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ON SLOW VTSCO-PLASTIC FLOW*

by William Prager, Brown University

1. Introduction. The incompressible visco-plactic material

considered in the following is a Bingham solid [E].** The mechan-

ical behavior of this solid is most readily visualized in the

following manner. Let a Newtonian viscous liquid, a perfectly

plastic Mises solid [21, and a visco-plastic Bingham solid be sub-

Jected to the same velocity strain. The stress in the Bingham

solid is then obtained by adding the stresses in the Newtonian

liquid and the Mises solid.

Whereas specific boundary value problems concerning the slow

flow of a Bingham solid have been discussed in the literature (see,

for instance, [31), few general results concerning this type of

visco-plastic flow seem as yet to be available. In the present

paper a uniqueness theorem and two extremum principles are estab-

lished.

2. Notation. Latin subscripts take the range 1, 2v 3, and

the summation convention operates on repeated subscripts, The co-

ordinates xi are rectangular and Cartesian, and differentiation

with respect to xi is indicated by a comma subscript followed by

the subscript i (f i 8f/axi).

The following boundary value problem will be considered. The

incompressible Bingham solid under consideration occupies the three-

dimensional region V which is bounded by the surface So The body

force Fi (per unit of volume) is given throughout V. The surface

* The results presented in this paper were obtained in the course
of research sponsored by the Office of Naval Research (Con-
tract N7onr-35801).

** Numbers in square brackets refer to the bibliography at the
end of the paper.
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traction Ti is prescribed on the portion ST of S, and the velocity

vi on the remainder SV, If ST S9 the given surface tr.actions

must, of course, satisfy the conditions of equilibrium, j TidS +

J FidV 0, and if S. . S, the given velocities must satisfy the

condition of incompressibility,fvinldS = 0, where nis the unit

exterior normal of S. From the data on the surface, the velocity

field vi(x) and the stress field o1 j(x) are to be determined

throughout V under the assumption that the effects of inertia are

negligible when compared to the effects of the viscous stresses

and yield stresses.

It is convenient to write the stress tensor in the form

iJ = PiJ + sij, (1)

where p = - dkk/3 is the mean pressure, and sij the stress devia-

tion. The velocity strain is defined by

CiJ = i (v J + vj i)b (2)

The incompressibility of the solid requires that

SEi = v 19 = O. (3)

The following positive in variants of velocity strain and

stress deviation prove useful in the analytical description of the

mechanical behavior of the solid:

I = ( 2Eij Eij) 1/2, s(jsij)/ 2 )

3. Basic relations. The general relations between the stress

deviation and the velocity strain in an incompressible Bingham

solid were first given by Hohenemser and Prager [4], [5]. In the

present notation, these relations have the form

2ý = { 0 if J <k,
(l - Sij if J > k.

By squaring (5) and using (4), we find that
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- 0 if J < kg (6)J -i if J >k.

Substitution of (6) into the second J-•q. (5) yields

S= 2(p, + k4") j if I t 0. (7)sljI

Of course, whenever the stress remains below the yield limit, the

velocity strain vanishes, and the stress cannot be expressed in

terms of the velocity strain.

Since the inertia effects are neglected, the stresses must

satisfy the equations of equilibrium; these are

and Fi = 0 in V, (8)

Tj f i on ST (9)

Introducing (1) into (8) and eliminating p by cross differen-

tiation we obtain

siJ,Jk - Skj,ji + Fik - F k1i. = O (10)

as the condition of equilibrium for the stress deviation.

In the following, the principle of virtual work will be used
I,

repeatedly. Let vi be a continuous velocity field with piecewise

continuous first derivations satisfying (3) anddij an entirely

unrelated continuous stress field with piecewise continuous first

derivatives satisfying (8). Furthermore, set e"4J • •,j

and T, = dijnj. The principle of virtual work is then expressed

by the equation

ij ~j dV JTI v dS + J F v. (11_d)

1+. Uniqueness. A stress field oi, a velocity field vij and

the associated field of velocity strain 1iJ = ½ (vi,j + vj~i) will

be said to constitute a solution of the boundary value problem for-

mulated in Sec. 2 if they satisfy the boundary conditions and Eqs.

(3), (5), and (8).
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Let us assume that the boundary value problem admits a second

solution oidj vi{ aiJ Since each solution corresponds to the same

body forces Fi, the principle of virtual work yields

(cij - oij)(Cij. - sj)dV = C(Ti - TI)(vi - v')dS. (12)

The right-hand side of (12) vanishes because the first factor of

the integrand vanishes on ST and the second factor on SV. To prove

that our boundary value problem defines a unique field of velocity

strain, we shall prove that the integral on the left-hand side of

(12) is positive unless Eij = S•j throughout V.

On account of the incompressibility of the solid, the inte-

grand on the left-hand side of (12) can be written as A = (sij-sjj)

"(eiJ - ejj). In discussing the sign of this expression, we must

consider four types of region.

(i) Where neither eiJ nor Eij vanishes, we have by (7) and

A = 2P(eij -£)(Sj - 1 ) + •L(I + I')(II' - 2EjijEi).(13)
If'

The first expression on the right-hand side of (13) is positive

unless Si = cij, and the second expression is non-negative by the

Schwarzian ineouality. Thus, A can vanish in this type of region
only if E = 6 1

(ii) Where Eij 0 but iJ = 0, we have, according to (5)

J > ki, J' < k (14)and hence

A = (sij - si i i 1. J [siJSJ s suij]' (15)

Here, the factors in front of the bracket are positive. Moreover,

sijsij = 2J2 > 2JJ'

by (14), and hence

j - sjsij > 2J' - sjjs5j Ž0 (16)
by the Schwarzian inequality. Thus, A cannot vanish in this type
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of region.

(Li_) It can be shown in a similar manner that A can-not

vanish where ci, = 0 but elj 0'

(iv) Where C= 0 we I.av, O

It follows from the preceding disc-'•sion that the left-hand

integral in (12) can vanish, as ili m" ao, only if EiJ = eiJ
throughout V. The field of veloci+ ;rain is therefore seen to

be unique. Since this field determiriz the velocity field to with-

in a rigid body motion, the velocit, field will also be unique

except when SV = 0. In this -1 16; velocity field is deter-

mined only to within a rigid body motion, As regards the stress

field, this is obviously not unicr.e in such regions where the

velocity strain vanishes. Where the velocity strain does not van-

ish, however, we have sij = s jj. The corresponding stress fields

dij and Odj therefore differ at most in the mean pressure. Since

each of these stress fields must satisfy" the equations of equili-

brium (8), this difference-im mean pressure must be constant

throughout V. The boundary conditions on ST, however, rule out

such a difference in mean pressure. Thus, the stress field is

unique except when ST = 0. In this case the stress field is deter-

mined only to within a constant hydrostatic pressure.

5. Minimum JriZncoile for velocity strain. A continuous

velocity field vj with piecewise continuous first derivatives will

be called kinematically admissible if it satisfies the boundary

conditions on SV and the condition of incompressibility (3). Where

the corresponding veluidty strain c*J does not vanish, Egq (7)

furnishes a field of stress deviation sija As a rule, however,

this field will not satisfy the condition of equilibrium (10).
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Excluding the case 0,r = 0 we propose to compare the unique

solution vi of our boundary value problem to a generic kinemati-

cally admissible velocity field vi. Consider the expression

H* = 'iL' 2  + 2kI*)dV - 2f T V* dST - 2 fFiv~dV (12)

which is a functional of the velocity field v*. Since v* = vi on

SV• we have

* -~ i [(I* 2 _ 12) + 2k(I* - I)]dV -

- 2.1 T(v - vi)dS - 2f Fi(v* - v,)dV, (18)

where the surface integral is extended over the entire surface S.

We shall prove that H* - H > 0 unless vi = vi, thus establishing

the following rinimum principle.

Theorem 1. Among all kinematically admissible velocity

fields, the acto-al velocity field minimizes the expression (17).

Using the principle of virtual work and the condition of

incompressibility, we write Eq. (18) in the form

H* - H = [p(E*2 -52) + 2k(I* - I) - 2siJ(•ij -Sj)]dV, (19)

where sij is thb (unique) stress deviation associated with the

solution vi.

In discussing the sign of the integrand B in (19) we must

distinguish two types of region.

(_) Where eij 9 0, we have by (7) and (+)

B = 2L(E )(j - sij) + -- (II* - 2e, *). (20)

The first term on the right-hand side of (20) is positive unless

jiJ = eiJ, and .ie second term is non-negative by the Schwarzian

inecuality, Thins, B is pcsitive in reýion (j) unless E = Ji7 1-ij ij.
(iL) WhenE:iJ = 0, the integrand B of (19) reduces to

B = U1*2 + 2k1* - 2sjj*J, (21)

where sij is no Longer uniquely deterciined but must satisfy the
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condition
J < k (22)

according to (5). If Etj = 0, the expression (21) vanishes. If,
on the other hand, EiJ / 0 the associated stress deviation sj

is readily found for (7) and we have

J* > k (23)

in accordance with (5). The expression (21) can then be written

as follows: B = J- k(j* + k - siis(2•)

Now, sijsij < 2JJ*, by the Schwarzian inequality. Equation (24)

therefore yields B _> J" k(j* + k - 2J) > 0 (25)

by (22) and (23).

It follows from the preceding discussion that H* > H unless

E = iJ throughout V. In view of the boundary conditions on

SV this means that H* > H unless vj = vi throughout V. This

establishes the minimum principle of Theorem 1. In the special

case of plane flow and under the assumption that the boundary con-

ditions involve only surface tractions and are, moreover, such as

to cause visco-plastic deformation throughout V, an equivalent

variational principle has been given by Ilyushin [6].

6. Maximum principle for stress. A continuous stress field

diJ with piecewise continuous first derivatives will be called

statically admissible if it satisfies the boundary condition on

ST and the equations of equilibrium (8). By means of (5) a field

of velocity strain •j is associated with the stress field 0*

As a rule, however, this field of velocity strain does not satisfy

the compatibility conditions and hence cannot be derived from a

velocity field.

Excluding the case ST = 0, we propose to compare a solution
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dij of our boundary value problem to a generic statically admissi-

ble stress field dl j It should be kept in mind for the following

that two solution stress fields can differ only in the comnon

rigid region.

Consider the expression

2 = TividSV - [IJ* - k1 + J* - kfdV (26)

which is a functional of the stress field Olij Since TI = Ti on

STT we have

K- K* 2 j(T - T)vldS

J - + J - k2 _ [* -... + J* - k]2 dV, (27)

where the first integral is extended over the entire surface S.

We shall prove that K > K* unless liJ is also a solution stress

field in which case K = K*. The following maximum principle will

thus be established.

Theorem 2. Among all statically admissible stress fields,

the solution stress fields maximize the expression (26).

Using the principle of virtual work and the condition of in-

compressibility, we write (27) in the form

K - K* = 2 {Eij(Sij - SJi- [IJ- kJ + J- kf
2-)

+[IJ* - ki + J* - k] j dV, (28)

where EiJ is the (unique) velocity strain associated with the

solution diJ.

In discussing the sign of the integrand C in (28) we must

distinguish ?our types of region.

Ci) Where J > k and J* > k, we have by (5) and (4)

C . sij -s~j)(sjj - R~1) - !S(2JJ* - sijs*) (29)
The expression inside tho parenthesis in the second term on the

,right-hand side of (29) is positive unless sij = csij in which
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case it vanishes, In this case, C > 0 if c / 1 and C - 0 if c = 1o

In all other cases C is shown to be positive by the following argu-

went. Since J > k in region (1), we have

C > (sijs~j)(sij- sj)-(2JJ*:sljsij)=(JJ*) 2 > 0. (30)

(i) Where J > k but J <k we cannot have sij = sj. The

integrand C of (28) :an be transformed as follows by means of (5)

and (4): C (1 _ )(2J2 _ sijsij) - (J- k)2
= S*

-k (j2 + kJ - sijsij). (31)
J

The factor in front of the parenthesis on the right-hand side of

(31) is positive in region (ii). Moreover, since J > k_> J*,
2  >5 2 +J*2  si*= l(sij-sj)(sij-sij) > 0. (32)

Thus, C > 0 in region (ii).

(iii) Where J < k but J* > k, we have ei = 0, The integrand

C in (28) thus assumes the form

C = (J* - k)2 > 0. (33)

(iv) Where J < k and J* < k, the integrand in (28) vanishes.

It follows from the preceding discussion that K > K* unless

* = S, in all of V but the rigid region (iv), This means that

K > K* unless sIj is the stress deviation field associated with

a solution* Theorem 2 is thus established.

7. Related extremum principles. The Newtonian viscous fluid

and the perfectly plastic Mises solid are limiting cases of the

Bingham solid considered here. Indeed, with k = 0, Eq. (5) charac-

terizes a Newtonian liquid and, with ' = 0, Eq. (7) characterizes

a Miries solid. Accordingly, our extremum principles should contain

the extremum principles for the Newtonian liquid and the Mises

solid as special cases.

With k z 0. the functional (17) reduces to an expression which
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is readily recognized as the excess of the rate of dissipation of

energy in the Newtonian liquid over double the rate at which work

is being done by the body forces and the surface tractions on ST*

That thi., quantity Is minimized by the actual velocity field was

observed by Helmholtz [ 7].

With ýi = 0, on the other hand, the functional (17) reduces to

an expression which is easily identified as double the excess of

the rate of dissipation of energy in the Misos solid over the rate

at which work is being done by the body forces and the surface

tractions on STr That this quantity is minimized by the actual

velocity field was recognized by I4arkov [8].

In view of the fact that these special cases of our minimum

principle can be stated in terms of energy dissipation, it is

worth noting that the first integral on the right-hand side of

(17) does not represent the rate of dissipation of energy in the

Bingham solid. Inueed, Eq. (7) shows the rate of energy dissipa-

tion to be J',g 2  utsJsij dV = 01 2 + kI ) dV. (34)
As Ilyushin [6] has remarked with reference to the special case

considered by him, the first integral on the right-hand side of

(17) can be interpreted as the sum of the "power of deformation

and the power of the internal forces of plastic resistance". Alter-

natively, this integral can be considered as the sum of the rate

of viscous dissipation of energy and double the rate of plastic

dissipation of energy.

With k = 0, the functional (26) reduces to an expression which

represents the excess of double the rate at which work is being

done by the surface tractions on SV over the rate of dissipation of

energy in the Newtonian liquid, the latter rate being expressed in
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terms of stresses, The principle that this expression is maximized

by the actual stress field seems to be new.

Finally, the characteristic equation for a Mises solid in

plastic flow is obtained from (5) by letting ýi and J - k tend to

7ero in such a manner that 2VJ/(J-k) tends towards a positive

factor of proportionality between sij and ci. If this limiting

process is applied to the expression (26), this is seen to reduce

to double the rate at which work is being done by the surface trac-

tions on SV. The fact that this rate of work is maximized by the

actual surface tractions was recognized by Hill, first [9] in the

special case where the boundary conditions are such as to ensure

plastic flow throughout V, and later [10] in the general case.
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