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ABSTRACT

An arbitrary load impedance is matched over a wide band of
frequencies to a constant-resistance generator by means of a passive,l
dlssipative 4=pole. Theoretical limitations are derived which relate
the powe. dissipsted in the load to the impedance mismetoch seen by the
generator. The optimum matoching network from the standpoint of maxi-
mum power transrission efficiency iz & 4-pole which requires no more
than one resistor in its synthesis,

The theory can also be applied to the wide-band matching of an
arbitrary generator to a constant-resistance load, Normalization methods
are described which can tdke account of the variation with frequenocy of
the available power of the generator.
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l, Statement of the Problem

The load impedance 2(p) is given as a function of the complex
frequency variable p =+ Jjw where ¢ is the negative of the damping con=
stant andeis the radian fregquenocy of an exciting wave. The jw axis of
‘the p-plane corresponds to steady=-state sinusoidal waves.

The matohing network of Fig.MRI-13039a is to transmit power from
the unit internal resistance generator to the load and also to limit the
impedance mismatch at the generator terminals. The impedance mismatch is
specified by a voltage reflection coefficient

Z,, " 1

8 = 1l
P (1)

which is a funotinn of the complex variable p. Z;, is the impedance seen
looking to the right from the generator terminals,

In addition to the specification of load impedance, two quantities
Tre pranmed to be of engineering importance, These are the magnitude
§1(J@) | of the input reflection coefficient and the power P(w) which
reaches the load at steady-state sinusoidal frequencies,

Lossless matching networks are desirable in many problems because
they permit all the power, except that which is refleoted back to the
generator, to be transmitted to the load. That is, for a lossless match~
ing network

Pw) = 1-ls;,(50)l? (2)

and if the reflection coeffiocient is kept small over the frequency range
of interest, P(@) will be nearly the total aveilable power of tha generator
which, in the ocase of Fig, MRI=13039a is one watt,

Over any given frequency range 'Sll(jco)l cannot be made arbi-
trarily small by means of a lossless matching network., The limitations
on the performance of lossless matching networks were first investigated
by Bode (Reference 1) for simple load impedances, Fano (References 2,3)
later extended the analysis to the most general load impedance.

There are at least three reasons why lossy matching netwovks may
be better than lossless matohing networks in spscific applications,  First,
T 10531957 matching network may not be able to provide the desire? small

811(Jw) | over the required frequency range. Second, P(w ) and Sll(jza)'

T e
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are not independently controlled when & lossless matching network is used.
This means, for example, that if P(w) is to be decreased in some frequency
range for attenuation equaligation purposes, the reflection coefficient

8 1(3«4) must automatically incremse in magnitude in accordance with equa~
tion (2). Third, a dissipative matohing network might have a simpler form
than a lossless ndtwork. In some cases, the inoreased simplicity is an
advantage which offsets a slight waste of power in the lossy matching net-
worke

Theoretical limitations will be determined which relate ,S (;jw)'
and P(W ) to the given load impedance when the matching network is oomposed
of lunped induoctors, capacitors, resistors, and ideal transiormers conneot~
ed in eny fashion without regard to complexity. The use of the scattering
matrix desoription must be introduced in order to accomplisn this aim.

2o  Boattering Matrix Realizability

A network is here defined as a system of lumped induotors,
capacitors, resistors, and ideal transformers, B wnairs of terminals are
provided for the purposes of connecting this system to other networks.

Bach pair of terminals is called a "port". A network with m ports is

called an " pgeport". If the network does not contain any resistors it

is a lossless ne«port. If the network is not prevented from containing
resistors it is a lossy n-port. The word passive is consistently omitted
because any device containing -a source of energy will be ocalled a generator.

The open-circuit impedance matrix [2] is an n x n matrix which
relates the v.ltages at all the ports to the currents which flow in the
accessitli terminal pairs defining the ports. The short=ocircuit admittance
matrix is also n x n and gives the currents at the ports in terms of
the voltages, Impedance and admittance descriptions are useful in network
analysis and synthesis but for the purposes of this : paper. another des-
oription is essentialt the scattering matrix f

If polarities of voltage and current are ohoieT as in Fige MRT~
130398b, the following matrix relations are true where [11 is the identiny

matrix of order n
] - [ (3)

[s] = [z-1 [ze11?? = [1-y] [ed™? (4)
[z] = G-s]"? [1es] (5)
&1 - [es]™? [i-gl (6)
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The scattering matrix has a physioal interpretation in terms of
incident and reflected voltage waves. The main diagonal element Sy is
the voltage reflection coefficient at port k referred to a one ohm source
when all other ports except k are terminated in one ohm. That is, if the
impedance looking into port k is Z, when all other ports are terminated
in one ohm,

S ” —1—2: . » (7)

The offwdiagonal elements of [s] are transmission coefficients. For ex-
ample, S84 is the voltage of port j when a one watt, ode ohm generator is
oormeetei to port k and all other ports are terminated in one ohm. This

is justrated in Fig. MRI~130390. ﬁ shoyld be noted that this definition
of 18] depends on the existence of [ or TY A more general formulation
is possible which does not involve either of thege matrices., This is ipg=
portant since for many physical networks [zf or Y] may not exist, but ‘&]
always exists.

Two papers by Belevitch (References 4,5) give the realizability
requirements for a socattering matrix and these are stated below as theorems.

Theorem 1

The necessary and sufficient conditions for [s] to correspond to
& physically realizable n-port are:

(a) Is] 1s symmetrical and its elements are rational functions
of p= & + jwand are real for & = 0,

- (b) Elements of [s] have no poles in the interior of the right
hand half of the p-plane, i.e. the region® where ¢ » O,

(o) G- 8*(jw) 8(jw)] is the matrix of a positive-definite

r positive-semi-definite hermitian form for -0 4 WE %
The asterisk denotes the complex conjugate, 8 (jw)=s(-jsé)]

Theorem 2

The necessary sxd sufficient conditions for isl to correspond to
& physically realizebls lossless n~port aret

(a) [s] is symmetrical and its elements are rational functions
in p =& 4w] and are real for w = 0,

"(The original Belevitch statement (Reference 4) includes the € =0 boundary
but this i3 unnecessary since it is insared by psrts (a) and (o)).
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(b) Elements of [S] have no poles in the right hand half of
the p=plane.

(o) [B] is unitary for&'= O.b That is, [s‘T(jo) s(jw)J = [l].

3o Darlinmgton Representation of Z(p)

Any realiszable impedance Z(p) may be obiained as the input imped=
ance of a lcssloss 2~port terminated in one ohm. This idea, shown by Dar=
lington ( Reference 8), is very useful because it permits the load impedance
Z(p) of Fig. MRI-13039a to be transformed into the lossless 2-port E of’

Figes MRI-13039d terminated in one ohm, <The matching 2=port D and the losse
less 2-port E in tgngdem can then be treated as a single 2-port 8 whose
scattering matrix contains the relevanf quantitﬂles lsll(ju)' whioch
measures the degree of input mismatch and 18;3(jw)| which is equal to P(w).

The load impedance Z(p) immediately specifies the input reflection
coefficient Eyy(p) of the lossless 2-port E according to

By (n) = i (8

The lossless 2-port E is uniquely specified by Z(p) except for
the possible addition of allwpass phase-shifting networks in tandem with
end 2 of the minimum networke. The minimum network has an E;,(p) containe-
ing the smallest number of right-hand zeros. The additionai phase-ghift
networks have the effect of putting additional right-hand zeros in E,,(p)
and Bpp(p) without changing the magnitudes of these functions along % o
p= Ju axis, because these additional right half-plans szeros are always
paired with corresponding zeros in the left half-plane.

In the matching problem, the extra phase-shifting sectlons are
undesireble because they complicate the problem with useless information
that eventually drops out of the caloulations for P(@) and IBH(jw) .

A complete disoussion of the derivation of matrix [E] from the
specified Z(p) is included in Reference 7. '

bThe subscript T denoting the transpose of ts‘(j o)] is [rsxot necessagr]
1f.

because of the symmetry of the scattering matrix i.e. L[S*(Jjw0) 8(jw
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4, Restrictions on the Overall Soattering Matrix [ﬁ]

The given Z(p) has been changed into a lossless 2-port terminated
in ons ohm by means of the theory described in Section 3., This lossless
2-port in tandem with the matching network D forms & 2-port S whose input
end is connected to & one ohm generator and whose output port is connected
to a one ohm loads This is an ideal aystem for analysis by means of the
scattering matrix description. '

The elements of the scattering matrix [s] of the t;jrall network
d

are related to the elements of scattering matrices [b an by the
following equations:
2
T - (9)
11 11" T - Dzznll
D,p, E
12 “12
S.p = (10)
.. 2 TETNLE,
‘ 2
B, D
12 "22
: Se2 ™ B2z * T=T,E (11)

As stated before, lsl (jao)l andlslz(Ja))'z = P(a)) ars quanti-
ties of engineering interest ané the desired solution to the matoching
problem 1s a relation between these two functions and the given load im=
pedance. The properties of the load which are relevant to fhe matched per-
formance are more easily seen from the scattering matrix thaa from the
load impedance Z(p). The significant properties, as first shown by Fars
(References 2,3) are the rightehand and boundary seros of E;, and certain
coefficients in the Taylor expansion for Epy about each of %ﬁese £6ron,

The intultive physical reason for this is that the passive matohing net=
work D cannot act as a power amplifier for steady-state sine waves or
exponentially inoreasing waves of any frequency. Therefore, if 2-port B
will not transmit such & wave, the tandem ocombination of D and E will not
transmit the wave. Morsover, at such right-hand and boundary zeros of Eja,
the matohing network D cannot be "seen" from the output end of 3 because ®
is "opaque". Thus, right-nand and boundary zeros of Ejp appear in 8;» and
certain coefficients in the 3, expansions about these gzeros are independent
of the elements of and are equal to the corresponding coefficients in
the expansion for Egge.

The formal, mathematical restrictions on [s] come from two scurces:
(17) the overall network 8 must be realizable and (2.) the matching network
D must be realizable ms a separate entity. The first group of restrictions
is independent of the load, while the second group is intimately connected

kT e e o
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with the aforementioned significant properties of ﬁj 1oad The restrictions
of groups 1 and 2 come from applying Theorem 1 to and reapootively.

Satisfaction of Part (a) of either realizability theorem is taken
for granted in what follows becaune all matrices are assumed to be symmeiri-
oal and their elements are real for real values of the complex frequency
variable p. Nothing is done which is inconsistent with this assumption, All
functions considered are rational funotions.

Applying Theorem 1 to l's] Part (b) requires that elements of [8]
have no poles in the interior of the right-hand half of the p=plane,

Part (o) requires that
1-l8,% - I8,1% 20 (=300 (12)

1=, - ls 2 20 (- s0) (13)

2.2 2 2 2
CU I Lo LA - L N L F Y-

2
- 81185585 = 8); 83, 85, 3 0 (p = 3“’) (14)

The left-hand sides of (12), (1? are the two pringipal diagonal
elements and (14) is the determinant, of L1 - 8*(jw) 8(J u)j Either (12)
or (13) may be disregarded because positiveness of one main diagonal element
and the determinant insure positivensss of the other diagonal element.

The above statements are necessary and sufficient to insure that
is the mat f & physioally realizable Z-port. The second groyp of
requirements on will be found by applying Theorem 1 to matrix ET

These requirements will insure that network S is composed of two realizable
networks in tandem, one of which is the lossless Z=-port specified by the
given load impedance Z(p).

Part (a) of Theorem 1 is taken for granted as before and Part (o)
is considered next Ye ause 1t has already been satisfied by the first group
of requirements on s'j )

Section 5,16 of page 148 of Refersnce 8 explains that [1 - 8%(jw),
8(J u)] is the matrix of the herimitien form whioch gives the power entsring
2-port 8 in terms of the jincident voltage waves at ports 1 and 2. Positive
definiteness or semi~definiteness of this matrix for all W insures that for
any combination of magnitudes and phases of waves incident on ports 1 and 2,
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P o o

the power entering 8 is always positive. The matrix [1 - Bt(ju) S(JU)]
may be identically tzero for all W if the matcohing network is lossless,

- but in the general case of a lossy matching network the determinant of the
matiix and all its principal minors are greater than zero except for dise
orete values of w.

The matrix [E(Jw)] is unitary for all values of w. This means
that losaless 2-port E neither absorbs nor produces power no matter what
sombination of incident amplitudes and phases is applied to its two ports
at any frequenocy.

None of the power dissipated by 8 is absorbed in E, nor can any
be generated. Therefore, matching 2-port D is the only power absorbing
struoture of the D, B tandsm combination at all frequencies and for any
combination of amplitudes and phases of incident voltage waves on the ac-
cessible ports of the system, i.e., the ports of 8¢ Port 2 of D is not
acceasible when D and E ars connected in tandem and treated as a single
unit. Except at boundary zeros of E,, any phase and amplitude of inoident
voltage wave at port 2 of D may be o%%ained by applying a suitablo wave
to port 2 of 8, By this means, waves inoident on ports 1 and 2 of D may
be independently controlled. '

At boundary gercs of By however, the incident wave on port 2
of D comes from the wave which passes through D and is reflected back into
port 2 of D by network E which will not pass that particular frequenocy.
Hence, at these isolated frequencies, the voltage waves inocident on both
ports of D are not subject to independent control. This lack of independent

ntrol exists only.at disorete , isolated frequencies, If the matrix

b= 5 G D (03]
hood of these Ey,(Jjw) zoros, the matrix will retain these properties at
the frequency ol the gzero because all its elements are continuous funotions,.

It is now known that network D absorbs power for all frequencies
and all amplitudes and phases of voltage waves incident on 1its two ports,
This means that 2-port D satisfies the requirement of Theorem 1 Part (o),
namely, ﬁ - D*(jw) D(Jw)l is the matrix of a positive-definite or semi-
Efinite herimitean form for all e, when the sufficient condition that

- 8*(jw) B(:ju)} be positive or semi-definite is satisfied. Further
is reasoning is easily inverted starting with the hypothesis that
E - D*(jw) D(jw)] ir positive or semi-definite. This means that D can
only absorb power and tince E is lussless the result is that (1 - 8%(jw)
8(jw)] is positive or semi-definite, )

Thus, the necessary sjhd sufficient conditions on l_s] have been
determined which insure that [g? satisfies Parta[g ) and (o) of Theore ]
and it remains only to find the requirements on j which insure that T.D
satisfies Part (b).

IR

is positive~definite or seml-definite in.the neighbor=.. ..
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Fano has shown (References 2,3) that if Dyp corresponds to any
realisable impsdance according to

l1+0D

I3 " TTT,, (18)
22

then oeerin restrictions are imposed on 8z3(p)e These may be determined
by examining equetions 10 and 1ll, At each boundary and right-hand zero of
By2, 822: (p) and Bpa(p) are expanded in Taylor series. If a partiocular
right-hand gero is of order n, then corresponding coefficients in the two
series are equal up to and including those of (p = pg)22=ls In the case
of a boundary gzero, oorresgonding coefficients ars equal up to and inoclud=
ing those of (p = jaqb)zn' or (1/p)28=2 in the oase of a zero at infinity.
The coefficients of the (2n-1) power of the variable may be equal or they
may differ in & certain, prescribed waye If they differ, the difference in
the coeffiocient is such as to ocause the veotor representing 853(Jw) to have
& slower olockwise rotation than B, (jw) as @ is inoreased in the neighbor-
hood of the Ejp zero. The 833(Jw) foeua and the Epp(Jw) vectors must always
rotate clockwise at a point of tangency to cause the right-hand half of the
p=plane to map inside of the unit circle in the 8gq0r EZ plane, Therefore
the slowing up of the 8 2(je)) clockwise rotation %s equivalent to kéeping
822(jw) in the neighborhood of its point of tangency over a greater fre=
quency range than E, (Jw)e. A detailed discussion, derivation, and inter=
pretation of these u%atemsnts is given in Reference 7.

References 2, & and 7 also show that these requirements on 8,, are
sufficient to insure that Daa ocorresponds to a realiszable impedance function,
i.6., that Dag is the reflection factor of a realizable driving point imped-
ance, This means that Dzz(p) has no poles in the right-hand half of the

e e ae A

p-plane,.
Equations (10) and (11) yield:
s
12
D, = X (1D, B, (16)
2 2
D%, B, 8
) 12 By 12
D)y = 8y “T=pw— = 833 =~—— B =D,R,) 17
22511 2
B2

From equation (16) it may be seen that in order for D, to have
no poles in the right-hand half-plane, §;, must contain all right=hand geros
of Ejp with at least the same multipliocity because the factor (1 = D22BEy3)
cannot have righte=hand zeros. This is due to the maximum modulus Theorem

o e

‘ .
Sl g se— i gt
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which states that since Dyp(p) and Bjj(p) are known to be analytio in the
ght-hand half-plane and on the p = jew boundary, the maximum value of
Doo (p) E11(p) the interior of the right-hand plane is less thsn the
maximum value of Dzz(J»)En(;ju)l. This latter quantity is lmown to be
no greater than unity because Dga and Ejj correspond to realigzable ime
pedances,

From equation (17) it may be seen that D33 will not have boles
in the right~hand half-plane as long as D5 does not have any poles in this
reglon, :

Thus, the necessary and suffiocient conditions have been establishe
ed which insure that 2-port D is realigable. These may be summarized in the
following Theorem.

Theorem 3

The necessary and sufficient oconditions that [s] represent the
matrix of the 2-port composed of matohing 2-port D in tandem with a given
lossless 2~port E ares

(a) Matrix [8] should be realizable.

(b) Right-hand and boundary zeros of Ejp should appear in 82
with at leat the same multipliecity.

(o) At each n*® order zoro of Ejp, in the interior of the right
half plane (szz-Ezz) should have a gero of order 2an at least.

(2) At each boundary zero of Ejp, (8pp~Ezz) has a zero at least
of order 2n, or order (2n—1§. In the latter case, the first
term in the expansion for 8,,~Eys makes Spp(jew) have a slow-
or olockwise rotation than Egp(jw) in the neighborhood of
the E;p terv.

The restriotion on the coefficient of this (2n-1) power in the 8y,
em~: .y 8eries specified in Part (d) of Theorem 3 is easily interpreted in terms o
& physiocal elements in the lossless network E. Any lossless 2~port cen be cone~
structed as a chain of simple networks as described by Darlington (Reference 6).
These simple network responsible for any boundary rzero at the end adjacent to
the matching network. When arranged in this way, the coefficient of the
(2n=-1) power can identified with either a series reantance pole or a shunt
susceptance pole whose efféotive residue mgy only be increased by incorporate
ing & similar reactance or susceptance pole in the matching network,

Parenarnsmm ey RO R .
re——————
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B¢ Integral Representation of 855 Restrictions
-~

It will be recglled that, when the matching problem was stated,
'sll(Ju)I and 1812(Jw)| were to be quantities of engineering importance.
Theorem 3 musy be expressed in sush a way that it is interpretable in terms
of these quantities, Ability to transform parts (o) and (d) of Theorem 3
into integral equations involving saz(:jw)T is due to Bode (Reference 1) and
Fano (Reference i. 3)e Al} of the Fano work is applicable here because the
restriotions on 1835(Jw) ! are independent of whether the matching network D

is lossy or lossless, Derivation and tabulation of all the integral formulas

involves too much duplication to be repeated here so the reader is referred
either to Reference (2) or (3). Formulas used in the illustrative examples
of this report will be derived as needed,

All the integral formulas are of the form!

Jof (@) loglg—ldaw =¥ (18)
° 22

where (&) = P(jed) and F involves one of the first (2n-l) coefficients in
the expansion for 1/832 (p) about a particular right-hand or boundary zero

of Ejps F also involves right=hand zeros of 8,,(p), some of which are pre-
soribed, and some of which are inserted as adjustable design parameters., The
prescribed zeros in 835 are the right-hand geros of Ep, which are coincident
with By, seros (See Equation (11)). The function f(&) involves the location
of a particular Ejp zero and the order of the coefficient involved in F.

The integrﬂ equation (18) may be interpreted as a restriction on
the area under the 1nll/Spsl| curve plotted with the weighting function f(w).
An nth order zero of Ejp at p = 0 or p = woontributes n such equations, &
pair of finite boundary geros contributes 2n equations, a right-hand zero

on the real axis contributes (2n = n,) equations, and a conjugate pair of
right -hand geros contributes (4n - 2n,) equations where n, is the order of

& coincident zero in Egge

All of thess integral equations mugt be satisfied simultaneously.
This is done by suitable choloe of 822(.1«:)1 funotion, by inserting some
arbitrary right-hand zeros in 8,5, and by changing those F values which
correspond Lo the last oontrolloczi coefficients at each boundary Ejp tero.
In accordance with the discussion following Theorem 3, those values of F
which can be ¢hanged are associated with reactancs or susceptance poles
whose residues oan be inocreased by elements in the matching network. Satis-
faction of all the integral formulas with all presoribed right-hand gzeros in
8,5, is equivalent to satisfying parts (o) and (d) of Theorem 3.

R I A,
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8o _ Magnitude of [B(Jg)] Elements

It is now _pgssible to derive a theorem concerning the magnitudes
f the elements of [gj along the j & axis of the p-plane, First, any
?seg(Ju) funotion which saTaii‘ies the integral restrictions is permitted
in & given problem provided 185o(Jjw) 1. From the magnitude function,
Sge(p) is uniquely determined beoauoe all ites poles are located in the
interior of the left-hand plans, and no interior right-hand zeros are per-
mitted except those specifically inserted to satisfy the integral formulas,

Bedond, any |812(Ju)' funotion is permitted as long as:
2 2,
1- I8¢5 1F = I8, (5601 3 0 | (18)

because any required right-hand zeros may be inserted in the 8;5(p) function
without changing the magnitude along the jw axis, Boundary seros of Ejp will
automatically appear in 89 by virtue of the integral equations and equatirn

(13),

The third consideration, and all that remains, is to findE;j\ |Sn(;ju)|
function that satisfles Part (a) of Theorem 3, namely that matrix oor=
respond to a realigzable 2-port.

In addition to heing rational functions of p which are real when p
is real, the elements of must havs no poles in the right-hand half-plane,
and they must satisfy inequalities (13) anil (14) Inequa}ity (13) is assumed
to be satisfied in the choice-of 7812(;]@) (Jw) ! functions, In~
equality (i14) is rewritten here in slightly different form as?

2,2 2 2
(1 - 18,,1%)% = I8, 1% = I8, 1° « Isnszzl -2 Roal(sl,snszz) 30

p= Jw (19)

This inequality involves phases as well as magnitudesz because of

thi last terp in ths expression. This term can vary between the limits

8§5811832| depending on the phase angle of the products The upper limit
is the most favorable because it makes the left-hand side of the inequality
a8 large as possible for a given set of magnitude !\]\nctions. This is desir-
able since it permits as large a value of [815(jw)!2 (the measure of power
transfer) as possible to be chosen consistent with equation (13). To maine
tain this favorable upper limit it is necessary that:

*2

8i5 8y; 85 = '912 81, azz' (p = Jw) (20)

———p—

—

i

s e
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Equation (20)imposes conditions only on the phase angles of the
three functions because the magnitudes of both sides are identiocally the
same. Solving for 8;, in terms of its magnitude and the other quantities,

ls,,I? Is,, s
8y = m—p—2 2 (p= i) (21)
S 8
12 "22

it oan be seen that «iifi‘ioul‘cy in satinying equation (21) can arise from
two sourcess first, 1811(Jw) 855(Jw) | may not be a rational fraction,
(since it involves a square root operation) and second, the s function
speocified by equation (21) may have right-hand poles. rig =hand pol
can arise from the denominators of | slz(,ju)?z 7 (Ju)? ng(JQ)T
or from the numérators of 8}% :Jw) or 8ga(jw)e Hi'oe these factorl which
introduce right=hand poles 1n 8;1(p) oan be cancelled out by multiplying
812(p) by unit magnitude phase-ehift factors of the forms

) Al
—— (22)

*
P+ P,

where the various py are undesired roots located in the interior of the
right=hand half=plane,

The first difficulty mentioneil above is more se:i-iousa lsn(.ju)szz(,ju)l
may not be a rational fraction because 1873 (Jw) szz(jt») may not be & per—
feot square even though this latter quantity is rational, There are many ways
in which irrationality is avoided. For example, if 8;7 is identically sgero,
the last thres terms drop out of inequality (19) which is then easily simpli-
fied, In the case of a lossless network IS);(Jjw)!l = ISZz(ju)T so that the
prodvot is rational,

In the general ogse where the sﬁlmplest tional funotion whose am~
plitudes give the desired 7811(30)' ‘and [S33(j@) | do not have a rational
fraction product it is necessary to approximate one or both of these functions
with (usually) more complicated algebraic functions such that their product
is rationals This requirement means that the product 8;3;(p) Sp; (p) must be
factorable into perfect squares and pairs of faoctors symmetrioai about the

J @ axise The symmetrical pairs may appear as & product in either the nu-
merator or denominator, or they may appear as a quotient, i.9. ons factor in
the numerator and one in the denominator. The prescribed right-hand geros

of 8pp must, of vourse, appear since these are prescribed by the integral
formulas.
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This requirement on the product of 8 1 and 8,, makes it nmore diffi-
oult, but not impossible to fit rational fractions to %ﬁa desired 18;7(jw)
and I8 2(:10)' functions for the optimum case where equation (21) is to be
sa’aiuf.awd. As long as this approximation procedure oan be carried out with
an arbitrarily small error, th» inequality may be written in its most favor-
able form, whioch ocontains only magnitudes.

2 2 2 2 2
l I 12 o 15,,8,,1° + 2182,8,.8,,1 2 0

- ls11

(1 - l8,1%) - lsy,

(p= Jw) (293)
w.
ol
31-2!2 - (1= s, haelg,, b0

This expression can bs factored into

2
I8,,1% = (1o ls ha - Is,,

‘x?

Inequality (24) could be rearranged to give 'Su(j(_d)' expliocitly
in terms of the other two quantities, but it is easier to leave it implicitly
specified, That is, as.ume that Sll(jw) and Tsza(;j'u)' are specified and
that both are no greater than unity and, in addition, 835(J u)i satisfies
all integral formulas., The expression in (24) is quadratic in I8; (Jw)fz
?nd there are always iwc positive, real roots which coincide when 1813 (jw) l-

802(J u)'. Inequality (24) can be satisfied by making both factors negative
Tr both fTotors positive, In order for both factors to be positive, however,
812(J @) 2 would have to be positive, however, rslz(.j @) |2 would have to be
so large that it would violate inequality (1? « Therefore, both factors
must be negative, which means that (812(Jw)|% must be equal to or less than
the smaller of the two roots as follows?

(p= Jw) (24)

1r s3] & sy, (Gl
sy, 3V P € 1+ lsjyadly @ - sy, b (28)
12 s, gyl > sy, (3l

ls), s lP< - Is;; 0D 1+ Iseh (26)
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Satisfaotion of the appropriate inequality, (25) or (26), for any
frequenocy renge automatiocally insures satisfaction of inequality (13), so
that only inequalities (26) and (26) need to be considered in the following

Theorem.
Theorem 4

The input efleotiozi coefficient magnitude '811(,'] u)' and the trans-
mission coefficient (Jw) |2 can always be approximated with a struoture
consisting of a phyaioe&ly realizable matching network in tandem with a

presoribed lossless 2-port B if: - -
() (1) s, (3 P& 3+ I8, (3) D@ = I8y, 300 D)
1t ls; (e € s ()]

@) ls,(sw)P< 1 - s, (3@ + sy, (sen )
1t 18, (Ge) | > I8y (s

(b) Isz (:jw)l satisfies all the integral restrictions imposed by

the lossless 2-port B with all necessary right-hand geros insert-

"~ ed in the szz(p) function,

(¢) The magnitude functions can be obtained eyactly if they are
specified as rational fractions in ¢ and Tsn(;ju)szz(jw)l
is a rational fraction in §).

Thus the limitations on the performance of a matching network are
given in a simple form which can be easily interpreted in terms of quantities
of direot engineering importance.

7« Optimum Matchiné Network

In a partioular matching problem there is some idea or specification
of the maximum allowable input reflection coefficient magnitude 'Sll(.j w)T
over & certain range of frequencies, OQutside this frequency range the in-
put mismatch may be of no interest. There.are, of courss, many applications
where it is desirable that the mismatoch be small over the infinite firequency
spectrums The case where the input mismatch is gero over the infinite fre-
quexi\oy band 18 discussed in Reference 10. Thers is usually a particular shape
12(3@) curve appropriate to the given rroblems It is desired to lmow
what amplﬂ,tude soa]l is permitted for \14..;)? hat is, knowing the general
shape of 1S32(Jes) !, determine how grsat ?Slz(ju) can be made, Sometimes,
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the desired performance is easily obtained and the maximum value of Islg(,jw)l
oan bs made unity. In such cases the performance satisfies Theorem 4, but
does not reach the ultimate limit set by -the theorem; 1n the sense that the
resulting input mismatch may be larger than the minimum permitted by the
theorem.

This seotion applies only to matohing networks whose performanoe
is limited by Theorem 4., The network giving the largest Yslg(,w) ourve
when limited by Theorem 4 is called the "optimum matching network from the
standpoint of power transmission efficienoy".

In order to predict the form of the optimum matohing network it is
necessary to repeat here 'bh1 order ixr w}iioh restTiotion ars impoged on the
Three magnitude functions, 18s5(Jw)l, I817(jw)l, and I8 s(ja)le First,

8o, (Jw) ! is restrioted by tﬁe given load through the i %egral equations.
These have the effect of setting a minimum funotion for I8 (Jw)T. The
function may be reduced in any small range of (), but it wi E have to be in-
creased at some other frequency in order to satisfy the integral restrioctions.

S8econd, presuming 'szz(;jw)' as been Yhosen as abovo,ls 1(;]0)'
should always be equal to or leass than 8y5(Jw)ls For, if inequa?[ity (a)
(2) of Theorem 4 is applicables, it may be transformed into

s, 300 1P< 1 - sy (3e) 1% 2 - ls,, (300 12 (27)

which shows ‘rhat t}re |Slg(:j'u)| permitted is smaller than would be allowed
if Isy3(je) 1 and 1855(Jw)| were equal. Over portions of the frequency band
where 811(;]0)? can be made large, T322(3 u)f should be made at least as
large in order t9 conserve area under the log '1/822(3«)) curve. This perw
mits dooriasing Sz22(Jw)| at some other frequency where a larger permissible
value of [8;3(] u)? ie desired,

Thus, the optimum matching network from the standpoint of power
transmission oauses imequality (a)(1l) of Theorsm 4 to be applicable at all
frequencies,

The third characteristic of the optimum matohing network is that
it satisfies at all frequencies the squation:

s, (3 l? = e Isaenl) (- lse)l)  (29)

which is the limiting case of the inequality (a)(l) of Theorem 4. For, if a
matohing network is obtained which satisfies the inequality but not the
equality, the power transmission can immediately be improved by multiplying

L]

[
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|812(;|w)| by a constant large enough to cause equa tion (2?) to be iatisfied
at one or more disoreet frequencies. At theae £ equencie 8 (:Jw) an be ﬁ'
increased to allow further amplifioaT:.on of ¢ (;jw)i ourve. isl (ju)l
is already at its prescribed limit, Sgg(jw) can e decreased with 8 com-
pensating increase at some other frequency and/or relocation of the non=-pre-
scribed Sp5(p) right-hand geros to keep the integral equations satisfied.
The effect of such an adjustment is to decrease the right-hand side of equa=-
‘ tion 1(a) of Theorem 4 at frequencies where the inequality applies, and to
inorease the right-hand side where the squality applies,

For any ls fjw)' angd s 2(39), function, equation (28) specifies-
‘ an upper limit on ‘the (jw) ﬁm tion, A any step in the improvement
prooess described above, the actual Slz(jw) ourve lies below this upper
limit except at polats of tangency. Each chenge brings the two curves oloser
together: the actual 7 (Jw) curve increases without changing shape, while
the maximum allowable le(jw”z defined by equ tion (28) changes shape as
it oconforms more closely to the actual TS (,jw) ourve. Eventually the two
‘ curves coincide and the matching network satisfies esquation (28) identically.
Further improvement is not possible, so the matohing network which satisfies
equation (28) is the optimum matching network from the standpoint of power
transmission efficiency. Theorem 5 can now be stated. |

Theorem 5 i

The optimum matching network from the standpoint of power~-trans.
mission efficiency has the following performencs.

() Is; (3| € sy, (sl

——————

() ls(3e)? = (14 s 3y (@ - Is,, (3 )

KA e i

(o) ,Szz(:jb))l satisfies all integral restrictions imposed by the
given load,

This performance can always be approximated with an af bitrarily
small error by a physically realizable matching network. When Sll(jw)szz(ju)l
is a rational fraction in W, the performance can be exactly obtained,

The optimum matching network, although not unique, has g distinctive
form because satisfaction of equation (28) means that the metrix l?:1-8"’(ja.\)S(j(..’)]
is singular for all w . This means that the open-circuit resistance matrix

is singular if the overall network § has an impedance matrix. If the short.
circuit admittance matrix oxists, satisfaction of equation (28) means that the
short=circuit conductance matrix is singular,
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Exocept for the case of an ideal transformer, every 2-port must
have either an open~-cirocuit impedance matrix or & short-cirecuit admittance
matrix, The 2-port § of the metching problem is the tanden combination of
the matching 2=port D and the lossless 2~port E which represents the load
impedance Z(p)s The lossless 2-port E is always mor® compliocated than an
ldeal transformers hence ths tandem combination must possess either an ime=
pedance or admittance matrix.

r— Ty,

The matching network D will also have a singular open-cirouit re-
sistance or short=circuit conduotance matrix, dependimg on whether the ime
pedance or admittance matrix, or both, exist. In the general Gewertz pro=~ 3
cess (Reference 9) boundary poles of impedance or admittance are removed and
the matrix is inverted. The singular real part matrix means that at each in-
version the new admittance or impedance matrix will have boundary poles -in
all its elements. The successive inversion and removal of boundary poles is
ocontinued until the remainder of the network to be synthesized consists only
of a single l-port in series or in shunt with one winding of an ideal trans=-
former. The l-port is completely specified by its terminal impedance and
may be synthesiged in a number of forms including that of a lossless 2-port
terminated in a single resistor. If the matching network is lossless, the !
single resistor can be considered to be present but not connected to the main :
part of the network., This can be summarized in a theorem. !

Any "optimum matching network from the standpoint of power trans-
migsion efficiency™ may be constructed with no more than one resistor.

A reasonable speculation which has not been rigorously proved is
that 1f an squivalent for a one resistor optimum matching network is oconstruct-
ed using more than one resisbor then all resistances beslong to a single l~port.
It has not been possible to find any 2-port having a singular real-part matrix
which violates the statement. Furthermore, all known methods of 2-port syn-
thesis lead to this form of network. ' P

Thooren 6 It
|
|

The foregoing theory will now be illustrated by means of two examples.

Examgle 1

Ons of the simplest examples of a load impedance consists of 2 re~
sistor and induotor in series as shown in Fige. MRI-13040a. The resistor is
assumed to be one ohm in this example, It will also be assumed that the use~
ful frequency range is fiome) = 0 to w= 1 and that a matching network is to
be designed such that over this range, a one-ohm generator having 1 watt
available power sees a small mismatch.
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Supposs thet the magnitude of the reflactior coefficient 8;7(Jjw)
seen by the ge eraYor is to be held constant over the infinite frequency band
at some value ? as shown in Fig. MRI-13040c. Suppose further that the
power in the Joad P(u) is to be constant and equal to P, for 0 £ W €1
and can be gzerv for ¢y > 1 as shown in Fig. MRI~13040b, The meximum velue
of P(es) can now be computed without regard to the somplexity of the matching
network,

From Theorem §, it is known that the optimum ocondition from the
standpoint of power transmission is to have:

ls,, (303l 2> sy, (29)
Pw) = la,(3)® = (1o 15, D) a-ls,, (300 ]) (30)

For the frequeno range 0 € @ £ 1, the highest value of P, is ob=-
ained by making (ja){ constant ,and as sma}l as possible. P'orw >1,
Sgg(jw)' can be un ty s that log '1/822(303) 1s gzero outside the pass=~
band. This w111 be se n to make the most efficiont use of the integral re-
strioction on 822(;]&)) This integral restrioction will now be derived,

It will be noted that the load in this example is so simple that
the lossleas 2-port E required for the Darlington representation consists

7impl¥ of the series inductance L. The elements of the scattering matrix
E(p)| are given by

E)y(P) = Epp(p) = z(P = p:iz (31)

Bip(p) = 5‘1‘.‘%"5 (32)

Ej2(p) has a simple zero at infinity. The expansion for Egy in
terms of 1/p is

- 1.4 . (33)

From Theorem 3, 8, (p) must have at least & simple zem at ine
inity and also since a bounﬁary gero is concermed here (8,,~ 2) must
have at least a simple zero at infinity, This means that %ﬁ %/p series
representing (Szzﬂ-Egz) should start with a l/p term unless the l/p term
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in the 822 series is the same as the corresponding term in the 822 series.

Thet is if the series for 822 is

c 2
SRR b i

L,may be equal to L, or Limay be larger than L. The latter conditioan causes
the 835(p) vector to have a slower clockwise rotation than Ezp(p) as p ap=
proaches infinity. The simple physical interpretation for this is that the
matohing network can add an inductance (Lj = L) in series with L so that
when looking into the number 2 port of the composite network B8, an induoctance
greater than or equal to L may be seen, In this simple problem it would be
senseless to add inductance in series with the element that is to be matched
out 8o for this example L) will be assumed equal to L and the series for S5,
will be taken ast

2 .
szz = 1 - -E 4 moanoe (35)

If the line integral

1 -
2 dp (36)

w 2= Px
J log I'Q';z:p+px

is taken around the clockwise path shown in Fig. MRI-13043a the result will
be zero provided (p = px) factors are inserted as shown to oczncel all righte=
hand zeros of 835(p)e The expansion for the integrand is known on the large
semi-circle of radius R as*

log [-s:-;'; ! %—:-gzx] = log [1 + (% - zg px) %it ---] o (% - agpx)%*--(:s?')

The integral along the indented path on the p = jW axis is equal
to the integral on the large semi-circle taken counter-sloockwise which is

emi( £ -4 p) (38)

The small indsnticns on the p = jW path are to keep boundary
singnlarities of the integrand out of the contour. These are actuslly not
necessary bzcause the singularities are only logarithmic and are integrable.
The real part of the integrand is even while the imaginary part is odd.

s
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3
The oddness of the imaginary part is assured by the faot that @
1 -
5 2 vEw
dontains no righte-hand factors in either numerator or denominator. There=-
fore the sign of this quantity is positive at p = O and there is no Jr term
assooiated with the logarithm of this quantity. Such a jm term would des-
troy the odd symmetry of the imasginary part.
| The integral of the odd part cancels out over the whole path along
the p = J @ axis so that only the even part is left giving [

Y
flOS'gi-z-IJd“" i (¢ - &y (39)

which simplifies to the desired integral restriction.

(e | few - v (f-go ()

It may be seen from (40) that any right-hand zercs in 8,,will re-
quire px terms which will have the effect of decreasing the integral just
as if the value of L were increased. Therefore 8p5(p) should contain only
those right-hand zeros which are prescribed and in this case there are none.

At the outset, it was stated that log |1/s 2' would be constant for
0€WE 1 and would be zero forwdl, Thﬂla makes the fntegral very simple to
evaluate, giving the minimum value for I8ys(Jw)! in the range 0&W€ 1. This
value is

I8, (3}t = o/l oLwgl (41)

and therei‘ore the maximum value of P, is known in terms of the specified

mismatch 311' and specified load inductance as
P, = (el b=y lsylg & (a2)

It ocan be sgen i‘rcm (42) that a slight increase in P, can be ob=
tained be increasing IS 1le but for large L, the allowable mismatch is t?-
stricted to a very smali value, e~ /4-. It will be recalled that making Sn'

greater than this value would cause the wrong inequality of Theorem 4 to be

o ol Vet
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appliocable and the matching network would not be the optimum defined by Theorem

The P(w), Isl (jw)l and lsaz(jw)l curves are given by Figures MRI-
13040b, MRI~130400c sand MRI~13040d4 respectively. A matching network would have
to be quite complicated to produce such sharp transitions as are shown in
these ourves, To 1llustrate the procedure of actually designing a network,

8 simple approximating function, will be used for P(@) and the matching
network which produces this function will be shown.

The function whioch will be used to approximate thes rectangular ourve
of Fige. MRI=13040h is:

2

ls,,(30)? = p(e) = TE'J.T (43)

which has the wvalue a.z at @ = 0 and drope to half this value atew = 1, the
edge of the pass band. This is not a very close approximmtion to the desired

rectangular form, but the algebraic complexity of better approximation makes
them too formidable. '

The inpr. mismatoh will again be taken as constant, that is

I8, 030yl = ls, 1.
From equation (30) the lszz(jw)l funotion may be determined as ¢

2
le - + wz
R | (44)

l e« mz

lsaz(jw)l =

The complex function Sy5(p) is easily determined from the knowledge
that 833(p) should have no right-hand zeros in order to make the most efficient
use of the integral restriction.

(p+n,_. &% )
Y

3pa(p) = [‘“I‘Té?lfl' (45)
(p+ )"

The simplest possible sm(p) is

8;,(p) = 5;-1- (46)
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Now 8;,(p) is specified according to equation (21) as:

- 'Y
8,,(p) -.!sl:tl (p Yl "‘Imi'l‘[) (47)

P *Tl _ et
l#lsni

and, fortunately, this turms out to be rational,

The [s] matrix, whose elements are specified above, is the matrix
of the 2=port composed of the matching network and the inductsnce L of the
loads If the 2-port E representing the load were complicated, the easiest
method of synthesis would be to find the scattering or impedance matrix of
the matching network D. The matching network would then be synthesized by
itself, In this oase, however, the simp)cg t procedure is to find the im-
pedance matrix of the composite network j and then synthesize the composite
network. The impedance matrix is used because it is kmown at the cutset
that thers will be an inductance L in series with one terminal of the network.

Matrix equation (8) gives the impedance matrix in terms of the
scattering matrix, The matching network and the element values obtained from
this impedence matrix are shown in Fig. MRI-1304la.

It should be noted that the relation betwgen a, 'Snl and L could
be found from the integral restrioction on Bgz(jw) « This would involve
complicated mathematiss, however, so it is better to proceed with the syn-
thesis and obtain a value for L in terms of a and (877l. The value in this
case is

L = (48)

l
gl (RP P

11
This gives the values?

o - (1els,ly(E - %z) (49)
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which may be compared with the height of the rectangular ourve given by Equation
(42),

It was noted in this ocase, the miTimu.T value of 'Szz(jw)' occurs at
@ = 0 and this value must be greater than I8;;l|. That is

2
a
Pt 2 ls,, | (60)

whioh can be changed to

2 2
1- 18 1% -a% 50 - (51)

Using the value for a2 glven by Equation (49)

(1 + Isnl)(l - lsnl --i-+ %z)a 0 (62)

Equation (62) may be interpretated in two ways? as an upper limit
on -Isnl, and as & lower limit on L. When the inequality in solved for L,
the relevant branch of the solution is

L3 —* : (53)
1 - YTl

For large values of L, the psrformance of the simple network may
be compared with the rectangular curve of Fig. MRI-13040b because thes ex-
ponential in equation (42) may be replaced by & series to give:

P, ¥ (e ls Dy T L>> 1 (54)

while equation (49) may be apprcximated by:

2 2
a” T (1« ISu') F Ly»>1 (56)

It may be seen that for large L; the P(/w) of the simple network is only
2/1! of the rectangular response at w = 0 and at @ = 1 the ratio iz worse,
namaly l/n'. For small values of Lj the simple cirocuit of Fig. MRI~1304la com-
pares a little better. The response is shown in Fig. MRI-J[304}b for the
smallest possible valus of L, nemely I, = 1 vhich requires [8;;1 = 0 and al=1,

T mana— - ————

- *
- P
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These conditions show the simple network of Fig. MRI=1304la in its most
favorable light for comparison with the rectangular response.

The cholce of parameters used in the above plot leads to a
rather simple degenerate case, The matching network consists of the series
combination of a resistor and capacitor in parallel with the load as indie
oated in Fig, MRI-13041b and is & well known R~L=C constant resistance net=
worke The ideal transformers hoth disappear only for this combination of
' paraneters ’mi\e lower transfomer of Fig. MRI-1304la can be slminated if
a =1 and 's = 0, while only the upper transformer disappears for alL -1+'811'.
For both transformeru to disappear, it is necessary that a = 1, Isn I-
and I, = 1.

Example 2

Suppose that a matching network is to be designed to match the load
impedance of Fig. MRI=13042a to & one ohm generator so that the generator sees
a per! wot~iatch at all frequencies and so that the power reaching the load- is
constant and independent of frequency. That is P (w) = Py for allw, '\\

Thers are two answers that might bé desired in this problem. The
first is a knowledge of the maximum value of P, without any knowledge of the
form of the matéhing network. The second answer is a complete design of the
optimum matching network. i}

The first answer is obtained by means of the integral restrictions
on the magnitude cf 8ggz(jw).

The lossless 2-port which, when terminated in one ohm, represents
' 2(p) may be obtained as follows:

2(p) = Lo (56)

z(p) - 1
Byp(p) = z(g 7 = —gp——r-p4. (67)
wz 8&?4-4

'312(3"’)'2 -1~ 'Ell(:j“’)'a =1 - o " T (58)

ElZ(P) - 22 (3;]-42.% - 12— (69)
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The above Ejo(p) funotion is not the only one which has the magni=-
tude specified by (58) but it is the simplest funotion. The fun tion Ep (Jo )
is now obtained from the reyuirement that the scattering matrix |E! of the
lossless 2~port be unitayy on the p = jw axis, This same requirement was
used to obtain lElz(:jw)fyaocording to equation (58).

By (390)B, () -jw (E gu-;lz fa - 31«0;
n - ] - 80
322(30) E;Z (jw) -3 T Xy ( )

- :_E ( \E P = 1) 81
T2 (?) (3p + 2)(VBp + 1) o1

The actual lossless 2-port E may be found from the above scattering
matrix by determining the open circuit impedance matrix from equation (6) and
then synthesigzing the network from the impedance description. The 2-port E
is shown in Fig, MRI-13042D.

The function Ejp(p) has a simple zero on the positive real axis and
the refleoction coefficient E Z(P) has a coincident zero. That is, n = 1 and
1?0 = 1.  Therefore, there should be 2n = n, = 1 integral restriction on

ng(:jw)l. This restriotion will now be derived.

Theorem 3 requires that 8,, = Ey; have at least a seocond order gzero _

at p = 1/\, BSuch a second order zéro is assured by putting a zeroc in S55(p)
at p = 1/A2 and meking the oconstant term (first temm) in the Taylor series for
E;5(p)/VZ p = 1 equal to the first term in the Taylor series for B (p)/vVep-l.

The foliowing line integral is taken around the path of Fig. MRI-

20 bele (VZRZLy .B_}.h]

o2 P x Pl g (62)
(po =) (pem
e YT

The argument of the logarithm in the integral numerator has the sams
magnitude as 1/822 along p = j& but all rightehand zeros have been concelled
out of 8pp.

13043a.

If the numerator is expanded in a Taylor series gtpnl/\E,"the first
term in the expansion is known by virtue of the second order zero in Spp~Ezg.

| —— i a—

. e o~ = L
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The higher order terms contain powers of (p = 1/V2) which oancel out the
p = 1AZ faotor in the demoninator. Thus, only the first term has a
residus at p = 1/A/Z and the following equation results:

1
g g, | e EZE]

1 3
(p - =) (1""5,) (\kl"'xf}) (P-\/é)

X .
- -\.2_".:1 log [—(3 + 2\%) I % = Px } (64)
Ve JE* Px '

The imaginary part of the logarithm is an odd function along p = jw
although there may also be a constant jmw term due to a (-1) factor in Sy5(p).
If such a facior is present in 855(p), however, the right=hand side will also
have a jm term so thess constent terms will cancel out. The integral of the
imaginary part on the left~hand side will therefore cancel over the full j w
axis,

The integral on the left-hand side of (64) is zero on the large
semi-circle of the path because the denominator is gquadratic. All that re=-
mains of the left-hand side of (64), then, is the intsgral of the real part
whioch simplifies to :

. 1 l ' 1 -
/, log 5,1 d(Ew) = -} log(3 + 2VE) + .'2'. gx‘ log[VE ~ Px (65)
1+ 2&)! Ve Py

Bquation (65) is the desired integral restriotion. The py in this
restriction all have positive real pevrts so it may be seen that any extra
right-hand zeros in Spp(p) will decrease the area allowed under the wéighted
log l/B 2| curve. Therefore, the only right~hand zero which should appear
in 822(p§ is the required one at p = 1/%Z. .

For the optimum matching network, 'Szg(Jﬁo)i should be constant to
give a constant P(@s) according t

Plw) = P =1~ ls,,(j6)] (66)
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and the value of 'saz(jto)i is easily obtained beocause log ll/%azi can be
taken outside of the integral in (6G).

' lsposed)l =y (67)

P, = %-}-gvﬁ- - sy, (Je) |2 (68)

The complex funotion 8,,(p) 18 obtained from the known magaitude
by noting that 8;,(p) should contain the Byz(p) zero at p = 1AZ with at
least the same mnftiplioity. The simpleat function having the proper magnil-
tude along p = jew is given in (89). The (=1) factor is inserted to insure
that thers is no polarity reversal at d.o.

S;,(p) = =Y2e2s% (\@'2_‘_1.) (69)
se2yz  VER+ 1

The Saz(p) funotion must also have a zero at p = 1/AZ. Moreover,
the fi~st term in the Taylor series for SZZ(P) about p = 1/ must be the same
a8 the corresnonding term in the Ezz(p) series, This fixes the sign of Bag(p),
giving:

8

Y -1 VEp =1
2 (P) ——rer- (\zzpu) (70)

2

Now that the over-all_scattering matrix [é] is completely deter-
mined, the scattering matrix IDJ of the matching nsetwork alone may be fo
by sté'ing equations (9), (10) and (11) for elements of [5} in terms of
and f. The open~circuit impedance matrix of the matching network can then
be computed and the network drawn from the impedance matrix, The matching
network is shown in Fig., MRI-13042¢ and it is seen to contain two ideal
transformers. If the minus sign had not been inserted in Slz(p), both trans-
formers would have had reversed polarities,

The optimum matching networks in both examples are probably too com-
plicated to use in actual equipment because they contain inter-connected ideal
transformers. The chief use of the theory developsd in this section is to
predict the maximum performance that can be obtained from a matching network,

R zyens
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regardless of its form or complexity, Then the performance of practical
matohing networks can be compared with this theoretical maximum to determine
the amount of improvement that may be afforded by a more ingeneous design.
Some practical forms of matching networks are described in Reference ll,.
Reference 7 illustrates the use of the general theory of wideband matching
in guiding the design of simple matching networks.

8¢ Extension to Arbitrary Generators

The previous sections were concerned with matohing an arbitrary
load impedance to & generator whose available power was one watt and whose
internal impedance was a pure resistance of one ohm. Using a one ohm genera=
tor merely means that all impedences are normaliged to the internal resistance
of the generator. Thus, the theory applies to any problem in which the inter=
nal impedance of the given generator is a oconstant resistance,

The theory already developed can also be extended to include genera-
tors whose available power is not constant. These problems ocour in practioce.
For example, oonsider a generator which consists of & long coaxial cable con~
nected to a constant=voltage, adjustable~frequency oscillator. The cable has
a constant, real characteristic impedance because its attenuation per foot
is amall, However, the cable is long enough so that its output impedance is
not affected by the oscillator conneoted at the input ends Thus the combined
oscllla tor and cable is a generator whose internal impedance is a real constant
equal to the characteristic impedance of the cable, but whose available power
varies with frequency because the cable attenuation varies with frequency.

The generator in question is shown in Fig. MRI=13043b together
with the matching network and the load impedance. The internal impedance of
the generator appears as one ohm hecause all impedances are normalized to the
generator resistance., The available power of the generator is

2
P (w) = Ef) (71)

and the powsr dissipated in the load is P(@). P(&>) and P, (w) are related
by

Plw) = Is;(3e)? Pafw) (72)

when Sj2(p) is the off-di.gonal element of the scattering matrix of the tan=-
dem combination of matching network D and lossless 2~-port E as shown in Fig,
MRI~13043cs The 2~port E is used,as before, in the Darlington representa-
tion of the load 2(»). BEverything is the, same as in the previous sections ex-
cept that P(«w) is not equal to Tslz(jua)iz because the available power of the
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generator is no lnger one watt. All the Theorems wers purposely written in
terms of lslz(;ju) rather than P(w ) so that they would be applicable to
the more genaral situations.

To summarigze: When an arbitrary load impsdance Z(p) is to be match-
ed to a one ohm generator whose available power is Py (w ), all the Tl'l\eorems ,
previously developed apply and it is merely necessary to note thut I813(jw) ’d
is the ratio of power dissipated in the load to available power of the genera=-
tor.

The theory developed in previous sections applies to the system of
Fig .MRI~13044a in which a conatant resistance load is to be matochéd to a
generator whose available power and internal impedance arxe both arbitrary
funoction 6f frequenocy.

The available power P, of the gensrator in Fig. YRI=13044a is

2
P (@) = % (73)

where

z(Jw) = Rlw) + JX(w) (74)

The internal impedance Z(p) of the generator can be represented as
a losslese 2~port F terminated in one ohm as shown in Fig. MRI-13044b. Now
the system consists of two 2-ports in tandem in exactly the same way as the
preceding cases, except for the generator E(w) inserted between the two net-
works.

The phase of the power reaching the load is not important, and since
magnitudes only are of interest, the voltage generator can always be placed
in series with the terminating resistor at port 2 of network H. This is shown
in Fig. MRI~130440 which is identical to Fig. MRI-13043c except that the gen=-
erator ie connected to end 2 of the combined network rather than end 1. This
is of no importance because the networks obey recipruecity so that the power
P{ta) in the load is given, as before, be equation (72).

As far as the matching problem is concerned, nothing hus been lost
by moving the generator from its original position in series with snd 1 of
the lossless 2~port E to the new position at end 2 of E, Phase information,
it is true, has been thrown away, but the magnitudes have been unaltered. The
change from Fige. MRI=13044b to Fige. MRI-13044c is always valid as long as P, (w)
is finite., This precludes the case in which the internal resistmoce R(w ) of
the given generator is zero while the voltage E(w ) is not zero. Such a gen=-
erator is not physically possible, so that the representation of Fig. MRI~13044c

——
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1s always valide.

In summary, then, the gemeral thsory of wideband matching applies
to the matching of & constant resistance load to a generator whose internal
impedance is complex and whose available power is a function of frequencye
The mismatch at the terminals of the glven constant resistance is given by

Isll(.j“)l' -

9e __Special Oase of Reflectionless Matching

: Same mention should be made of the important speclal case of re-
flectionless matching with optimum power transfer efficiency networks. Suvch
structures match a load to a constant resistance over the infinite 1eal fre-
quency band.

The limitations for this case are readily found from Theorenm 5,
by introducing the matching constraint |Sy1| = O, corresponding to a unit
normalized constant input resistance. Equation (b) of the Theorem specify= -
ing maximum insertion gain becomes

lslg(j“)lz - 1l- lszz (Ju)| ‘ (75)

Further the synthesis of the matching network ls considerably
simplified in this case for the specification of 8,7 as a function of two
amplitudes (See Equation 21) whose product must be Trational is not required.
Once the optimum ?;22(3 w)] md'sla(ju)] have been found from the integral
constraints and Equation 75, it is always possible to find the complex ra~
tlonal functions Spp and Syg2e These in conjunction with Sqq = O specify
the complete network which may then be synthesized according to methods
alreadiy described,

It is interesting to compare the performance of optimum dlssipative matche
ing networks with optimum lossless networks (the latter designed on the
basis of minimum input reflection amplitude over a prescribed band). This
ls easily done since the limiting factor in both lossy and lossless nete
works 1s the amplitude function [8po(Jjwd)| as determined by the integral
constraints imposed by the prescribed load. The minimum value of input
reflection factor amplitude over a given pass band when lossless matching
networks are used is |8 2|MIN; and the maximum insertion gain . of the loss~
less matching network when excited by a matched generator is:

2
P (MAX, IOSSLESS) = 1 = 'SZZIMN
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Equation (b) of Theorem 5 gives the maximum insertion gain of a
dissipative matching network in terms of [S,,|yyy when |817] 1is prescribed

P (MAX. 108SY) = (1 + [S3q|)(1 = [S,,1)

The ratio of maximum gains when a given load is matched by optimum
lossy and lossless networks is:

f Gttt AR O

; P_(MAX, LOSSY) .. 1+ 8991 (76) e
! P (MAX, IOSSLESS) 1+ 185,y

TR TR R A

In the limit when [S,,| = 1, this becomes
MIN
- F@als (T
z 11

- P éMAX mssyg
3 ' 18051

In the case of a reflactionless matching network [S,,| = 0, and
the rather startling fact emerges that in the pass band the inSertion loss
of an optimum dissipative matching network which matches a load to a real

enerator impedance wWithoul reflections over Lhe infiniLe real frequenc
Ea_.na Can never exceed LHat OF an OpLimum 10881685 Network by more GLLAn Jdbe
Tt should be pointed out that ifipractical problems |Sgp|uiy € 4s 850 Ghab
the difference in insertion loss between lossy and lussless matching is
« invariably considerably less than 3db.




P2 e A A

L BT BV,

Il

Re=308=53, PIB=Z47

1.

2.

3e

4.

S5e

6e

8.

9.

10,

11,

BIBLIOGRAPHY

HeW. Bode, "Network Analysir aud Feedback Amplifier Design", New York,
D. VanNostrand Compauny, Inc., 1945,

ReM. fano, "Theoretical Limitations on the Broadband Matching of Arbi=
trary Impedances"™ MNoctor of Science Thesis, Mkssachusatts Institute of
Technology, June, 1947,

R.M. Fano, "Theoretical Limitations on the Breadband Matching of Arbitrary
Impedances”, Journal Franklin Institute, Vol. 249, No. 1, pg.57 (Jan.l950),
and Vol. 249, No. 2, pg.l39(Feb. 1950),

V. Belevitoh, "Synthesis nf ?n-Torminal Networks", Wireless Engi-.er
Vol 28 (1951) pp. 128-9.

Ve Belevitch; ”§"n1nass des Reseaux Electriques Passifs & n-Paires de
Bornss de Matrice de Répartition Prédftermifee.” Annales des T8lé-
communications Vol. 6,No. 11, ppe 302=-312 Nov, 1951,

S. Darlington, "Synthesis of Reactance 4-Poles™, Journal Mathametics and
Physics, Vol, 18, No. 4 Sept. 1939,

Re LaRosa, "Broadband Dissipative Matching Networks™, Doctor of E.E.
Thesls, Polytechnic Institute of Brooklyn, Junse, 1963.

C.G. Montgomery, R.H. Dicke, E.M. Purcell, "Principles of Microwave
Circuits", McGraw-Hill Book Company, Inc., New York, 1948 (MIT Radia=
tion Laboratory Series, Vol., 8).

Ce.Me Gewortz, "Synthesis of a Finite, Four-Terminal Network", Journal
Mathamatics and Physics Vol. 12, pp. 1-257,(1932-1933),

HeJo Carlin and R. LaRosa, "Broadband Reflectionless Matching with Mini-
mun Insertion Loss", Proceedings of the Symposium on kodern Network
Synthesis sponsored by the Polytechnic Institute of Brooklyn, April 1852,

Re LaRosa and HeJs Carlin, "A Class of Broadband Dissipative Matching
Networks Designed on an Insertion-Loss Basis", Microwave Research Insti-
tute of the Polytechnic Institute of Brooklyn, Report R-~264~52, PIB-203,
Contract No, NObsr-43360 Index NE-100~42, January 25, 1852,

T T T Wi



MATCHING : )
NETWORK 1 Zp - Q

D

in

GENERATOR, MATCHING NETWORK, AND LOAD

b‘
n-PORT I
GENERAL wn-PORT
4+ SjK_ 2 1
1 1 E\j
{ -ET 7 T K  ~—~Tm c
‘ n -PORT
GENERAL " - PORT
o -
| MATCHING }— LOSSLESS :
1; o NETWORK | Z(p) | 2-PORT ' % d
2 N 1 2l T I 2 2, L
{
+ ) E -+
e e e S e e — -

USE OF DARLINGTON REPRESENTATION OF LOAD Z(P)

NETWORK CONFIGURATIONS ¢ DEFINITIONS
2-53 MRIL 13039

ST N it E




2-53

— — — =1

L
| Z(p)—-—-—- :1 2: %i (Q)
L_E_ __J

SIMPLE LOAD IMPEDANGE.

P (w)
Po- (H‘lSul) {1-e W/L)

l‘“"‘l e

,Isu(:j w )I
| - ()
o i —w
|Spe(jw)|
L
(d)
e-m/-r
0 :1 —w

SIMPLE LOAD IMPEDANCE AND THEORETICALLY
POSSIBLE PERFORMANGE CURVE
MRi-13040

AR T T

Sy — T —————— T S



— N Qe S Gt —— ——— — uw —— —) ——, oy—

LOAD

. 1+18.]
1‘ a

a. MATCHING NETWORK FOR SIMPLE LOAD

L P{Q’ ) ) » Gt 0 ~N 0 Y 8 N 8 ™ "
!
BREREY
o d 1 f 1]
- i 1 :EEF@'HL’E' ¢
8 3 -
i1
‘ H
Hind i "
6 !a“% 1 t
AN iR 2
PN i ifi i
a4 R ‘ 1T
it i N 1 H .
2 ! i

.F._:@q;ﬁ[_:};i? it
il
o TR
Tt

i ‘ iR s

b. PERFORMANCE OF SIMPLE MATCHING NETWORK

COMPARED TO BEST POSSIBLE LOW-PASW

2-53




o -
Ky (‘ s 'zl+la..l) 1+IS..i

mEl g

r§.‘.1 (1-15,1* a*)

B e T S

o e

1-15,1* - 158l

A(L-1)
ot ]

|
|
|
|
s
|
I 8L \
|
|
|
|
|
|

i 1+]S,]

LOAD |
a

a. MATCHING NETWORK FOR SIMPLE LOAD

P(d) N L ad Ul O N 0w I i g s " '

=

1.0

|
N
Xf
X
.
—

=5 400

By 8o bog Se
y.4

m)r

] N

b. PERFORMANCE OF SIMPLE MATCHING NETWORK
COMPARED TO BEST POSSIBLE LOW-PASS RESPONSE

e s o VAt it ot e e

2-53 MRI 1304l




rrlifsienanm ¢ 4

s B e =

SR R, -

{
N MATLHING v
2 NET WORK , |
Q.

D LOAD
IMPEDANCE
-1 OHM Z(p)

(6,,(9) o)
MATCHING NETWORK AND SIMPLE LOAD

L, = ..EIE
\ VT +1

e

w2 VR

MATCHING NETWORK
SIMPLE LOAD AND MATCHING NETWORK
2-53 MRI 13042
L. RN




W
< p- plo.ne
P- PLANE COUNTER \
- '
MATCHING [T ]
EW) NETWORK Z(p) b. |
' |
D f _'
|
CTTTTT T T 1
1 | ;
7 1
E(o))é . :1 i 2 { % ?’ T' C
I D E I |
| I
R - S _I ﬂ
L

NORMALIZATION OF AVAILABLE
POWER OF GENE RATOR

2-53 _ MRIL 13043




T RNCS TP WY ENNE T R P T PWTI , TR Y T

2-53

—— ey ao w0 s e

i | A
| ' | |
I Zp | ; MATCHING ! |
| E() | NETWORK | 1 & | Q.
I — ' |
} : D g LOAD l
| ARBITRARY | b
|  GENERATOR |
R S |
ARBITRARY - { MATCHING ; LOAD
GENERATOR | NETWORK |
| |
B | |
- | |
1 2 | |2 | o)
E -GD""!““ o+
' E () | \

— Gmes emee  BERS T AEe Com— eew Sme

—m— e Gpmes NN G G e A R S

MATCHING ARBITRARY GENERATOR

TO RESISTIVE LOAD

MR 13044




