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ON SLOW VISCO-PLASTIC Frow™
by William Prager, Brown University

1. Introduction. The incompressible visco-plastic material

considered in the following 1s a Bingham solid [1].** The mechan-
ical behavior of this solid is most readlly visualized in thé
following manner. Let a Newtonlian viscous liquid, a perfectly
plastic Mises solid (2], and a visco-plastic Bingham solid be sub-
Jected to the same velocity strains The stress in the Bingham
solid 1s then obtailned by adding the stresses in the Newtonian
liquid and the Mises solid.

Whereas specific boundary value problems concerning the slow
flow of a Bingham solid have been discussed in the literature (see;
for instance, [3 1), few general results concerning this type of
visco-plastic flow seem as yet to be available. In the present

paper a uniqueness theorem and two extremum principles are estab-

- 1lished,

2, Notation, Latin subscripts take the range 1, 2, 3, and
the summation convention operates on repeated subsériptso The co-
ordinates x4 are rectangular and Cartesian, and differentiation
with respect to x4 is indicated by a comma subscript followed by
the subscript i (f,i = 8f/dxy).

The following boundary value problem will be considered., The
incompressible Bingham so0l1id under consideration occuplies the three-
dimensional region V which is bounded by the surface S. The body

ferce Fy (per unit of volume) is given throughout V. The surface

* The results presented in this paper were obtained in the course
of research sponsored by the 0ffice of Naval Rescarch (Con-
tract N7onr-35801),

**  Numbers In square brackcts refer to the bibliography at the
end of the paper.




R N 2
traction Ty 1ls prescribed on the portion ST of 8, and the velocity
vy on the remainder Sv. If ST z S, the given surface tractions
must, of course, satisfy the conditions of equilibrium,\gTidS +
j\FidV = 0, and If SV 5 S, the given velocities must satisfy the
condition of incompressibility,J‘vinids = 0, where ny 1s the unit
exterior normal of S. From the data on the surface, the velocity
field v4(x) and the stress field 513(1) are to be determined
throughout V under the assumption that the effects of inertia are
negligible when compared to the effects of the viscous stresses
and yleld stresses,
It 1s convenient to write the stress tensor in the form
61§ = = Pbyj + 5349 (1)
where p = - dy;/3 1s the mean pressure, and sjj the stress devia-
tion. The velocity strain is defined by
€4 :-]2“- (Vi,J + Vj,i)e (2)
The incompressibility of the solid requires that
€4y S V4 4 = 0. (3)
The following positive in variants of velocity strain and
gtress deviation prove useful in the analytical description of the
mechanical behavior of the solid:

I = (2513 Eij)l/z, J = (% SiJSij)l/zu (%)

3« Baslc relations.e The general relations between the stress
deviation and the velocity strain in an incompressible Bingham
solid were first given by Hohenemser and Prager [4], [5]. 1In the
prescnt notation, these relations have the form

0 if J < k,
T %) sy 12 7 2 ke )

By squering (9) and using (%), we find that
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n
0 1f J <k
p.I :J ’ (6)
L ¢« x if T > k.
U )
Substitution of (6} into the second Eq. (5) yields
e 2 k\n
sij = Z(I‘L + -T,’(.ij if I é e (7)

Of course, whenever the stress remains below the yield limit, the
velocity strain vanishes, and the stress cannot be expressed in

terms of the velocity strain.

Since the inertia effects are neglected, the stresses must

satlsfy the equations of equilibrium; these are

and

°ij“j = Ty on Spe (9)

Introducing (1) into (8) and eliminating p by cross differen-
tiation we obtain

S13,3k = Skg, 31 * Fix - Fi,1 = O (10}
as the condition of equilibrium for the stress deviaticn.

In the following, the principle of virtual work will be used
repeatedly. Let v; be a continuous veloclty field with piecewise
continuous first derivations satisfying (3) andd{j an entirely
unrelated continuous stress field with piecewise continuous first -
derivatives satisfying (8), Furthermore, set e;j = %(vg,j + Vg,i)
and Ti = dijnj. The principle of virtual work is then expressed
by the equation

jc' eyy av = \fTi vy dS + kfFi vy dv. (

13

|—J
j—a
S

4, Unigueness. A stress field 93, a velocity field vy, and

t < ¢ - l
the associated field of velocity strain €4 5 (Vi,j + Vj,i) will
be sald to constitute a solution of the boundary value problem for-
mulated in Sec. 2 1f they saiisfy the boundary conditions and Egs.
(3), (5), and (8).
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Let us assume that the boundary value problem admits a second
solution 644, Vi, eyye Since each solution corresponds to the same
body forces Fi’ the principle of virtual work ylelds

\f(cij - Oij)(sij - eij)dv = k}’(T1 - T4)(vy = v{das. (12)
The right-hand side of (12) vanishes because the first factor of
the integrand vanishes on Sp and the second factor on Sy. To prove
that our boundary value problem defines a unique field of velocity
strain, we shall prove that the integral on the left-hand side of
(12) is positive unless €44 = eij throughout V,

On account of the incompressibility of the solid, the inte-
grand oh the left-hand side of (12) can be written ag A& = (sij-sij)
°(Eij - eij). In discussing the sign of this expression, we must
consider four types of region.

(1) Where neither €44 nor Eij vanishes, we have by (7) and

(4)
T4 = 2p(egy = e{J)(sij - E{J) +-;%T(I + IN(II - 2eije{j).(13)

The first expression on the right-hand side of (13) 1is positive
unless €1y = e{J, and the second expression 1s non-negative by the

Schwarzian ineouality. Thus, A can vanish in thils type of region

- 1
only if 513 = Eij‘

(1i) Where €13 # 0 but Sij = 0, we have, according to (5)
J>k, J' <k (1)

and herice

= - ! - J hnd k - ;
Here, the factors in front of the bracket are positive., Moreover,
sijsij = 2J2 > 2JJ!
by (1%), and hence
. 1 1

by the Schwarzian ineguality. Thus, A cannot vanish in this type
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of region,

(111) It can Le shown in a similar manner that A cannot

vanish where €44 = 0 but eij # O,

(iv) Where ey = eij = 0, we have 4 = O,

It follows from the preceding disevssion that the left-hand
integral in (12) can vanish, as it mu:3l do, only if ey = eia
throughout V. The field of velocit, siurain is therefore seen to
be unique, Since this field determines the velocity field to with-
Vin a rigid body motion, the velocitr fleld will also be unique
except when Sy = O, 1In this eass. tiec velocity fileld is deter-
mined only to within a rigid body motion. As regards the stress
field, this is ohviously not uniaue in such regions where the
velocity strain vanishess Where the velocity strain dees not van-
ish, however, we have Sj3 = s{J. The corresponding stress fields
913 and dij therefore differ at most in the mean pressure. Since
each of these stress fields must satisfy the equations of equili-
brium (8), this difference.in mean pressure must be constant
throughout V. The boundary conditions on Sp, however, rule out
such a difference in mean pressure. Thus, the stress field is
unique except when ST = O+ In this case the stress field is deter=-
mined only to within a constant hydrostatic pressure,

S5¢ Minimum principle for velocity straine A continuous

velocity field v? with plecewise continuous first derivatives will
be called kinematically admissible if 1t satisfies the boundary
conditions on SV and the condition of incompressibility (3)., Where
the corresponding velouclity strain Eij does not vanish, Eas (7)
furnishes a fieid of stress deviation SIJ’ As a rule, however,

this fleld will not satisfy the condition of equilibrium (10),
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Excluding the case S, = 0, we propose to compare the unique

solution vy of our boundary value problem to a generic kinemati-
cally admissible velocity fieid v;e Consider the expression

= \]-(511*2 + 2KI*)AV - 2f T,vidSq = 2 j Fyvidv o (17)
which is a fun:tional of the velocity field vi, Since v} = vy on
Sys we have

H* - X = f [p(I*2 - T%) + 2k(I* - I)lav -
{ T4 (v] = v4)dS - 2\[ Fy(vi = vy)dv,

where the surfice integral 1s extended over tie entire surface S,

(18)

We shall prove that H* = H > 0 unless v; = Vi, thus establishing
the following 3 nimum principle.

Theorem 1. Among all kinematically admissible velocity
fields, the actaal velocity field minimizes the expression (17).

Using the principle of wvirtual work and the condition of
incompressibility, we write Eq. (18) in the form

H* - H = j[p(zz*2 - I%) + 2k(I* - I) - 2sij(e§j - &y54)]av, (19)

where Sy is trhe (unigue) stress deviation associated with the
solution Vyie

In discussing the sign of the integrand B in (19) we must
distingulsh two types of region.

(1) Where €5 # 0, we have by (7} and (4)

= 2p(etj - eij)(e;j - Eij) + %%(II* - 2511513). (20)

o

The first term ¢n the right-hand side of (20) is positive unless
E;J = Eij’ and ‘Nne second term is non-negative by the Schwarzian
ineguality, Thus, B is pcsitive in resion (1) unless EiJ = E;j‘

(11) When = O, the integrand B of (19) reduces to

*2

_-ij =
B

ul © + 2kI* ~ 2s44ely, (21)

where 51 4 is no 1l onger uniquely determined but must satisfy the
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condition
J £k (22)

accerding to (9). If ezj = 0, the expression (21) vanishes, If,
on the other hand, 8;3 # 0, the associated stress deviation sij
is readily found for (7) and we have

J* > k (23)
in accordance with (5). The expression (21) can then be written

as follows: =
B = li_ﬁ_K(J* +k = filf%i). (24)
J

Now, sijs;J < 2JJ%, by the Schwarzlan lnequality. Equation (24)

therefore yields
B 2.li_ﬁ_K(J* +k~27) >0 (25)

by (22) and (23).

It follows from the preceding discussion that H* > ﬁ unless
5;3 = e4y throughout Vs In view of the boundary conditions on
Sy this means that H* > H unless vz = v4 throughout V. This
establishes the minimum principle of Theorem 1, In the special
case of plane flow and under the assumption that the boundary con-
ditions involve only surface tractions and are, moreover, such ag
to cause visco-plastic defermation throughout V, an equivalent
variational principle has been given by Ilyushin [6],

6., Maximum principle for stress. 4 continuous stress field
°Ij with plecewise continuous first derivatives will be called
statically aidmissible if it satisfies the boundary condition on
Sp and the equations of equilibrium (8), By means of (5) a field
of velocity strain E;J 1s associated with the stress field G;j‘

As a rule, however, this field of velocity strain does not satisfy
the compatibility conditions and hence cannot be derived from a
velocity fleld.

Excluding the case Sp = O, we proposs to compare a solution
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dij of our boundary value problem to a generiec statically admissi-
ble stress fleld G;j’ It should be kept in mind for the follcwing
that two solution stress fields can differ only in the commnon
rigid regions

Consider the expression

_ i * . ' _ 1’ _

K* = 2j'rivids\, 1%; ) Uae = wl + g# k Fav (26)
which 1s a functional of the stress field o¢jj. Since T’;‘l‘ = Ty on
ST’ we have

" *
K=Kt =2 | (T4 - T])vqdS

- ,%ﬁj{[lar -kl + T~ kP - [ - k| + 3% - kPyav, (27)

where the first integral is extended over the entire surface S.
We shall prove that K > K* unless °;j 1s also a solution stress
field in which case K = K*s The following maximum principle will
thus be established.
Iheorem 2. Among all statically admissible stress fields,
the solution stress fields maximize the expression (26),
Using the principle of virtual work and the condition of in-
compressibility, we write (27) in the form
K - K* :%5{2}1513(513 - s;j) - %[IJ -kl +J - k]2
+ [l;[IJ* -kl +J* - k]2}dV, (28)
where €y 4 is the (unique) velocity strain associated with the
solution °ij'
In discussing the sign of the integrand C in (28) we must
distinguish four types of region,
(1) Where J > k and J* > k, we have by (5) and (&)
¢ = % (sy4 = S;J)(sij - sij) - %(2JJ* - sijszj)' (29)
The expression inside ﬁhe parenthesis in the second term on the

right-hand side of (29) 1s positive unless SIJ = Csyy in which
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case it vanlshes. In this case, C >0 1f ¢ # L and C =0 if ¢ = L,

In all other cases C 1s snhown to be positive by the followlng argu-
mente Since J > k in region (1), we have
C > Y5y 48] 4) (545-5% =(2005w5, 35 P=(I-007 200 (30)
(11) Where J > k but J* £ k we cannot have S§3 = 8g4e The
integrand C of (28) zan be transformed as follows by means of (5)

and (4):

2 2
C = (1-5(21° - syysiy) = (7= k)
= -imﬁ-E (3% + kT - sijs;j). (31)

The factor in front of the parenthesis on the right-hand side of
(31) is positive in region (ii). Moreover, since J > k 2 J*,
J2+kJ-siJsij >J2+J*2-sijszj= %(sij-szj)(sij-s;j) > O, (32)
Thus, ¢ > O in region (ii).
(111) Where J < k but J* > k, we have €y = 0o The integrand
C in (28) thus assumes the form
C = (3% - K% > o, (33)
(iv) Where J <k and J* Lk, the integrand in (28) vanishes.
It follows from the preceding discussion that K > K* unless
sij = s;4 in a1l of V but the rigid region (iv). This means that
K > K* unless S;J i1s the stress deviation field associated with
a solutions Theorem 2 1s thus established.

7+ Related extremum principles. The Newtonian viscous fluid

and the perfectly plastic Mlses solid are limiting cases of the
Bingham solid considered here. Indeed, with k = 0, Eq. (5) charac-
terizes a Newtonian liquid and, with ¢ = 0, Eq. (7) characterizes

a Mlses solid. Accordingly, our extremum principles should contain
the extremum prineciples for the Newtonian 1igquid and the Mises
s0lld as specilal cases.

“With k = 0, the funccional (17) reduces to an expression which

-
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is readily recognized as the excess of the rate of dlsasipation of
energy in the Newtonian 1liquid over double the rate at which work
is belng done by the body forces and the surface tractions on STe
That thi:s quantity 1s minimized by the actual velocity field was

observed by Helmholtz [ 7]

With p = O, on the other hand, the functional (17) reduces to
an expression which is easily identified as double the excess of
the rate of dissipation of energy in the Miscs solid over the rate
at which work is being done by the body forces and the surface
tractions on Sqe  That this quantity is minimized by the actual
velocity field was recognized by Markov [81

In view of the fact that these special cases of our minimum
principle can be stated in terms of energy dissipation, it is
worth noting that the first integral on the right-hand side of
(17) does not represent the ratec of dissipation of encrgy in the
Bingham solids Inueed, Eqs (7) shows thc rate of energy dissipa-

tion to be : )
\Ssijsij av = J‘(}il‘ = 4+ ¥I)av, ) (3)4-)

As Ilyushin [6] has rcmarked with reference to the speclal case
considered by him, the first integral on the right-hand side of
(17) can be interpreted as the sum of the "power of deformation
and the power of the internal forces of plastic resistance', Alter-
natively, this integral can be considered as the sum of the rate
of viscous dlssipation of energy and double the rate of plastic
issipatvion of energy.

With k = 0, the functional (26) reduces to an expression which
represents the excess of double the rate at which work 1is being
done by the surface tractions on Sy over the rate of dissipation of

energy in the Newtonian 1igquid, the latter rate being expressed in
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terms of strescses. The orinciple that this expression is maximized
by the actual stress field seems to be new,

Finally, the characteristic equation for a Mises solid in
plastic flow is obtained from (%) by letting p and J - k tend to
»ero in such a manner that 2pJ/(J-k) tends towsids a positive
factor of proportionality between Sy 4 and € y0 If this limiting
process is applied to the expression (26), this is seen to reduce
to doutle the rate at which work is being done by the surface trac-
tions on Sy. The fact that this rate of work is maximized by the
actual surface tractions was recognized by Hill, first [9] in the
special case where the boundary conditions are such as to ensure
plastic flow throughout V, and later [10] in the general case.
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