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1.1 Basic Assumption

We assume that the shell is a rigid body. The configuration
at any time may therefore be defined by the rectangular coordinates
of the center of mass and three Ealerian angles giving the orianta-
tion of a set of axes moving with the shell. The state of motion
of the shell may be defined by the time rates of change of these
six generalized coordinates, making together with them twelve
variables capable of independent variation.

We assume that the system of forces and torques acting on
the shell, consisting of its weight, and of aerodynamic forces
and torques, depends only on these twelve variables, except,
perhaps, for small correction terms; more detailed assumptions
will be made later.

We assume that the shell has an axis of dynamical symmetry
passing through its center of mss.

For simplicity in the following discussion we also neglect

the rotation and curvature of the earth, and suppose that there
is no wind.

1.2 The Variables Used to Specify the Motion

We use twelve variables, nine of which differ from the
above variables.

Firstly we take three rectangular coordinates x, y, and z,

x,y,z of the center of mass of the shell in a fixed coordinate system;
the x-direction horizontally forwara, the y-direction vertically
up. and the z-direction horizontally t6 the right. The plane
x 0 y contains the line of fire.
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v,a, e Secondly, we take the speed v of the center of mass and the
azimuth a, measured from the x-direction to the loft, and angle
of elevation e, measured from the horizontal upwards, of the di-

01 rection 01 of the velocity of the center of mass, so that we have

X " v Cos E Cos a

y - v sin 0

z = -v cos 0 sin a

to relate the time rates of change of the coordinates x, y, and
z, to these new variables.

(0 is not any particular point, but is an origin of reference for
directions, which will be reprcsented diagrammatically by
points on a sphere of center 0)

ON ON is to be the direction at angle a forward from Oz, in a
horizontal plane, and about which E is measured.

y
2 
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Next complete the determination of the rectangular set of
02,03 directions 01, 02, and 03, by making the plane 102 contain the
OA direction OA of the axis of dynamical symmetry of the shell.

Then 102 is the plane of yaw, and the angle 0 from the vertical
plane yOl to the plane 201, is 0 the angle of rotation of the
plane of yaw, measured in the richthand direction about 01.

01, 02., and 03, is then a set of -ectangular axes with orienta-
tion in terms of the fixed directions Ox, Oy, and Oz, given by

$angles a, 0,.and %. Resolving the corresponding angular velocities,
a about Oy, 0 about ON, and 0 about 01, in the directi~ns 01, 02,
and 03, we obtain the angular velocity components 1' 2, nd
29 of this frame of reference referred to itself

e3, namely,

1,92, S 9 a + asin9

" 2 - cos e cos 0 + 6 sin 0

-9 a -a cos e sin + + E cos 0
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A We shall use the letter A for the principal moment of
inertia of the shell about the axis of dynamical sypnetry.
On account of the symmetry, the moments o f inertia about axes
perpendicular to OA through the center of mass are the same;

B they will be denoted by B.

6 6, the angle of yaw is the angle lOA; we shall call the
direction perpendicular to OA in the plane lOA, (which includes

OB 02), OB. The principal moments of inertia of the shell about
the directions OA, OB, and 03, are then A, B, and B.

* is to be the angle of rotation from the plane AOB to a
plane moving with the shell.

We take the angles 0, 6, anJ ', as the third set of vari-
ables to specify the motion. They are Eulerian angles giving
the orientation of the shell relative to the tangent direction
01 to the trajectory of the center of mass and the vertical

plane 1Oy through 01.
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For the fourth set of three variables we take fAand ,
the components of angular momentum of the shell about 01, 03,
and OA. The components of angular velocity of the shell about
OB, 03, and OA, are obtained by resolving: ?9L2 and ?, in

these directions, and taking account of the angular velocities
corresponding to 6 and 3r giving

Cos 6 Z- sin 6
?2 1

-2 sin 6 +29 s +1 Cos 6 +

The corresponding components of angular momentiimj, say,

, ad , are

SB ( 005 Co 6 -2 sin 6)

A- B (z 9 +

=A (Z2 sin 6 +Z9 cos6 +

so that , the component about 01 is given by

A cos 6(2 2 sin 6 +49 cos 6 + B sin 6(75L, cos 6 -2 sin 6).

The variables x, y, z, v, c, 0, 0, 6,, , A, andy, are
all given if the configuration and velocity of the shell are
gen. This would not be true if we tried to use 0, 6, and

for these would involve & and 0, and therefore R,, 3*, and

The component of angular momentum ir the direction 02 is

B cos 6(292 Po 6~ Z9 in8 + A si 6( 2' 2 sin 6 + 29 Cos 6+

- sin 6

cos -

while sin 6
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1.3 The Equations of Motion

The absolute rate of change of a vector whose components in
the 01, 02, and 03 directions are L L and L3  has components

1 12 2,33

- -- L +29 L -29 L2 3 1 1 3

and L3 + 71 L2 -2 L1

M If M is the mass, the linear momentum has components in
these directions Mv, 0, and we have the equations

M V FI

2-'3 M v F2

FIF2,F3 -2 M v F 3

for the rates of change of momentum equated to the components of

force acting on the shell in the 01, 02, and 03 directions.

In the same way, the components of angular momentum being

i ?- icos 8 , and A, we obtain
sin 6

~2 tL9 3 ( in c6 ) 1

d Cos8 6 4 9!
Fk sin 6 )3 1 2

G G G in terms of the components of torque about its center of mass
1, 2, 3 on the shell in the 01, 02, and 03 directions.

It is usual, however, to regard the torque components about

the directions OA, OB, and 03, namely G, G, , as3,
primary, and to express the equations of motion in terms of them.

9



GA =G 1 cos6 +G2 sin 6

B 1 sin 8 + G2 cos 6

Combining the first two of these equations we obtain

~ G2 sin 6+ G cos 6G

the remaining terms cancelling, which equation can be obtained
directly from the absolute rate of change of angular momentum
about OA.

Eliminating !i1 t2 and 3 we find from these

equations and from the equations of the last section, equations
for the rates of change of our twelve variables in terms of
these variables and of the components of force F1 , F2, and

F and of torque G and G3
3, A, 3,anG

x - v co 0 cos a

4=v sin 0

z -v cos 0 sin at
F1

IT-
F2  sin _F3  cos0

So e w cos

F2  cos - F sin

B 3in2 8 17

-Cos( - Cos 8) + 3
A B sin2 8 4vl

--Cos 6) (- Cos 6) G 3  - -tcos, 8) 3
B sin3  sin 2 I 11

10



QAc6s8 GB sin 6 F 3 + Cos 5)F2

GA 
TI3 sin 6



Part II. The Forces and Torques
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2.1 The force and Torque Components

Y

2

N

The force system acting on the shell is made up of gravi-
tational forces ard of aerodynamic forces and torques. Gravi-
tation contributes terms - g sin 0 , -14 g cos 6 cos 0, and
M g cos 6 sin 0 to Fl, F2 , and F3 respectively.

L

N___ _ b. V

II

The aerodynamic forces are defined relative to the direc-
tions 02., 02, and 03, but are taken positive in their expected

D directions, the drag D in the opposite direction to 01, the
L lift or cross-wind force L in the direction 02, and the Magnus
K force K in the opposite direction to 03. For a symmetrical

projectile rotating from OB to 03 about 01 we should expect a
force in this direction; a ball swerving on account of spin
follows its nose.

Thus FI - -D -mg sin 6

F2 - L- mg cos 0 cos

F3 - -K + mg cos sin



The torques are defined relative to the directions OA,
0, and 03, but are taken positive in their expected direc-

I tions; the spin destroying or rolling moment I from 03 to OB;
M the yawing or overturning moment M from OA to OB; and the
J Magnus moment J from 03 to OA. For a projectile with Magnus

force in the opposite direction to 03 acting in front of the
center of mass, we should expect a torque in this direction.

Thus G - IA

G B J

G ~M
3

2.2 Several Assumptions About the Aerodynamic Forces and Torques

We assume that the aerodynamic forces and torquves depend
only on the properties of air through which the shell is pass-
ing, which we shall suppose depends only on y, and on the motion
of the shell relative to the air; that is, they do not depend
on x, z, a, 0, or 0. Thus the aerodynamic forces and torques

-depend only on y, v, A, , - -, in a manner de.-

termined by the properties of the air, specified by its density
p~c,p- p, sound velocity c, and viscosity 14; the size of the shell,
d specified by its caliber d, and its ahape relative to its center

of mass.

Here we have tacitly assumed that any effects of lag in
the distribution of airflow can be taken account of by the

dependence on f, f , and - •

Dynamical similarity then requires that force components
be proportional to p v2 d2 and torque components to p v 2 d3 ,

with coefficients depending on the zero-dimensional quantities

v/c = 7) , the Mach number, R, the Reynolds number, the
number d dof radians turned per caliber advanced, , and

Sand the angles 6 and ]'

14T'V B



2.3 Aerodynamic Forces and Tor:ues for a Shell with Rotational
3y ..i.etr.y

For a shell with rotational symmetry about its axds, the
aerodynamic force and torque components ill not depend on
If* Change of sign of 8, A, andt, equivalent to increase
of $ by u and reduction of #by n, must change the signs of
L, K, J, and M, leaving D 4nd I unaltered; while change in

sign of Eand f, equivalent to inversion in the origin, must
change the signs of K, I, and J, leaving M, D, and L unaltered.
Thus if any of these components are split up into terms even

and odd in A and n, the evenness or oddness of each term in

and 6 is determined, and we may %.rite:
D =

KD,KDA pv 2  2 KD+p v d3 sin8 A K +p-d h sin 6!"

KW KDA B A K DA

TK vv EdL-

2~p sn si K Pd

K,KKAL pv2 d B t6b + ppdhA t Cl

+Pd5 si 6 zr -

KL~ UI A Z

+ sin 8 K

K=A

B A &J

1 rKIAZ T B L X IA*E

11
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KK J = 

'

P Vd4 sin aItK~ +pdSA fx + p (4
'B A JA B

+ pd5 sin6 8 K r

N-

K1K p v 3  4 pv +pd 5 1 -

+P sin 6A
BBAMA

where the coefficient KD, .... IAF are functions of IN and

df dX cIAR, even ind dandd
R,, , i , and 8, and are thereby uniquely

determined. (Note that use of sin 6 rather than 6 all ws 6 to
pass through the value n as well as the value zero, o=r state-
ments remaining valid; but it ,;uld not be true to s 17 "at
the coefficients are functions of sin 6 as they will usually
differ at 6 - 0 and 6 n).

h-"+' tr, when sin 6 0 O, D and I can depend on~andd only
truh2 + 2 2

through2 + A2 , so tAat KD and KI -ri depend on E +
A2 and K D' n K will vanish, while L and -K, and J and

M must behave like the components of plane vectors depending
on the vector with components E and A, so that YL r,

XT.'Ks "K3' -KA , KK ' - KJ& - .Zy , and Kj= H.A, being what

K1, Kfl are commonly called KXF, KS, KXT, and K, and likewise must

be functions of5 2 + A2 only. In general these are all dif-

ferent functions of T,2 + A 2 for 8 = 0 and for 6 = n.

It must be emphasized, however, that when sin 6 0, these
last relations do not hav to hold, although the departure from
them must be of order sin4 6.

16



Part III. Motion of a Spinning Symmetrical.
Projectile with Large Yaw
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3.1 The General Method of Transformationby Variation of Parameters

A solution is first made of a reduced problem in which many terms
in the rates of change of the variables have been left out., This leads
to a transformation from the variables to a new set, the parameters,
which would be constant in time if the retained terms alone existed.
Applying this transformation to the original equations, new exact equa-
tions are obtained for the rates of change of the parameters, which change
more slowly than the original variables.

If both the original equations and the reduced equations are of
Hamiltonian form, the transformation may be carried out on the Hamilton-
ian function only. If the reduced equations are of Hamiltonian form,
it may still be convenient to solve them by the Hamilton-Jacobi method,
although the transformations resulting have to be carried out on the
separate equations instead of on a single function.

If the reduced equations can be taken linear, we have the usual
method of variation of parameters, which, for a second order system,,
leads to the W. K. B. method so much used in quantum mechanics.

If the solution of the reduced problem is periodic with a compara-
tively short period, the next step usual in the solution is to approxi-
mate the equations of change of the parameters by averaging over a period.
This gives an approximate system of 'secular equationst for the change
of the parameters, which represent the motion well, unless there is
resonance with some of the ignored periodic terms.

If in this last case the reduced equations are in Hamiltonian
form, the general increase or decrease in amplitude of the periodic
motion may be tested by the average change in the Hamiltonian function
itself, the standard ,energy test of stability'.

It is this last case that we are going to consider; so we are
ruling out possible cases where vory large damping may make stable motion
that would be unstable for small damping.

3.2 The Reduced Equations and Their Solution

The reduced equations

B sin 8

18
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13 sin2 3

" cos6) (#, cos 5) -8 V(6)
B sin 8

give the motion in angle when all the force and torque com-
ponents except the overturning moment (11 or G ) are neglected.

V(6) and when that is regarded as derived from a ptential V(5).
These equations correspond to a Hamiltonian function

H=1fz2 .1 C1 2 +V
H H "2B sin 2 @ a o )2 1 + ,

just that for a symmetrical top with potential energy V(6).

The Hamilton-Jacobi equation

2 2

f s+ir/as\+i 1 las -as ( t as \
"FtY~J---- -S WCos 8 1 + 1

+ v(8) - 0

has the complete integral

so  s s Ht +o +, 7f s 26

so ~~0 2B( 8

- 1180 oc, )
Cos8)21T d8

o' o and the solutions of the reduced equations are given by

-as aq
0 as~ as P=a o0 i7,--0 a

0

where Oo' *0 and 80, as well asi 0 and 0,' correspond to time to.

19



Sinoe @ and 0 do not occur explicitly in H, f and f are
equal to their initial values f and P . The motion in 8 is
in general a libration between two simple roots of

ZB ( H T - V(6 sin2  - - cos 8)2 0.

between which this expression is positive.

60  It is convenient to take 8 to be the smaller of these roots,simplifying the partial derivat ves of S. We call the larger root
6 610

The solution is then given by
1

Amf2 02 .(62 6jc17
2B H-1sin 8- O Cos 6)

sin 8,

0, 0
tout B An 6 d 6-i

6oo t 
v(6) sin ( o cos

6 0§o "- o cos 6)

{2 - 2 _ v()) s. 2 6- ico

B

6I - d6
Ti 7. f2 (-1 2 _ V(6))sin2b 2- 1~, o ) sin 8

since the terms in d 6 vanish.

3.3 The Uniformising Variable

For manipulating the above integrals it is convenient to in-
troduce a uniformising variable u which continually increases as 6
librates. Using cos 6 rather than 6 as the variable to be given in
terms of u, we put

cos 8 cos 80 Cos2 -u + cos 6 sn2

20



s6 that 6 a 60 for u w O, 8 = 61 for u n , and so on.

u Then u is given in terms of 6 by

tan Foos 6 - cos 6

Cos b- Cos6

with positive sign when 8 is increasing, negative sign when 6 is
diinishing.

Thus sin 6 d 8 = du

(cos 60 - cos 8)(cos 6 - cos 8

and if

B j 2 V(6) sin2 ( 8os 6)2

(Cos 80 - cos 6)(cos 6 - cos 61) K(6)

so that, by the definitions of 6o and 81, K(6) does not vanish

for 6 6, 8 1 6, we have

= U  B Bdu
0o  t -f 1 -76

The standard astronomical proceeding is to expand I/ V7-CTin a
Fourier series in u and so obtain a series which can be inverted to
give u in terms of t, although most computations may be more easily
carried out in terms of the intermediate variable u.

If we write &0 -€ 81 u t+ 6 so that

tan' ./cs (X-} -Cos 8

cos - cos(X +E)

U

21



we see that u is the angle includeeKM Ades j and . of a 3pherical
triangle with side3sc X ,and't6 (Sea andi,)

Let tan c COS +

w Ots -(- 8) -cos x
andl tan. 2 ' cos X - cos (' +"8)

so that v and w are the angles included by X and 8, and by 8 and 6

while

du -sinS 8____

d(cos ( -6) " oo 6)(cos 8 - cos (

dv cos 6 cos 6 - cos X
sin 6 (Cos (e-X)-Cos)(cos 8-cos(e+X)-

dw Cos 8 Cos X - cos 8-

sin 6{(Cos (k - - -Cos 6)(cos 8 -,Cos + 6

o tOa cosX -if cosC) dv - (jo cose- iocos

00 j 2 2
(cos "-cos X) /K

- "iri(~~l o d° u+ (f cosX-go cose) d v- (fo cos C-fcos

(cos2 £ - cos 2 X)

The square roots in the expressions for tan , tan-X , and

wdu , dv dw
tanI , and for V 8- , and. - , are to be taken positive

when 8 is increasing, negative when 6 is diminishing, and K(8)
is to be taken always positive.

22



There are now two cases.

(a) 45

As 6 increases from X- to X + 6, u increases from 0
to n, v increases from 0 to a maximum and falls back to 0, and
w decreases from n to 0: as 6 decreases from X +6to X -e again,
u increases from n to 2 n, v decreases from 0 to a minl-,li and
rises back to 0, and w decreases from 0 to - n; and so on, u,
the uniformising variable, continually increases, v oscillates,
and w continually decreases.

(b) > X

W 6 6 -W
-V

As 6 increases from 6 - X to X + 6. u increases from
0 to n, v decreases from n to 0, and w increases from 0 to a
maximum and falls back to 0; as 6 decreases from X +Eto 0 - X
again, u increases from to 2n, v decreases from 0 to - n,
and w decreases from 0 to -n, amd w decreases from 0 to a
minimum and rises back to 0; and so on, u continually increase,
v continually decreases, and w oscillates.

In the boundary case of C X, 6 passes through the value
0. As 6 increases from 0 to C + X, u increases from 0 to n,
v decreases from-g to 0, and w decreases fromg to 0; as 8

decreases from4+ X to 0 again, u increases from n to 2n, v
decreases from 0 to - , and w decreases from 0 to - I

as 6 passed through the value 0, u continues to increase, and
v and w may be supposed to jump to the values and - acaiLn,

without change in those futictions of u, v, and w that give
direction cosines of axes in the projectile.

23



Physically, X is a mean yaw, e an amplitude of nutation.

3.4 The Transformation to the P~ameters

We now use the above equations to give a transformation from

the variables A, 4, ., 6, 0, and *, to the parameters H,

fo e, to S 0 0  and * 0 or to HX, , t o p, ,and to

evaluated at each value of t, so that V may be allowei to vary
with t as well as with 6.

The e iuati,:as

V(6,t) H 1 A2 + 1 "  cos a)2}+ 1 2 + V (6't

zo =

show that we need not distingLuish between 1o and ! and between

and, nd A& 1 * 1f-f o )Cs6

Basin 8

+1 ~.1 ~3r co .8 2+ f~ ~Cos 6) gsin 6 8V
sin6 Bsin 6

Thus

( +aV 1~ "2cs6 G+ V av
7- Bs n8 V7 Ut

(G ~ ~ 3(j) r-osc)oB a

while GA Cos 6- GS sin + 3+ S o 6)n 2TVsin 6 Frv

and GA

while

Bi . ( fCos is( cos i~
B sin 2 6 0 6

24~



and a corresponding equation for 61 give us 6o and 61 and so

?and k.

nLiie o4uation ut 0 mt£ B duto Mt B du

where

f2B (H 1 f2 _ V (.3, t) sin 2 6- _I Cos ) 2J)

(cos 60 - cos 6)(cos 6 - cos 61 K(6)

gives us
B u B

1 +f K()] du
0 2(K(8))3/2 -6

where

6 6 [K((,)] means +~ ZT f+
ff_[K(6 6t a8K

al 61 + aK

evaluated after 6 has been expressed in terms of 80o, 61, and u.

Hence B (au F2  au o " +

0 JK(6) my M 0

f~/ B( /))i2 6t 8 [K(6)] dui

where although the separate terms of the first bracket become in-

finitely large as 6--6 o  or 6 -- 1, their sum remains finite

and small.

25



In a similar way 0 and to can be found.

Thus the time rates of change of H, T 0 , to' 00 and o$

avvare found as linear combinations of F2F, GA GB G3 + av-

and -a , with coefficients that involve H, @, , t0, $o, and

and t. If these equations, and those giving n, y, z, v, a, 'nd 8,
are averaged over a period of the solution of the reduced equations
we get the secular equations that give the first approximation to-

the changes of H, , i, t0 , o, and *o" If we have been able
to choose V so that these changes are small over a period, this will
be a useful method of solution. For a symmetrical projectile the
right hand sides of the secular ejuations will not involve to and

and will involve o only in the terms involving gravitational
forces.

3.5 Stability of Yawing Notion

The kind of stability we are concerned with is that 60 and
61 should, if small, remain small, if large, become small, regard-

ing-all the variables except 0, &6; !. and A as practically

constant. Taking V(6) so that Z + G is small, we look first

at reduced equations which give a conservative system with H and 4
constant.

In order that 60 and 61 can be small, it is necessary that

for the value of 0 for which 8 can be small, namely f, the part
of H depending on 6, which reduces to

1 - cos 6-~~~ ,co *v(6)

should have a minimum at 6 = 0. Then 61 must initially be less

than the first maximum of this same expression, if there is to be
stability.

Next we must look at the secular equations for H and . These,
if the motion with small yaw is stable, give, for some region near
H V(O)3 - j, motion tending asymptotically to these values.

26
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This region is the region of initial values for which the yawing
motion is to be regarded as stable.

It should be remarked that this 'secular stability' does not
exclude the possibility that in higher order approximation resonance
may exist leading to unstable motions.

To determine the region of stability we solve the ordinary
differential system giving the secular change in H and ,

U - f(H, )

i.g(Hl, 9 )

starting in various directions from points near the point of

equilibrium H - V(o), L- l(, and going backwards in time, and these
solutions mark out the region.

Some information may be obtained by examining the equations

f(H, o )-o

g(H, ) o

for other points of equilibrium, but there is no easier way of deter-
mining the existence of an asymptotic periodic solution that may
separate the stable and unstable regions than by making a numerical
integration. Such as integration for a single starting value may be
sufficient.

Stable periodic solutions may also exist.

We have, in fact, to deal with the simplest typical problem of
non-linear dynamics.

If we wish to take into account the effects of slow changes in the

coefficients and in ), we should work rather in terms of ) and 4 than

in terms of H andS, since it is the size of )andE in which we are
really interested.

28
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Part IV. Detailed Approximate Theory

29



4.1 A Special Form of the Reduced Equations

We may choose such a form for V(6) that VK(6) shall be constant, dl
say.

1 2 1 2 i 2
Thus V(6) -,H - nA &B

2 222 2 -2 P 2

+ A, (Cos x+ Cos) 0~ oF+ 2( o o 0f e0osXcos C)COS 6

2 B sin 6

If, then we take

v(6)=vo - - s + -os6

2 2 2
we have A (cos x - Cos( e + 16 Bv

2 
2dl 2cos +c16)2 (

2 1 2
and - "H A 7A + 7 V0 -% -

The solution of the reduced equations is now, for E X.,C

= sin X sin v

0

to mt u/l

022
0 o" * ocosX- ocos ,. - ( ocosE - 3PocosX) 6i-w )

(Co2 cosX) (Cos 2 e - cos )

CO"S Cco- -_cos__v_
B~ ___uIo Cos ..- 00f Cos X) n ...)

cos2  -cos2 x

30



Notice that for V(6) constant, this reduces to the usual Eulerian
nutation of a symmetrical rotator, while by taking v w o, we obtain
motion corresponding to overturning moment

. sin 6
(1 + co s)2 '

which will serve as a good reduced motion for investigating stability
with large yaw.

.In general, we have a motion with mean yaw X, amplitude of

nutation E and frequency of nutation d/ 2 n B.

The effects of replacing the overturning moment by 4P sin 6 2
(I + cos 6)

will not show up in our approxdmate system of secular equations;
they show up immcdiaely in the equation for to which now takes the form

• B F F2 "
to TLs R sinv Rv- + £ CosW+Xcosv)

containing, when e and X are expressed in terms of the forces, the

termB (cot C Cosw + cot X cos v) 3 " 4gsin 6
T (c3 (1 + cos 8)2 

The leading term in G3 - M is p v2 d3 sin 6

and we should take g. so that

(cot Ecos W + cot X cos v) (p v2 d3 sin 8 - sin 2
(1+ cos 6)2

vanishes when averaged over the reduced motion, after inserting the

actual variation of ,M with 6.

If K, does not depend on 6, this gives (see Appendix)

2cos4cosXpv 2 d3K = do cok

02 0Cos 6

In this case C- l Cos8 + V(6) has no maximum, and the only
preliminary condition is V2 ;> 4 B . that is, that the stability

factor for small yaw is greater than unity. If, however, KN

increases with 6 faster than 1/(i + cos 6) 2 , a finite stable range
of 6 may be determined.
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4.2 An Approximate Form for the Secular Equations

We shall %rstematically neglect terms of higher order than
the first in Aand~in the aerodynamic force and torque components,
so that, for instance, we take

J vd 4 sin 6 'Kj-p d4  KT + p d4 v

with the coefficients taken to be functions of M and R, and even-

functions of and 6, but not to depend on 46andA.

We shall also omit the gravitational terms.
Since in the secular equations terms linear in L will vanish

on the average, we obtain

pv d4 )2 K. + p v d4 7 sin 6Kj+p v d

d( -sin 6 v sin65 - KL

p v d inj Kj --p v d4 f sin 6 K + P Vd2 sn 6p d P(av K + g
MV XF X

d4 cos 5 K- d4Fcos 6 si 6 +I

-Nv- "sin 6 XK IF

and

-P . 1d- -p vd 4 sin8,,.

These averages should be taken over the reduced motion after
inserting the actual variations of the coefficients with 8. This
may perhaps be done by expressing them approximately as polynomials
in 6.

We will now have H, , and given in terms of , , E
and JA. , as well as I, and we can use the equations

cosx- cost (ip+- )-I/a
Cos X+ cose )2 .16 B gA /a"
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whereb /2 B-C + -Vo)

to obtain d cos X andd cosein terms of 'A, e , and 1k. The

stability problem then involves the corresponding problem in non-linear

dynamics, regarding jand A as slowly changing.

If the aerodynamic coefficients do not depend on 6 we obtain
(see Appendix)

P v d4 sin2 X I- oo+e 4 9

2 p 2 ( cs o

+pdr / cos2 E-+cos 2 k +os coseco-1 hfI + c( cos csX~ k o 4

24f% 2 S-Cos J

-- os o 2 - v22 +Cos 2 s- c

Csco d+ c os B co _ oCO
d cos cos Xc - K+ 4o - -1)

A(o cn s +CosoX
+ dh ~~* ECos + K-p + d1 sc CO 4 + 'COS /ECS4

-p 1 (Co(soseos? 1. -p Co X)3(Cos +Cos X3)' -) CoKeH CS

dK 3LCs4CsXpvd(Cos 2 e cos2 X + -)24 sn2X Cs6C

4 B T 2 sin2  2

r. vofCos. + F.2v(tcos osK_ I CsX

3C3

03F(2CosCo 2 4 O
sin X 1- Cos



4.3 The Special Case of Small Thuv

The equationfd (cos Cos C )2 ( .4)2 ensures b-4tH , ,

and I, are not large, on account of the denominator cos - cos ,
when the yaw is small. Using this equation and keeping only terms

of order and 4 2 and X2 we obtain
22

H=P~d 4r~L 2 +,2 + £2 2x -~(-
S - .- -'I--

A v dB rd1 %2 + H

I 4-- ; -- T B2

4 2- 2 2B K V

A P v

H 2-r-- 2 - o 2 2 2-Pv d4 -lf 4 - (.E + P pI d 1 - X KL

BP 2

4=v r -Ir+2+X
(£2 +x2  K -X2d14  2

P~£+2J.v
1 F1 v-~~~5 KB

2d2~~~Q2+2)j~4 F( - 4+)

4 )
2 22 + _2)K 4 F1 2 X

nd H-~+2-V yf(- (42 2 )- KL-~

+ 2 R'- A 1 -34 4



These are of the first order in X2 and. 2, and so are their timerates of change.

In fact, if we write for brevity,

h h= -d4B "

k k p v d 2

pvd 1'

P 4
pv Kj

Y YJ A

%pd
4

F KXF

we obtain

f + h - 1k le +}(t X 2 + 2)4(h + 1k)(X2 E 2)

B 2 + (+)+ h+y A)X

while, keeping only the leading term,

a From these equations we find, writing a , ' - -

so that whl- 1V 2 1 2

d~22~ (2y+ h k + 2 -)X + (h + k - + (2

d (2 + 2) . (h + kc- + X +,62 ) + 2 (2y + h - k + e 2Xf9) ( 2  '62)

so that

d x2 {f('h+k + ) (2y + h k ~.+ 2 'A X2
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d 2 h+ k a) + 2 +

and the condition of stability, for real a, is that both the coefficients
on the right hand side should be positive.
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APPENDIX Formulas connected vith a spherical triangle

6

w

If u, v, and w, are the angles of a spherical triangle with
sides 6, i, and X, we have the following formulas.

sin u sin v sin w

tan cos (X- - cos
a cos 6- cos (X"+ "

tancos ( - ~cos

c tsb ncs vcos Cos (e + cs

cosX 6=cos e cos +sin 6 sin cos

cos -cos cos +sinXsin cos v

cosX - cosw cos e + sin 6 sin C cos w

cosu -cos v cos w + sin v sin w cos 6

cos v w cos w cosu + sin w sin u cos E

cos w a - cos u cos v + sin u sin v cos X

coso sinb= sinX sin cos u

cosw sin- sin 6 cosE -cos 6 sin coscos w sin 8 - sin 4E cos X - cos e sin X cos u

cos w sin oE = sin 8 cos ) - cos 6 sine* cos vr

cos u sin X - sine cos 6 - cose sin 8 cos w
cos u sin( a in cos6- cos sin cosvw
cos u sine C asin ?L cos 8 - cos X sin 5 cos v

cosf sin w = sin u cos v + cos u sin v cosX

cosF sin u sin w cos v + cosw sin v cos 8

37



c6s X sinu -sin v cos w + cos v siti w cos 6

cos X sin v - sin u coo + cos u sin w cosE.

cos 6 sin v a sin w cos u + cos w sin u cosE

cos 6 sin w - sin v cos u + cos v sin u cos X

u sin v sin X C- E cos W - Cos V

Vsin w sin6' - Cos u- Cos w

w sin u sin 4 9 - 6 cos v - Cos U

The above formulas may be used to average expressions with
respect to u. In particular, since

1 2 du I
R a + b cosu 2

and I du a

(a + b cos u) (a- b
0

we find, for4< X, the following averages:

COS__ 6 Cos e Cos%cos 6 -

1006 C os + sin

1 + Cos 5 =  Co6s 4E Cos Xl" 'ossb - s cos X

i- cos6 os

s2  6 2
sin2  6 cos C - Cos2

cos 6o

sin 6 Cos -cos X
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sin2 v 1 I- 00os

sin 2

sin2 6 2

(i + Cos 6)2 cos - cos -

i+ cos cos

(1+ cos6) (cos6 + cos X)3

o C + Cos 2 X+cosc Cos k-I

(1 + cos 6) 2  (cos f + cos )3

cosw sin sinc cosX

cos v sin6 . cose sin X

cos w sin 6 sinf.

(i + cos 6)2 (cose + cos ))2

cos v sin 6 sinX

(I + cos 6)2 (cos0 + cos X)
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