

because any required right-hand zeros may be inserted in the S12(p) function
without changing the magnitude along the ja. axis. Boundary zeros of E12 will
automatically appear in 812 by virtue of the integral equations and equAtinn
(13).

The third consideration, and all that remains, is to findr a I3S0-0)
function that satisfies Part (a) of Theorem 3,, namely that matrix LSJ cor-
respond to a realizable 2-port.

In addition to e4ng rational functions of p which are real when p
is real, the elements of LSJ must have no poles in the right-hand half-plane,
and they must satisfy inequalitiey (13) anj (14), Inequalit* (13) is assumed
to be satisfied in the choice-of 1812(4)| and 1922(j)| functions. In-
equality (14) is rewritten here in slightly different form as:

22 2
(1- Is215) - Is f -P Is I~ s .I2- 2 Real(81)811822) o

12' 22 11 11 22 2122 0

This inequality involves phases as well as magnitudes because oi
thi last terv in the expression. This term can vary between the limits
2 tsl2SllS22 depending on the phase angle of the product. The upper limit
is te most favorable beoause it makes the left-hand side of the inequality
as large as possible for a given set of magnitude fynctions. This is desir-
able since it permits as large a value of IS2(j )12 (the measure of power
transfer) as possible to be chosen consistent with equation (13). To main-
tain this favorable upper limit it is necessary that:

*2 s " Is2  s a I (p- (20)
S1 2 11l8 22 12 11 22
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Equation (20)imposes conditions only on the phase angles of the
three functions because the magnitudes of both sides are identically the
same. Solving for S11 in terms of its magnitude and the other quantities,

Is12 12 IS22 8111
812 822

it can be seen that 4iffioulty in satiflying equation (21) can arise from
two souroes# first. ISl(0 ) 822(J0)l may not be a rational fractions
(since it involves a square root operation) and second, the Sl' function
specified by equation (21) may have right-ha d p 1es. Thy rigt-hand pols
can arise from the denominators of Is,(J 0&)l, IS11(j l, and I822(1*)l
or from the numbrators of S* (j w) or 822 (Jj). Al of these factors which
introduce right-hand poles In Sll(P) can be cancelled out by multiplying
$12(p) by unit magnitude phase-shift factors of the forms

P " PX 
(22)

where the various px are undesired roots located in the interior of the
right-hand half-plans.

The first difficulty mentioned above is more seriouso 811(jC()S2 2 (J0)I
may not be a rational fraction because 1311(J) 822(JW)2 may not be a per-
feot square even thou&h this latter quantity is rational. There are many ways
in which irrationality is avoided. For example, if 811 is identically zero,
the last three terms drop out of inequality (19) which is then gasily simpli-
fied. In the case of a lossless network ISll(Jca)l = 1822(J)I so that the
product is rational.

In the general olse where the simplest rtional function whose am-
plitudes give the desired IS1(Jca)I and |S22(Jo)I do not have a rational
fraction product it is necessary to approximate one or both of these functions
with (usually) more complicated algebraic functions such that their product
is rational. This requirement means that the product Sll(P) %2(P) must be
factorable into perfect squares and pairs of factors symmetrical about the
j 0 axis. The symmetrical pairs may appear as a product in either the nu-
merator or denominator, or they may appear as a quotient, i.e. ona factor in

the numerator and one in the denominator. The prescribed right-hand zeros
of S22 must, of course, appear since these are prescribed by the integral
formulas.
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This requirement on the product of S and S makes it Tore diffi-
oult but not impossible to fit rational fractions to He desired JS,,(jw)I
and 1 )I functions for the optimum case where equation (21) is to be
satisfied. An long as this approximation procedure can be carried out with
an arbitrarily small error, ths inequality may be written in its most favor-
able form, which contains only magnitudes.

(1 -Is' l2) _ IS2212 1- 12 IsnI 2 g Iss8! 1 -.. ll A.I 0
(l~12)-821 18 1 3118 'l22 12211 22!

(p. j,4) (23)

This expre{sion can be factored into

181212 - (1 ATIsu l - 1Is) 121 (. - Illl)(1ls221} o

(p - j )) (24)

Inequality (24) could be rearranged to give 1811(j0,)l explicitly
in terms of the other two quantittjs, bu* #.t is qasier to leave it implicitly
specified. That in, asoume that | (J&))I and 1% 2 (j f) are qpeoified and
that both are no greater than unity and, in addition, r8 2 2 (S1.) satisfis
all integral formulas. The expression in (24) is quadratio in 1I 8 (ji)I2

ind there are always two positive, real roots which coincide when ISll(j )l-
7822(J&))I* Inequality (24) can be satisfied by making both factors negative
Tr both f otors positive. In order for both faoors to b positive, however,V1(6J1  0l f2 wolTavaob
12(0 6) 12 would have to be positive, however, | would have to be

so large that it would violate ineq-4ality (17. Therefore, both factors
must be negative, which means that 1S12(jJ) must be equal to or less than
the smaller of the two roots as follows:

If Is(ll(JQ,)I Is (J")l

Is 12  (,))1 2 ( (1 + 1311 (jc.j)) 1 -1 i) (25)

If IS1l(J,)1 > l822(J &Y)1

1812 ( ) 12 < (1 - S11(jo)I) (1 + s122(J 0)1) (26)
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Satisfaction of the appropriate inequality, (25) or (26), for any
frequency range automatically insures satisfaction of inequality (13), so
that only inequalities (25) and (26) need to be considered in the following

Theorem.

Theorem 4

The input refleotion coefficient magnitude I81 (J(i)I and the trans-
mission coefficient |182(JtJ)t can always be approximated with a structure
consisting of a physically realizable matching network in tandem with a
prescribed lossless 2-porb I if:

(, )(i) 1s2(,J) (1 + ln(J, )')(l - 1s2(JW)l)

if 1 1n(Jaj)I \ I822(jw)l

(2) IS 1(j,)l2 < (1- I31 (J0)1)(l + 1s22(j) )

if IS11(jW)I > 1s3 2 (J , )I

(b) 1S(j )I satisfies all the integral restrictions imposed by
the lossless 2-port P with all necessary right-hand zeros insert-
ed in the $22 (P) function.

(o) The magnitude functions can be obtained elaotly if they arg
specified as rational fractions in W and IS11 (JWj)S2 2 (Jc.)l
is a rational fraction in Q.

Thus the limitations on the performance of a matching network are
given in a simple form which can be easily interpreted in terms of quantities
of direct engineering importance.

7. Optimum Matching Network

In a particular matching problem there is some idea or, peifioltion

of the maximum allowable input reflection coefficient magnitude ISll"(.j)|
over a certain range of frequencies. Outside this frequency range the in-
put mismatch may be of no interest. There-are, of course, many applications
where it is desirable that the mismatch be small over the infinite frequency
spectrum. The case where the input mismatch is zero over the infinite fre-
queoy band Is discussed in Reference 10. There is usually a particular shape
of IS12(J0.)I curve appropriate to the given prqblem. It is desired to know
what amplitude scale is permitted for IS1 (Ji )|, hat is, knowing the general
shape of 1I12(J1), determine how great S12(J )| can be made. Sometimes,
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the desired performance is easily obtained and the maximum value of 1812( 0)1
can be made unity. In such oases the performance satisfies Theorem 4, but
does not reach the ultimate limit set by the theorem) in the sense that the
resulting input mismatch may be larger than the minimum permitted by the
theorem.

This section applies only to matching networks whose per ormanoe
is limited by Theorem 4. The network giving the largest 1812(00C) curve
when limited by Theorem 4 is called the "optimum matching network from the
standpoint of power transmission efficiency".

In order to predict the form of the optimum matching network it is
necessary to repeat here thq order i w4ioh rest iotion are imposed on the
hree magotude functions, ISaz(JW)I, iS J, and 132 ). First,
lS2A(Jf)lin restricted by the given leas through the itegral equations.
These have the effect of setting a minimum function for I8 (J')I. The
function may be reduced in any small range of4, but it will have to be in-
creased at some other frequency in order to satisfy the integral restrictions.

Second, presuming 1522(10)1 as been lhosen as above, ISp(ic)I

should always be equal to or less than |S(JO)[. For, if inequa ity (a)
(2) of Theorem 4 is applicable, it may be iransformed into

Is 12 (J )l2  i ~ <. 1 _ IS 22(J ) 12 (27)
whigh shown list t1e ISl2(Jr)l permitted is smaller than would be allowed

if BJ.l(J&)| ayd ISt(Jw)J were equal. Ove portions of the frequency band
where 1311(J)[ can ae made large, S22 (J should be made at least aslarge in order t9 conserv area under the loi 1i/S22(Jw )|cre Tipe-

~ci &~)T~ e~al j Il/22Cja) urre, This per-
mite decrgasing [S22(J at some other frequency where a larger permissiblevalue of [SI2(Joj)l is desired.

Thus$ the optimu matching network from the standpoint of powertransmission causes in-equality (a)(1) of Theorem 4 to be applicable at all
frequencies*

The third characteristic of the optimum matching network is that
it satisfies at all frequencies the equation:

Isl f2 . (1 + IS ll(J ) ) (1 - Is2( ) (28)

which is the limiting case of the inequality (a)(1) of Theorem 4. For, if a
matching network is obtained which satisfies the inequality but not the
equality, the power transmission can immediately be improved by multiplying
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1Sl2(J&>)I by a constant large enough to cause equa tion (21) to be latisfied
at one or more discreet frequencies. At these fTequencie7 ISl(jw)| an be
increased to allow further amplificavion of t~e |St(j&)) ourve. If ISll(JW)I
is already at its prescribed limit, IS22(J&)| can e decreased with a com-
pensating increase at some other frequency and/or relocation of the non-pre-
scribed S22 (p) right-hand zeros to keep the integral equations satisfied.
The effect of such an adjustment is to decrease the right-hand side of equa-
tion l(a) of Theorem 4 at frequencies where the inequality applies, and to
increase the right-hand side where the equality applies.

For any Sll'J ) anf ,S2(J0) I function, equation (28) speoifiee

an upper limit on the |S1 2(J)| funTtion, AV any step in the improvement
process described above, the actual |S1 2 (JR)12 curve lies below this upper
limit except at pointl of tang noyo Each change brings the two curves closer
togethera the actual |012JC)| curve increases without changing shape, while
the maximum allowable JS12(jW ) 12 defined by equ tion (28) changes shape as
it conforms more closely to the actual |S12 (j w)|

2 curve. Eventually the two
curves coincide and the matching network satisfies equation (28) identically.
Further improvement is not possible, so the matching network which satisfies
equation (28) is the optimum matching network from the standpoint of power
transmission efficiency. Theorem 5 can now be stated.

Theorem 5

The optimum matching network from the standpoint of power-trane
mission efficiency has the following performance.

(a) Is 11 (JcW)I 22 I~(jJ

(b) ISl2((Jw)I 2  (1 + ISll(JW)!)(l- IS22 (J)I)

I I 'I

(c) Is22 (J 0)1 satisfies all integral restrictions imposed by thegiven load.

This performance can always be approximated with an afbitrarily
small error by a physically realizable matching network. When ISIl(Ji)S22(JO)1
is a rational fraction in U, the performance can be exactly obtained.

The optimum matching network, although not unique, has t distinctive
form because satisfaction of equation (28) means that tha matrix 1l-S*(J&.)S(Jw)J
is singular for all c . This means that the open-circuit resistance matrix
is singular if the overall network S has an impedance matrix. If the shot-.
circuit admittance matrix exists, satisfaction of equation (28) means that the
short-cirouit conductance matrix is singuiAr.
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Except for the case of an ideal transformer, every 2-port must
have either an open-oircuit impedance matrix or a short-circuit admittance
matrix. The 2-port S of the matching problem is the tandem combination of
the matching 2-port D and the lossless 2-port E which represents the load
impedance Z(p). The lossless 2-port E is always morb oomplioated than an
ideal transformer# hence the tandem combination must possess either an im-
pedance or admittance matrix.

The matching network D will also have a singular open-cirouit re-
sistance or short-circuit conductance matrix, depending on whether the im-
pedance or admittance matrix, or both, exist. In the general Gewertz pro-
cess (Reference 9) boundary poles of impedance or adnmittance are removed and
the matrix is inverted, The singular real part matrix means that at each in-
version the new admittance or impedance matrix will have boundary poles-in
all its elements. The successive inversion and removal of boundary poles is
continued until the remainder of the network to be synthesized oondists only
of a single 1-port in series or in shunt with one winding of an ideal trans-
former. The 1-port is completely specified by its terminal impedance and
may be synthesized in a number of forms including that of a lossless 2-port
terminated in a single resistor. If the matching network is lossless, the
single resistor can be considered to be present but not connected to the main
part of the network. This can be summarized in a theorem.

Theorem 6

Any "optimum matching network from the standpoint of power trans-
mission efficiency" may be constructed with no more than one resistor.

A reasonable speculation which has not been rigorously proved is
that if an equivalent for a one resistor optimum matching network is construct-
ed using more than one resistor then all resistances belong to a single !-port.
It has not been possible to find any 2-port having a singular real-part matrix
which violates the statement. Furthermore, all known methods of 2-port syn-
thesis lead to this form of network*

The foregoing theory will now be illustrated by means of two examples.

Example 1

One of the simplest examples of a load impedance consists of a re-
sistor and inductor in series as shown in Fig. MR!-13040a. The resistor is
assumed to be one ohm in this example. It will also be assumed that the use-
ful frequency range is fromw = 0 to W = 1 and that a matching network is to
be designed such that over this range, a one-ohm generator having 1 watt
available power sees a small mismatch.
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Suppose that the magnitude of the refleotior coefficient S11(jo)
seen by the geiera~or is to be held constant over the infinite frequency band
at some value IS111 as shown in Fig. LRI-13040o. Suppose further that the
power in the load P(cj ) is to be constant and equal to P0 for 0 4 W. A 1
and can be zero for Cj > 1 as shown in Figs MRI-13040b. The maximum vellue
of P(W) can now be computed without regard to the complexity of the matohing
network.

From Theorem 5, it is knaown that the optimum condition from the
standpoint of power transmission is to have:

Is 21(J.)l > Is11! (29)

P(,)- Is12  2 . (1.. 1s11l)(1-s 22 (j'41) (30)

For the frequeno range 0 e 0 6 1, the highest value of P0 is ob-
ained by making Is22(Jc) constant and as smail as possible. lorw>l,
S22(JW)I can be unity s that log 1l/822(J ) is zero outside the pass-

band. This 411 be se n to make the piost efficient use of the integral re-
striction on IS22(J0)h This integral restriction will now be derived.

It will be noted that the load in this example is so simple that
the lossless 2-port E required for the Darlington representation consists
impl of ths series inductance L. The elements of the scattering matrix
E(p)y are given by

ll(p) - 2 2 (p) (3 1) I ,1

1 ) 2+ (32)

E12(P) has a simple zero at infinity. The expansion for R22 in
terms of i/p is

3 - I-4 - ---- (33)

From Theorem 3, 1 (p) must have at least a simple zero at in-
finity and also since a bouniary zero is concerned here (S ,-E p2) must
have at least a simple zero at infinity. This means that ife I/pP series
representing (S22 -E2 2) should start with a 1/p term unless the 1/p term
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in the 8 2 series is the same as the corresponding term in the ]122 series.

Tat in if the series for S22 in

• 2
1 2 + (34)822 p

Limay be equal to L, or Llmay be larger than L. The latter condition causes
the 822(p) v eoto r to have a slower olockwise rotation than Z22(P) as p ap-
proaches infinity* The simple physical interpretation for this in that the
matching network can add an inductance (Ll - L) in series with L so that
when looking into the number 2 port of the composite network S, an inductance
greater than or equal to L may be seen In this simple problem it would be
senseless to add inductance in series with the element that is to be matched
out so for this example L1 will be assumed equal to L and the series for 822
will be taken as:

822 - -- 2(

If the line integral

. log 22X p dPx p (36)

is taken around the clockwise path shown in Fig. MRI-13043a the result will
be zero provided (p - p.) factors are inserted as shown to cancel all right-
hand zeros of *22(P). The expansion for the integrand is known on the large
semi-circle of radius R as*

log J> _ -log [ 1 + (2m - 2f ii -1 2 ).;,-

The integral along the indented path on the p = J1A) axis is equal
to the integral on the large semi-circle taken counter-olookwise which is

2 rfj( p (38)

The small indentions on the p = JO path are to keep boundary
singalarities of the integrand out of the contour. These are actually not
necessary because the singularities are only logarithmic and are integrable.
The real part of the integrand is even while the imaginary part is odd.
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The oddness of the imaginary part is assured by the fact that :
1 p p

oontains no right-hand faotors in either numerator or denominator. There-
fore the sign of this quantity is positive at p i 0 and there is no jw term
associated with the logarithm of this quantity. Such a jw term would des-
troy the odd symmetry of the imaginary part.

The integral of the odd part cancels out over the whole path along
the p - j w axis so that only the even part is left giving

/log jd~ to 2Wj px (39)

which simplifies to the desired integral restriction.

Slogj dc - ff. u- px) (40)

It may be seen from (40) that any right-hand zeros in 82,wi11 re-
quire Px terms which will have the effect of decreasing the integral just
as if the value of L were increased. Therefore 822(P) should contain only
those right-hand zeros which are prescribed and in this case there are none.

At the outset, it was stated that log 11/3J21 would be constant for
04W.1 and would be zero for >l. Th~s makes he integral very simple to
evaluate, giving the minimum value for 1822 (J) in the range 044 l. This
value is

1s( ) -W)/L o.0 .l (41)

and there-Pore the maximum value of Po is knoim in terms of the specified
mismatch IS111 and specified load inductance as

PO- (1 + 1811 )(1 - e-A) 18111 -A (42)

It can be seen from (42) that a slight increase in P0 can be ob-
tained be increasing 181 1, but for large L, the allowable mismatch is
strioted to a very smal value, It will be recalled that making|l i1
greater than this value would cause the wrong inequality of Theorem 4 to be
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applicable and the matching network would not be the optimum defined by Theorem
5,

The P(C. IS (j c)I and ISp2 (jw)l curves are given by Figures MR1-
13010b,MRI-13040o and ;R- 13040d respectively. A matching network mould have
to be quite complicated to produce such sharp transitions as are shown in
these curves, To illustrate the procedure of actually designing a network,
a simple approximating function, will be used for P(W) and the matching
network which produces this function will be shown.

The function which will be used to approximate the rectangular curve
of Fig. MRI-13040b is:

Is -jj 2 PW (43)
I .

2which has the value a at &) - 0 and drops to half this value at ta - 1, the
edge of the pass band. This In not a very close approximation to the desired
rectangular form, but the algebraic complexity of better approximation makes
them too formidable.

The inp, mismatch will again be taken as constant, that is

From equation (30) the 1S2 2 (JCO) function may be determined as i

2
a 4Ca)

1+(

The complex function S22(p) is easily determined from the knowledge
that S22(p) should have no right-hand zeros in order to make the most efficient
use of the integral restriction. 2

(p +(3 2(P') -I 1+18111 (45)

The simplest possible S12(p) is

12(P) F a (46)
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Now 811(p) is specified acoording to equation (21) as:

sn1(p) -8. 1~: "p 'Y 1 ~,, (47)

p + 06a

and, fortunately, this turns out to be rational.

The [a] matrix$ whose elements are specified above, is the matrix
of the 2-port composed of the matching network and the inductance L of the
load. If the 2-port E repreoenting the load were complicated, the easiest
method of synthesis would be to find the scattering or impedance matrix of
the matching network D. The matching network would then be synthesized by
itself. In this case, however, the simpe t prooedure is to find the im-
pedance matrix of the composite network J and then synthesize the composite
network. The impedance matrix is used because it is known at the outset
that there will be an inductance L in series with one terminal of the network.

Matrix equation (5) gives the impedance matrix in terms of the
scattering matrix. The matching network and the element values obtained f~rom
this impedance matrix are shown in Fig. MRI-13041a.

It should be noted that the relation betwen 9, 11 and L could
be found from the integral restriction on to2 (i )|. This would involve
complicated mathematics, however, so it is better jo pooed with the syn-
thesis and obtain a value for L in terms of a and 18111e The value in this
case is

L- 1 (48)

This gives the value:

a2 a (+4. 18111) ( - 2) (49)
L
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which may be compared with the height of the rectangular curve given by Equation

It was noted in this oasep the miyimu value of IS2 2 (j0)I occurs at
4) - 0 and this value must be greater than |S2. That is

22a _-I~ > ~ l (50)

which can be changed to

Is 2 a2 * 0 (51)

Using the value for a2 given by Equation (49)

(1 Is 1I)(1 - Is I - + 0 (52)
11 L L2

Equation (52) may be interpretated in two wayst as an upper limit
on 1S111, and as a lower limit on L. When the inequality in solved for L,
the relevant branch of the solution is

I1 ... .. (T l)

For large values of L, the performance of the simple network may
be compared with the rectangular curve of Fig. MRI-13040b because the ex-
ponential in equation (42) may be replaced by a series to give:

while equation (49) may be approximated by"

2 (1+Is ) L , (55)

It may be seen that for large LI the P(fA.1 ) of the simple network is only
2/v of the rectangular response at w = 0 and at &) - 1 the ratio is worse,
namely 1/v. For small values of Ll the simple circuit of Fig. MRI-13041a com-
pares a little better. The response is shown in Fig. MRI-13041b for the
smallest possible value of L, namely L = 1 vhich requires ISI1 0 and a 2 1.]
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These conditions show the simple network of Fig. MRI-13041a in its most
favorable light for comparison with the rectangular response.

The choice of parameters used in the above plot leads to a
rather simple degenerate case. The matching network consists of the series
combination of a resistor and capacitor in parallel with the load as indi-
cated in Fig. MRI-13041b and is a ,,ell known R-L-O* constant resistance net-
work, The ideal transformers both disappear only for this oonination of
parameters! Te lower transfomer of Fig. MRI-13041a can be elminated if
a M 1 and Is111 - 0, while only the upper transformer disappears for aL -1+811I.
For both transformers to disappear, it is necessary that a - 1, Is 11- 0,
and L -1.

Example 2

Suppose that a matching network is to be designed to match the load
impedance of Fig. MRI-13042a to a one ohm generator so that the generator sees
a perfi.'t'ma-d1 at all frequencies and so that the power reaching the load-.is
constant and independent of frequency. That is P (co) a P. for all W. \

There are two answers that might be desired in this problem. The
first is a knowledge of the maximu value of P0 without any knowledge of the
form of the mat6hing network. The second answer is a complete design of the
optimm matching network.

The first answer is obtained by means of the integral restrictions
on the magnitude of 822(JW').

The lossless 2-port which, when terminated in one ohm, represents
Z(p) may be obtained as follows:

Z(p) - . (56)P p (7)

El(P (p) 1 p (67)

I2(J,)i 2 - 1 - IEII(J )I2 -1- 5)+4

1 2 (P) * -2 ( VITp 1L_ (59)E~z(P)" 5p' 2
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The above E 2(p) function is not the only one which has the magni-
tude specified by (581 but it is the simplest function. The fungtion E22(jb )
is now obtained from the requirement that the scattering matrix 1E1 of the
lossless 2-port be unita on the p - J W axis. This same requirement was
used to obtain 1El2(jw)aooording to equation (58).

,, 12 -,j 4 4 . 1 (- - 3j,) (80)

322(p) -

(81)

O3p 4- 2).(,p -1)

The actual lossless 2-port E may be found from the above scattering
matrix by determining the open circuit impedance matrix from equation (5) and
then synthesizing the network from the impedance description. The 2-port 3
is shown in Fig. NRI=13042b.

The function E12(p) has a simple zero on the positive real axis and
the reflection coefficient E22(p) has a coincident zero. That is, n - 1 and

S- 1. ,Therefore, there should be 2n - nc - 1 integral restriction on
18227J") This restriction will now be derived.

Theorem 3 requires that S22E -E22 have at least a second order zero
at p - 1/. Such a second order zero is assured by patting a zero in 322(p)
at p - 1/yr and making the constant term (first term) in the Taylor series for

B22 (p)/V p - 1 equal to the first term in the Taylor series for S3 (p)/V p-l.

The following line integral is taken around the path of Fig. MRI-
13043a.

logL Irx/ 2 yr. p dp (62)
(p +_ ) (p. i _

The argument of the logarithm in. the integral numerator has the saMe,
magnitude as 1/822 along p = JW but all right-hand zeros have been ooncelled
out of S220

If the numerator is expanded in a Taylor series #pi IX, the first
term in the expansion is known by virtue of the second order zero in $22-E22o
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The higher order terms contain powers of (p - /V) which cancel out the
p - l/vT factor in the demoninator. Thus, only the first term has a
residue at p - l/V7 and the following equation results:

1

22 , P+Px dp -. dp x]
+ - +1 .. 3 --

,_.:' ) Pp) C

ai" ( log [3+ 2M) (84)

The imaginary part of the logarithm is an odd function along p - Jw
although there may also be a constant jw term due to a (-1) factor in SJ2(p ) .

If such a fauor is present in $22(p), however, the right-hand side wil also
have a Jw term so these constant terms will cancel out. 7he integral of the
imaginary part on the left-hand side will therefore canoe! over the full j CO
axis.

The integral on the left-hand side of (64) is zero on the large
semi-circle of the path because the denominator is quai'ratio. All that re-
mains of the left-hand side of (64), ten, is the integral of the real part
which simplifies to

13o d(X,,.) - log(3 + 2M + 109 lo " PX (65)
r 

X

1 + 2(.) XX~ + P X

Equation (65) is the desired integral restriction. The ;x in this
restriction all have positive real parts so it may be seen that any extra
right-hand zeros in $22(P) will decrease the area allowed under the weighted
log Il/S21 curve. Therefore, the only right-hand zero which should appear
in S22 (p is the required one at p = l/T.

For the optimum matching network, IS22 (J&J)l should be constant to
give a constant P(Ca) according t)

P(&)) P0 Is22(jG )f (66)
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and the value of Is22i )1 is easily obtained because log 11/8221 can be
taken outside of the integral in (66).

s(j)I (67)

- + . s12 (j2V)T2  (68)

The complex function S 2 (p) is obtained from the known magaitude
by noting that SAW(P) should &onain the E12(P) zero at p - i/f with at
least the same multiplicity, The simpleat function having the proper magni-
tude along p - jea is given in (69). The (-l) factor is inserted to insure
that there is no polarity revsrsal at d.c.

S(p) - = -' (69)

The S2 2 (p) fuotion must also have a zero at p i/9. Moreover,
the fi-st term in the Taylor series for $22(P) about p - 1/V must be the sme
as the corresponding term in the E22(P) series. This fixes the sign of S22(p),
giving

8v(p) -T (p- (70)

Now that the over-all scattering matrix &] is completely deter-
mined, the scattering matrix [D] of the matching network apone may be found
by s ing equations (9), (10) and (11) for elements of [DJ in terms of N81
and EJ. The open-circuit impedance matrix of the matching network can then
be computed and the network drawn from the impedance matrix. The matching
network is shown in Fig. MNR-P13042c and it is seen to contain two ideal
transformers. If the minus sign had not been inserted in 812 (p), both trans-
formers would have had reversed polarities.

The optimum matching networks in both examples are probably too com-
plicated to use in actual equipment because they contain inter-connected ideal
transformers. The chief use of the theory deteloped in this section is to
predict the maximum performance that ran be obtained from a matching network,
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regardless of its form or complexity. Then the performance of practical
matching networks can be compared with this theoretical maximum to determine
the amount of improvement that ay be afforded by a more ingeneous design.
Some practical forms of matching networks are described in Reference I1.
Reference 7 illustrates the use of the general theory of wideband matching
in guiding tho design of simple matching networks.

8. Extension to Arbitrary Generators

The previous sections were concerned with matching an arbitrary
load impedance to a generator whose available power was one watt and whose
internal impedance was a pure resistance of one ohm. Using a one ohm genera-
tor merely means that all impedances are normalized to the internal resistance
of the generator. Thus, the theory applies to any problem in which the inter-
nal impedance of the given generator is a constant resistance.

The theory already developed can also be extended to include genera-
tors whose available power is not constant. These problems occur in practice.
For example, consider a generator whioh consists of a long coaxial cable con-
nected to a constant-voltage, adjustable-frequency oscillator. The cable has
a constant, real characteristic impedance because its attenuation per foot
is small. However, the cable is long enough so that its output impedance is
not affected by the oscillator connected at the input end. Thus the combined
osoillator and cable is a generator whose internal impedance is a real constant
equal to the characteristic impedance of the cable, but whose available power
varies with frequency because the cable attenuation varies with frequency.

The generator in question is shown in Fig. MRI-13043b together
with the matching network and the load impedance. The internal impedance of
the generator appears as one ohm because all impedances are normalized to the
generator resistance. The available power of the generator is

2
P.( ) - (71)

and the power dissipated in the load is P(w)o P(c) and Pa(w) are related
by:

P(CO) IS12 (JG,) )I2 Pa(W) (72)

when S12 (p) is the off-di.gonal element of the scattering matrix of the tan-
dem combination of matching network D and lossless 2-port E as shown in Fig.
MRI-13043c. The 2-port E is used,as before, in the Darlington representa-
tion of the load Z(p). Everythi. g is the same as in the previous sections ex-
cept that P(4) is not equal to YS22(Jta)1 because the available power of the
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generator is no loller one watts All the Theorems were purposely written in
terms of |S12(JO )| rather than P(w ) so that they would be applicable to
the more genvral situations.

To summarize: When an arbitrary load impedance Z(p) is to be match-
ed to a one ohm generator whose available power is Pa( )a all the T1eorems
previously developed apply and it is merely necessary to note that S12(J ) k
is the ratio of power dissipated in the load to available power of the genera-
tor.

The theory developed in previous sections applies to the system of
Fig.MRI-13044a in which a oonatant resistance load is to be matohed to a
generator whose available power and internal impedance are both arbitrary
fun ction of frequency.

The available power Pa of the generator in Fig. MI-13044a is

Aa 
(73)

where

z(j) - R(W) + jX(W) (74)

The internal impedance Z(p) of ie generator can be represented as
a lossless 2-port E terminated in one ohm as shown in Fig. URI-13044b. Now
the system consists of two 2-poros in tandem in exactly the same way as the
preceding oases, except for the generator E(ta) inserted between the two net-
works.

The phase of the power reaching the load is not important, and since
magnitudes only are of interest# the voltage generator can always be placed
in series with the terminating resistor at port 2 of network H. This is shown
in Fig. MRI-13044o which is identical to Fig. MRI-23043o except that the gen-
erator is connected to end 2 of the combined network rather than end 1. This
is of no importance because the networks obey reciprocity so that the power
P(W ) in the load is given, as before, be equation (72).

As far as the matching problem is oonoerned, nothing has been lost
by moving the generator from its original positi.on in series with end 1 of
the losuless 2-port E to the new position at end 2 of E. Phase infoxynation,
it is true, has been thrown away, but the magnitudes have been unaltered. The
change from Fig. MRI-13044b to Fig. MRI-13044c is always valid as long as Pa(C)
is finite. This precludes the case in which the internal resistice R(6) of
the given generator is zero while the voltage E(aW) is not zero. Such a gen-
erator is not physically possible, so that the representation of Fig. NRI-13044c
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is always valid.

In summary, then, the general theory of- wideband matching applies
to the matching of a constant resistance load to a generator whose internal
impedance is complex and whose available power is a function of frequency.
The mismatch at the terminals of the given constant resistance is given by

9e Special Case of Reflectionless Matching

Same mention should be made of the important special case of re-
flectionless matching ith optimum power transfer efficiency networks. Such
structures match a load to a constant resistance over the infinite real fre-
quency band.

The limitations for this case are readily found from Theorem 5.
by introducing the matching constraint IS1BJ - 0, corresponding to a unit
normalized constant input resistance. Equation (b) of the Theorem specify-
ing maximum insertion gain beomes

is12(j,&b)1 2  . 1 - Is22 (aJW,)l (75)

Further the synthesis of the matching network is considerably
simplified in this case for the specification of S" as a function of two
amplitudes (See Equation 21) whose product must be rational is not reqLuLired.
Once the optimum 1S22(0J)I andISl 2 (jw )I have been found from the integral
constraints and Equation 75, it is always possible to find the complex ra-
tional functions S22 and el2. These in conjunction with Sl1 - 0 specify
the complete network khich may then be synthesized according to metods
already described.

It is interesting to compare the performance of optimum dissipative match-
ing networks with optimum lossless networks (the latter designed on the
basis of minimum imput reflection amplitude over a prescribed band). This
is easily done since the limiting factor in both lossy and lossless net-
works is the amplitude function IS 2(JP)l as determined by the integral
constraints imposed by the prescribed load. The minimum value of input
reflection factor amplitude over a given pass band when lossless matching
networks are used is IS221MiNand the maximum insertion gain- of the loss-
less matching network when excited by a matched generator is:

P (W. iossES) - 1 .Is221 'IN
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Equation (b) of Theorem 5 gives the maximum insertion gain of a
disipative matching network in terms of Is22IMN wlen IjSa is prescribed

P (MaX. iSV) - (l + ISLI).( - iS221)

The ratio of maximum gains when a given load is matched by optimum
lossy and lossless networks is:

P MA. SY) 3.J ISL. (76) I
P (MAX. MSSLESS) 1 + Is2214

In the limit when 1S221IN 1, this becomes
MIN

P (MAX. ID sY) I U + ( 1s1) (77)P (MAX. LSSLESS) i2

In the case of a reflectionless matching network IOpj u 0, and
the rather startling fact emerges that in the pass band the insertion loss
of an optimum dissipative matching network which matches a load to a real
generator impedance wi thout reflections over the ifinibe real frequency
band can never exceed that of an optimum lossless network by more isEn-db.
It should be pointed out that practical problems 1522MMI' I# so that
the difference in insertion ioLs between lossy and lossless matching is
invariably considerably less than 3db.
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