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1.1l Basic Assumption

We assume that the shell is a rigid body. The configuration
at any time may thersfore be defined by the rectangular coordinates
of the center of mass and three Eulerian angles giving the orimnta-
tion of a set of axes moving with the shell. The state of motion
of the shell may be defined by the time rates of change of these
six generalized coordinates, making together with them twelve
variables capable of independent variation.

We assume that the system of forces and torcques acting on
the shell, consisting of its weight, and of aerodynamic forces
and torgues, depends only on thsse twelve variables, except,
perhaps, for small correction terms; more detailed assumptions
will be made later.

We assume that the shell has an axis of dynamical symmetry
passing through its center of mass.

For simplicity in the following discussion we also neglect

the rotation and curvature of the earth, and suppose that there
is no wind.

1.2 The Variables Used to Specify the Motion

We use twelve variables, nine of which differ from the
above variables.

Firstly we take three rectangular coordinates x, y, and z,
X3Ys2 of the centcr of mass of the shell in a fixed coordinate system;
the x~direction horizontally forwari, the y-direction vertically
up. and the z-direction horizontally té the right. The plane
% 0 y contains the line of fire,




v,q,0 Secondly, we take the speed v of the center of mass and the
azimuth &, measured from the x-direction to the left, and angle
of elevation @, measured from the horizontal upwards, of the di-

0l rection 0l of the velocity of the center of mass, so that we have

X=vcosO@cosa
y=vsinb

2 = -~y cos O sin ¢

to relate the time rates of change of the coordinates x, y, and
%z, to these new variables.

(0 is not any particular point, but is an org.giri M&f reference for
directions, which will be reprcsented diagrammatically by
points on a sphere of center O.)

ON ON is to be the diregtion at angle a forward from Oz, in a
horizontal plane, and about which 6 is measured.

Next complete the determination of the rectangular set of
02,03 directions 01, 02, and 03, by making the plane 102 contain the
OA direction OA of the axis of dynamical symmetry of the shell.
Then 102 is the plane of yaw, and the angle @ from the vertical
plane yOl to the plane 201, is @ the angle of rotation of the
plane of yaw, measured in the richthand direction about 0l.

01, 02, and 03, is then a set of vectangular axes with orienta-
tion in terms of the fixed directions Ox, Oy, and Oz, given by
¢ angles @, 8, and g. Resolving the corresponding angular velocities,
¢ about Oy, 6 about ON, and @ about 01, in the directi'gns 01, 02,
2,

and 03, we obtain the anpular velocity components ?91, and
7.93 of this frame of reference referred to itself, namely,
3

191=¢+ésin6
29'2-&cosecos¢+ésin¢

?93--6cosesin¢+écos¢
6
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We shall use the letter A for the principal moment of
inertia of the shell about the axis of dynamical symmetry.
Cn account of the symmetry, the moments o f inertia about axes
perpendicular to OA through the center of mass are the same;
they will be denoted by B.

5, the angle of yaw is the angle 10A; we shall call the
direction perpendicular to OA in the plane 104, (which includes
02), OB. The principal moments of inertia of the shell about
the directions OA, 03, and 03, are then A, B, and B.

Zﬁ'is to be the angle of rotation from the plane AOB to a
plane moving with the shell.

We take the angles §§, &, ani 9¥; as the third set of vari-
ables to specify the motion. They are Eulerian angles giving
the orientation of the shell relative to the tangent direction

01 to the trajectory of the center of mass and the vertical
plane 10y through O,

O
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For the fourth set of three variables we take Fyh,and ¥,
the components of angular momentum of the shell about 01, 03]
and OA. The components of angular velocily of the shell about
0B, 03, and OA, are obtained by resolving 179—2 and 7 in
b b H

these directions, and taking account of the angular velocities
corresponding to & and 3//; giving

B cos & - ¥ gin &
2 1
B3 4 6
2 sin&"'z%cos 5+2/
The corresponding components of angular momentum,'z, BaY,
A 3 andi; are

2 =B (79‘2 cos & "7}1 sin &)
A= B (2B + b)
?-‘-’ A (792 sin & +?%. cos & +3})

so that ¢, the component about Ol is given by
§= A cos 6(-&2 sin 6 -M% cos & +ﬁ') - B sin 6(292 cos & -7% sin 6).

The variables x, ¥, 2z, v, ¢, 8, §, 6,3, D5 4, and F, are
a1l given if the configuration and velocity of the shell are
iven. This would not be true if we tried to use g, 8, and
?‘, for these would involve & and 6, and therefore %, ¥, and

The component of angular momentum ir ths direction 02 is
B cos 6(192 cos & -291 sin §) + A sin 5(?925in 6 +?91 cos & +V‘)

- cos 6 .
= sin &

2003 6-§

while o= sin 6

e TR T



1.3 The Bguations of Motion

The absolute rate of change of a vector whose components in

the 01, 02, and 03 directions are Ll Zf..2 and L3 has components
] ]

and

M If M is the mass, the linear momentum has components in
these directions Mv, 0, and we have the equations

Mv=F1

HyMv=F, .

-2 Mver
R F, 2 3

for the rates of change of momentum equated to the components of
force acting on the shell in the 01, 02, and 03 directions.

In the same way, the components of angular momentum being

f’ Kp'-é'cosﬁ

sin &

s and A, wWe obtain

sin &

a(Lfype) Basan 0, ¢
'A+291 (W';inéécos 6)» 7925 = G3

§+Z%A~193(j-écoss )= ¢, W

>
Gl 62 G in terms of the components of torque about its center of mass
s 2 3 on the shell in the 01, 02, and 03 directions.
It is usual, however, to regard the torque components about

the directions 0A, 0B, and 03, namely G1 G, and (}3 as
ity 3 k]

primary, and to express the equations of motion in terms of them.




GA =Gl cos & +G2 sin &

GB = ---Gl sin & + G2 rcos &

Combining the first two of these equations we obtain

1f= Gy sing+ Gy cos 6= G, ,

the remaining terms cancelling, which equation can be obtained
directly from the absolute rate of change of angular momentum
about OA.
Eliminating 1% 2% and 7% we find from these
L4 ] 3
equations and from the equations of the last section, ejuations

for the rates of change of our twelve variables in terms of
these variables and of the components of force Fl F2 and
3 s

F

t] G,.
3, and of torqgue , GB and 4

y

X = v cos 6 cos «
Yy=vsin6

z = -y cos 6 sin @

v 1
—
a:-FZ sm¢_,F3 cos @
¥v ©Cos @ Bv ©os
8= Fa cos¢-F3 sin
Hv W
-F
.1 . 2 <)
=58 W
B = é-—‘l]‘cosb + B sin @ tan v + ¥y (cos @ tan © - cot 6) p
Bsin26 ki T
"
.&= %;i_, 00362 (P -~ F cos 8) * =5
B sin™ & ~

A=- (H-~ F cos) (F-Pcos 5)+G3-(§-i‘cos 5) T3 ‘}

B s:i.n3 & sin2 & v

| .
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G, cos 6 - Gy sin & +A

Gy

v

11

(T~ & cos 5)
T en &

Fy
W
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Part II.

The Forces and Torques
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2.1 The force and Torque Components

The force system acting on the shell is made up of gravi-

tational forces and of aerodynamic forces and torques. Gravi-

tation contributes terms =M g sin & , -M g cos & cos @, and

M gcos @sin g to Fy, F), and Fy respectively.
L

The aerodynamic forces are defined relative to the direc-
tions 01, 02, and 03, but are taken positive in their expected
directions, the drag D in the opposite direction to Ol, the
1ift or cross-wind force L in the direction 02, and the Magnus
force X in the opposite direction to 03, For a symmetrical
projectile rotating from OB to 03 about Ol we should expect a
force in this direction; a ball swerving on account of spin
follows its nose.

Thus F, = ~D - mg sin é

F, = L ~ mg cos @ cos §

Fy = <K + mg cos Osin §

SRV,

P E—
- g,
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The torques are defined relative to the directions 04,
0B, and 03, but are taken positive in their expected direc-
tions; the spin destroying or rolling moment I from 03 to 0B;
the yawing or overturning moment M from QA to OB; and the
Magnus moment J from 03 to OA. For a projectile with Magnus
force in the opposite direction to 03 acting in front of the
center of mass, we should expect a torque in this direction.

Thus GA=-IW

2.2 Several Assumptions About the [erodynamic Forces and Torques

We assume that the aerodynamic forces and torques depend
only on the properties of air through which the shell is pass-
ing, which we shall suppose depends only on y, and on the motion
of the shell relative to the air; that is, they do not depend
on x, 2z, &, 9, or @, Thus the aerodynamic forces and torques

P

_depend only on y, v, 6, 7’3 %- s B —g—‘—, in a manner de~

termined by the properties of the air, specified by its density
P, sound velocity c, and viscosity u; the size of the shell,
specified by its caliber d, and its dshape relative to its center

of mass.

Here we have tacitly assumed that any effects of lag in
the distribution of airflow can be taken account of by the

dependence on %, § , and %. °

Dynamical similarity then requires that force components

be proportional to p v2 d2 and torjue components to p v2 d3 s

with coefficients depending on the zero-dimensional quantities

v/ec = T , the Mach number, 5% = B, the Reynolds number, the
number - :

of radians turned per caliber advanced, -% g ’ % %: s and
g % , and the angles & and 7.
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2.3 Aerodynamic Forces and Torjues for a Shell with Rg_ﬁgfgi opal
Tymmetry

For a shell with rotational symmetry about its axis, the
aerodynamic force and torque components will not depend on
Y. Change of sign of 6, A, and ¥, equivalent to increase
of # vy n and reduction of ¥ by n, must change the signs of

_L, K, J, and M, leaving D und I unaltered; while change in

sign of 2 and ¥, equivalent to inversion in the origin, must
change the signs of X, I, and J, leaving M, D, and L unaltered,
Thus if any of these components are split up into terms even

and odd in A and Z, the evenness or oddness of each term in
¥ and 6 is determined, and we may write:

D=
KD’KDA pv2 dzl{D't'pvd3 sin & %—KDA'*p-dL‘ sin 5%—-?—-}(1)2
, 5
e A
KDZ’KDAE "‘p-'-‘-,-— 'ﬁ"%— ‘.il; KDAE:
L=
2 2 . .
Koy PP s vevd i ved Bk
5
d” . A £
Ko KAz teysinb T oy s
K=
K, K. ) 3
Kz’ h:; v 35’“‘5%"{1{”’“&%“ ai‘hxzs*"d vE Ko
Z7KAZ
T A T
I-=
Kpokp o v dt Aix1+pd5sma%-.§xIA+ pd vsinoZ g
SRy rp & 4 -
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Lrstias
5 ¥y
KoKy PV & sing K +op yad kg, ted BEgy

Kys o Kaas

where fhe coefficient KD, - KM ASy Are functions of M and

R, even in = ip‘ d g R 3% » and 8, und are thereby uniquely

determined. (Note that use of sin & rather than 6 allyws & to
pass through the valuve n as well as the value zero, our state-
ments remaining valid; but it would not be true to sy ihnt
the coefficients are functions of sin 6§ as they will usually
differ at & = 0 and & = n),

m»+-r-, when s8in & = 0, D and I can depend onf}andA only

thraughz + A2 s 8o tiaab KD and KI will depend on '23 +
A 2%ang Kppg 0 Ky Azwlll vanish, while L and K, and J and

M rmast behave like the components of planec vectors depending
on the vector with components X and A, so that Es=

KXF’KS -K'KA’ KLA= bgsvs = KJA = KMZ‘ , and KJE== KMA’ being whal
KKL"KH are commonly called KI{F’ KS’ KX’I" and KH’ and likewise must
be functions of5'.‘2 + A2 only. In general these are all dif-
ferent functions of 22‘ + A2 for 6 = 0 and for & = n.
It must be emphasized, however, that when sin 6 ¥ 0, these

last relations do not havg to hold, although the departure from
them must be of order sin® &.

16



Part III.

Motion of a Spinning Symmetrical
Projectile with Large Yaw

17



3.1 The General Method of Trapsformation by Variation of Parameters

A solution is first made of a reduced problem in which many terms
in the rates of change of the variables have been left out, This leads
to a transformation from the variables to a new set, the parameters,
which would be constant in time if the retained terms alone existed.
Applying this transformation to the original equations, new exact equa-
tions are obtained for the rates of change of the parameters, which change
more slowly than the original variables.

If both the original equations and the reduced equations are of
Hamiltonian form, the transformation may be carried out on the Hamilton-
ian function only. If the reduced equations are of Hamiltonian form,
it may still be convenient to solve them by the Hamilion-dacobi method, ~
although the transformations resulting have to be carried out on the
separate equations instead of on a single function.

If the reduced equations can be taken linear, we have the usual
method of variation of parameters, which, for a second order system,
leads to the W. K. B. method so much used in quantum mechanics.

If the solution of the reduced problem is periodic with a compara~
tively short period, the next step usual in the solution is to approxi-
mate the equations of change of the parameters by averaging over a period.
This gives an approximate system of 'secular equations! for the change
of the parameters, which represent the motion well, unless there is
resonance with some of the ignored periodic terms.

If in this last case the reduced equations are in Hamiltonian
form, the general increase or decrease in amplitude of the periodic
motion may be tested by the average change in the Hamiltonian function
itself, the standard 'energy test of stability!.

It is this last case that we are going to consider; so we are
ruling out possible cases where very large damping may make stable motion
that would be unstable for small damping.

3.2 The Reduced Equations and Their Solution

The reduced equaﬁions

B=34

o

= P i cos &

Bsin® &

18
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v(s)

éo’io

¢o "Zf‘o ’

z&.m%f__cos&z (f - F cos 6)

Bsin &

A=- (P - cos 8) (¥~ Pcoss) -3 V(b)
B sin® & 8

$=0

F=0

give the motion in angle when all the force and torque com=
ponents except the overturning moment (M or G,) are neglecled,

and when that is regarded as derived from a pStential V(3).
These equations correspond to a Hamiltonian function

H--— {Az +-—-—§-- (& ~Fcos 8)2} + A'F? + v(8) .

sin
just that for a symmetrical top with potential energy V(6).
The Hamilton-Jacobl equation
2
£ o { ( a(%s‘fi 57 °° 9) 2} & (%)
+V(5) =0

has the complete integral

S=8 -Ht+§ ¢+7fyrf{ (H"za -1,’—2 _v(s)) sin26

-(§ f‘cosb)}ri-a—s,

and the solutions of the reduced equations are given by

-35 of
= = s = s = a8 o
db»f W"F 3'7,-: oH ¢° a?go VO T 2

0
where f, ¥, and &, as .well as §° and fo’ correspond to time t .

19




Since ¢ and Y do not occur_explicitly in H, € and F are
equal to their initial values & ° and ? The motion in 6 is
in general a libration between two slmplg roots of

1 a2 2 .
2B ( H - T fo - v(a)) sin® 6 =~ (fo - fo cos &) 0
between which this expression is positive.

5, It is convenient to take 60 to be the smaller of these roots,
simplifying the partial derivatives of S. We call the larger root

51 61!
The solution is then given by
7
1 2 . 2 2
A= {28 (H -ﬁfo - V(5)> sin® § - (§° -focos 6)

sin &

F- &
F- 7

o

- 3]
t’o 't"f ,inﬁda -:éL
{2B (" -EK - v(8) sin® 6 - (§ T cos &)

8 (-~ ?‘ cos &)
- [s] [o] s
¢o g - f { N1 sin &6

( ’Kf - v(s)) sin’ & = (&,-F cos 5)2}’2
3
A

2 .
sin® 6 = (§ —3_5 cos &) cos & 45

Yo #’J‘ {23 ,é-;ra V(5)).>1115~(§ ;Zcosa)"’}l e

since the terms in d 60 vanish.

3.3 The Uniformising Variable

For manipulating the above integrals it is convenient to in-
troduce a uniformising variable u which continually increases as &
librates. Using cos 6 rather than 6 as the variable to be given in

terms of u, we put

- 21 .21
cos &6 = ¢os Go cos BU + co8 61 sin -zu

20
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K(8)

8o that & =56 foru=0, 5= 56 foru=n, and s0 on,

Then u is given in terms of & by

cos 6~ cos O
o 0
tan 5 Jcos 6 - cos &y

with positive sign when § is increasing, negative sign when 6 is
diminishing.
sin 6 d & = dn
1

{(cos 8, - cos 6)(cos 6 - cos sl;}'é

Thus

and if

{ZB (H -%—A 12;'0 2. V(6)> sin® § - (&, -f‘o cos 5)2}

(cos 6, - cos 6)(cos & - cos 51) K(5)

so that, by the definitions of & and &, K(6) does not vanish '

for 60 <6 s 51, we have

to=t-f -f%

The standard astronomical proceeding is to expand 1/ ¢ X(6) in a
Fourier series in u and so obtain a series which can be inverted to
give u in terms of t, although most computations may be more easily
carried out in terms of the intermediate variable u.

If we write &, =|7L-€], 5, = A\ +€, so that

tan'-g fos (A-€) <« coss

cos 6 - cos (A +€)

21
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o wiadt?

we see that u is the angle included*by ¥ides € and N of a 3?!.‘1“1“@’!‘1,‘941
triangle with sides € , A , und"8. (59«3 appendlx.)

wn
- -

' cos (6§ ~A) ~ewsg €™ ML - e
Let htan P \//;os & = ¢cos (6+A) - '

: W _[cos (€~ 6) ~-cos)
and tan 5 \/;3 A - cos (€+ §)

so that v and w are the angles included by A and 6, and by 6 and € , °

while
du sin &
{(cos (&€ =A) ~ cos 8)(cos 6§ - cos (€ *)))}?
dv_ . cos 6 cos € - cos A
GER 1
sin & {(cos (€ ~1A) - cos 6)(cos 6 ~ cos (€+ X))’F
aw _ cos 6 cos A ~cos &
T 3
sin & {(cos (€ = \) -~ cos 8)(cos 6§ ~ cos ( & + )\))}
so that

¢f{(§ cos A - ﬁ' cos €) dv-(§ COS €~ 1} cos A) dw}-
(cos €-cos A) ¥ K(8)

1, ?//f{( J)}l/‘o du + (f‘ cos A - cosg) dv - ('F cos &-& cos)) *w}
(cos € - cos® A) VK(8) .

The sjuare roots in the expressions for tanllé 3 t;anJZI , and

tan-g s and for -g—% ) % , and -g-‘g-— s are to bs taken positive -

when 6 is increasing, negative when 6 is diminishing, and y K(6)
is to be taken always positive.

22
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There are now two cases.

(a) € L)\,

€ | {_j"

As 6 increases from A -~ € to A + €, u increases from 0
to n, v increases from 0 to a maximum and falls back to 0, and
W decreases from n to O: as & decreases from A +€to A ~-€ again,
u increases from 1t to 2 n, v decreases from 0 10 a minimar and
rises back to O, and w decreases from 0 to - n; and so on, u,
the uniformising variable, continually increases, v oscillates,
and w continually decreases.

(b)e >

’
i

As O increases from € - \ to A + €, u increases from
0 to n, v decreases from n to 0, and w increases from 0 to a
maximum and falls back to 03 as 6 decreases from N\ +€to € -~ \
again, u increases from n to 2n, v decreases from O to - n,
and w decreases from O to ~-n, and w decreases from 0 to a
minimum and rises back to O3 and so on, u continually increase,
v continually decreases, and w oscillates.

In the boundary case of € = A, 6 passes through the value
0. As 6 increases from O to € + XA, u increase;;» from 0 to n,
v decreases from-g to 0, and w decreases from 5 to 03 as &

decreases from€&+ A o _O again, u increases from n to 12{11, v
decreases from O to - 5 and w decreases from O to - 5 3

a8 § passed throuzh the value O, u continues t% inerease, and
v and w may be supposed to jump to the values 3 and 3 again,

without change in those functions of w, v, and w that give
direction cosines of axes in the projectile.

23




Physically, A is a mean yaw, € an amplitude of nutation.

3.4 The Trunsformation to the Parameters

We now use the above equations to give a transformation from
the variavles A, $, ¥, 6, @, and ¥, to the parameters H,

§O,1FO, ty s @, s and ¥, or to Hy ), €,t,¢,andy,

evaluated at each value of t, so that V may be sllowes to vary
with t as well as with 6.

The ejuatioas

¥(5,1) {AQ g (F - F cos 6)2}+%-5 2+ v (5,0))

s5in~ &
$,=¢
g -7
AT -~
show that we need not distinguish between § and ¢ and between 'P
0

af;d’}", and,;i-%-AA +-—-——-—2-«- ($-Fcos 8)( & - fcos;:)

Bsin 6§
+1 lcos& oV
f? (ﬁ }}cos 6) 6+ (p- i’rcos 5)1}311165*3-554--5-5
Thus
f=d .l (P - 5G+1F v F2+av1
§ (05+58) 5y (& - Peos ) T G.;"ssm 5t
while ;a G, cos 6 - Gg sinﬁ-*AH% + (fmf&cos ﬁl r
, and ﬂ"= GA l
.,
while
v 1 - ‘v 1 .
He e (P - cos 5 )( & - cos ) + -
B sin® 6 v ° 1] Y 7y
av cosﬁ av .
+ ( cosb)-i- ( cosa) sin5+ .
(dfjﬁo(smﬁ'@ﬁ Bsm aé‘f ? 560°

2L

e o



1s) K av oK oK oK
6-5_[x(s>] T [K(ﬁ)] means Sy— —gp— * 3T ¥+ EY 3 $+ 35 365 % *

. ‘,,‘.Af, (L5 SN o

and a corresponding equation for 61 give us 5 and 61 and so

2\ and € .
Tne ejation u
B du
‘bo = 1 'f 3
0
where

[

{28 (H "%K F2 -y (s, t) sin® 6~ (P - Fcos 5)2}
(cos &, = cos 6)(cos & - cos 61) K(5)

gives us

$
t

u
0Tl ﬁ*f ""}'3'”""/‘,","3%“ [x(&)]
J (6 . 2(K(8)’

Q.

i}

where

F
. B au 2 ou : ou s
Hence t_ = = — 6 = ) +
o FSK(G ) 36 nv 560 0 561 l)
u
B o)
f K(8)] du
o 2(K(5) )3/2 ot [ .]

where although the separate terms of the first bracket become in-
finitely large as 5——& or & -—-b&l, their sum remains finite

and small.

25
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In a similar way ¢ o and ¥ o, can be found.
Thus the time rates of change of H, ¢ ,- I, tys ¢°, and ﬁ‘o,

hi av
are found as linear combinations of F,, ¥, G I GB’ G 3 * 55

and —g—g ’ yith coefficients that involve H, &, ﬁ‘ s by ¢o’ and "ro,

and t. If these equations, and those giving X, ¥, %, ¥, &, and 6,
are averaged over a period of the solution of the reduced equations,
we get the secular equations that give the first approximation to-

the chanres of H, &, f, to, ¢o, and '&‘o. If ve have been able

to choose V so that these changes are small over a period, this will
be a useful method of solution. For a symmetrical projectile the
right hand sides of the secular ejuations will not involve t and ¥

and will involve ;’Jo only in the terms involving gravitational
forces.

0

3.5 Stability of Yawing Motion

The kind of stability we are concerned with is that & and
61 should, if small, remain small, if large, become small, regard-

ing all the variables except @, 6, ¢, and A s as practically

constant. Taking V(8) so that %g— + 03 is small, we look first

at reduced equations which rive a conservative system with H and &
constant.

In order that 50 and 51 can be small, it is necessary that

for the value of & for which & can be small, namely f s the part
of H depending on 6, which reduces to

2

f l=-cos b
7B I+cos&+v(6)

should have a minimum at &6 = O, Then 51 mast initially be less
than the first maximum of this same expression, if there is to be
stability.

Next we must look at the secular esquations for H and § « These,
if the motion with small yaw is stable, give, for some region near
H=V(0), § = ¥, motion tending asymptotically to these values.

26
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This region is the region of initial values for which the yawing
motion is to be regarded as stable.

It should be remarked that this !secular stability! does not
exclude the possibility that in higher order approximation resonance
may exist leading to unstable motions.

To determine the region of stability we solve the ordinary
differential system giving the secular change in H and $,

H= s, $)

é'g(H: @)

_starting in various directions from points near the point of
equilibrium H = V(o), @ = ¥, and going backwards in time, and these
solutions mark out the region.

Some information may be obtained by examining the equations

f(H,@)-o
g, @ ) =o

for other points of equilibrium, but there is no easier way of deter=-
mining the existence of an asymptotic periodic solution that may
separate the stable and unstable regions than by making a numerical
integration. Such as integration for a single starting value may be
sufficient.

Stable periodic solutions may also exist.

We have, in fact, to deal with the simplest typical problem of
non~-linear dynamics.

If we wish to take into account the effects of slow changeé in the
ceefficients and in ¥ , we should work rather in terms of \ and € than

in terms of H and &, since it is the size of A and € in which we are
really interested.
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Part IV. Detailed Approximate Theory
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L.l A Special Form of the Reduced Equations

0y |
We may choose such a form for V(6) that VK(6) shall be constant, )
Saye ’
Thus V(8) = H - '21\ Y2+ 5V -1 NP |
2 .-
2 ;
Wy v ¥ {ﬂ, (cos? + cos’e ) -éo -Wo ?* 2.(¢o Vo - sosheos €)cos &
* H
2 B sin® & |
|

If, then we take ,
) We) = V. - . Ly f
o) + COS I - cos & . I

2 2 2
we have (L (cos \ - cos ¢ ) -(vo-io) + 16 Bv,

2
2
\g! (cosx+cose)2=(\]°¢ éo) - 16 B,

2 2 2
andﬁ-g“gi— 'H'%Awo + %B wo -V, .

The solution of the reduced equations is now, for € < A,

A=ﬂsinXsinv
=P,
V-,

—— "

to-t-Bu/.ﬂ
]
- - $o cosx Vo cose v - (éo cose - ¥ocos ) (n - w)
¢° (cos® € = cos® \) 01 (cos® € - cos® 2)
Vo= ¥- ( )WO“"CIo cos A - %o cqs)zv.b-
2 2
cos € - cos A\

Wocose- éocosX)(n-w).
2 2 L)

cos” € = cos” A
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Notice that for V(&) constant, this reduces to the usual Zulerian
nutation of a symmetrlcal rotator, while by taking v = o, we obtain
motion corresponding to overturning moment

’
(1 + cos 6)2

which will serve as a good reduced motion for investigating stability
with large yaw.

L psin b . ’

+In general, we have a motion with mean yaw A\, amplitude of
nutation € and frequency of nutation ﬂ/ 2 n B.

lyt sin &
(1 + cos 8)

will not show up in our approximate system of, secular equations;
they show up immcdiately in the equation for % o which now takes the form

The effects of replacing the overturning moment by

S B F2 " .
% = JLsin A sin v B * €cosw+thcosv N
containing, when € and A are expressed in terms of the forces, the

temfgz (cot € cos w + cot X cos v) . GB.. lzﬂsins )2 )
l+cas b *

The leading term in Gy = M isp v° & sin 6 X, ,
and we should take u so that

(cot€cos w + cot A cos v) (p vzd3 sin GIS,I- -"-‘-“-"-—S-:-i‘—n——g—z )
(1 + cos §) |

vanishes when averaged over the reduced motion, after inserting the
actual variation of Ky with &.

If K, does not depend on 6, this gives (see Appendix)

2cos€coskpv2d3KM= Sos€ T Gos %

e
In this case g%— %‘-—,—:-%%%% + V(6) has no maximum, and the only

preliminafy condition is W2 > L4 B pe that is, that the stability
factor for small yaw is greater than unity. If, however, KM

increases with & faster than 1/(1 + cos 5)2 , a finite stable range
of 6 may be determined.
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Le2 An Approximate Form for the Secular Equations

We shall gystematically neglect terms of higher order than
the first in Aand ¥ in the aerodynamic force and torque components,
so that, for instance, we take

J-pvdhsmﬁwKJ—pdh -EEZKXT'*pdhv%KH,

with the coefficients taken to be functions of M and R, and even——

functions of 9 ‘fh and 6, but not to depend on A and 2 .

We shall also omit the gravitational terms.

Since in the secular equations terms linear in Awill vanish
on the average, we obtain

! . 2 -
Hepvd (é) xﬁ-tnpvdu %’%'sinGKJ-o-pvdh (%)21(}1
22
—pvd( }}&-»pvdh‘fgsmbl&z pT_—SinSBG

L I &%
‘gﬁ?c'i‘% = K

G-pvd Yot -pved Foosssinsky

—_— < 2.2
- pvdh ws:m 5K -pvd,"’ %"sinéxu+ﬂﬁz7-q—(¥/-§cosﬁ KL+

v (y-P 5) > 2
7{( sinch) XF*EH%- %—-%—K

d
X¥

and

V= -pvdh'-{%”Ki-pvdhEE: sinﬁKlz.'

These averages should be taken over the reduced motion after

¥ inserting the actual variations of the coefficients with 6. This
: b may perhaps be done by expressing them approximately as polynomials
in 6.

* - [ 4

We will now have H, & , and Y, given in terms of &, W, 2, € ,
and {b , as well as p, and ve can use the ejuations

cos A - COS € '(é "W)/ﬂ
cos \ + cos ¢ -/('Qf*é )2-16Bp./n,
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Wheren;\/2B(H~-‘-'}-'-~'\F2 B'W

to obtain 'cI" cos A and T:E cosein terms of \, € , Y, and p. The
stability problem then involves the corresponding problem in non-linezr
dynamics, regarding Y and p as slowly changing.

If the aerodynamic coefficicnts do not depend on & we obtain
(see Appendix)

H=

L ~2 .. .2 '
pvdrdl° sin® A 1 - cose + L < ?)
- pvd COS€E €08 A\ ~ X
) sinszH (¥ T )%

l W cos € 2P cos A §2 cos €
“P"d( (c 3 "1>"g2“¢ 3 T Y3 T oth

os € « cos A cosS & - cos5 A B cos e~ cos X

2 2.2
"pvdu—?—é- I--pvd)4 ’%,(gcosecosl—-g)KIz-*pﬁzd lm/ 2 ->KL

(cosé + cos A

+ pn_li_'gfh W cos’e + cos® \ + cosgcos A=l _F 1 +cosecos A\ _ m
i (cos€ + cos R)j (cos € * cos X)B

$-

coS€ fcosA

I

~-p Vv dh 3 1-0052

£ cos27\ - %sin?‘e si..zk) KJ -p vV dh(%rco:wcos A - T ) KH

b 2 2
(W Qﬁcose cos X)KL + Hv .%[? ;é 305 A 5

cos &~ cos” A

_ PV /2 cos € _1)
B 2 2

cos"€ = cos A

B sin® A

}if’.-pvdu %: KI-pvdb<-g—ccs€cosX-%—) KIZZ

k 2 -
A S W -
+ Br"—&v T sin“ A 1 -~ cos e-J K

3

2 2 1.2 . 2
-~-p2vd -—W- COS£€COS A KI -p Vv dh(g'(cos € cos” A + -ésm € sin )\)-%—cose cos))KIz




4.3 The Special Case of Small Yaw

The equatn.onﬂ (cos N - cos € ) = (Y~ @)2 ensures that H, § R

and 'QF, are not large, on account of the denominator cos A ~ cosé€,
when the yaw is small. Using this equation and keeping only terms

of order U~ & and €2 and A%

Hapvdh{ﬂz A2 4 2 , g 2 +28 ~W(?-¢')}
T . Ky

we obtain

e h X
2 2 2
B AECEERY | "R
tevd - aan i BRI Rl
2

2 2.2
cpvd JIE - i g Bt e (F e

! 2,42
v & —»u(‘%@ g L +x)> ~2“(1+€ + A )

L
R e Y e A

v/ L W"Q v i 2 2
+ K -evd [“"B“'" B ?‘”(5 *)‘)]KIE

For small yaw, A and € are small, and

N2r¥? -uBw

= pvedBKM
2 2
whlle‘lIf-@’h‘-’*n)‘Ee )

2 2
and H--;-g—- *Qu-VN%— (x2+62.)-3§1f§ ("{ﬂ'-é)

» ‘
@a-pvd W[ (,e_'.’HK pvd [(Uf é) ___Z'f_)t?ﬂl(lz




5
These are of the first order in A" and. € 2, and so are their time
rates of change.

In fact, if we write for brevity,

in
- pya j
; he PR Ky ‘
2
- pvd
k k Mv KL
g 2 PV dh K
A I O e
L
< pvd -
¥ Y A K
L
d
x ’Xa v A KXF i
we obtain

V-0 y+ -zh-,zk-?f*wx}(k +e )«_Q.(h-* x2 €2>
I{-‘I’BW + 20 = {(w n2 (w +ﬂ2)ZIJ(Y+M)

-BL}(X2+£2 + -ZE—-]p(h‘fy'*’Xu.) (x2~62>

while, keeping only, the leading term,

V=--A¥. A

o From these equations we find, writing o = T o

o
s v
80 that %--ic‘;—j,whnesﬁe-%wyzj»« %ﬂa (X—é) ,
-g%-(xz-€2>=%(2‘Y+h-k-1+27(p,)().2+62>—<h+k-1+%)6\2-€2>
(). +€2>--(h+k-,( 22 +e) +%(zy+h-k-1+2xu)(x2-éz)

so that

%5’\2="{<h"'k'1+%)'% <27+h-k-;e*27(u)}k2 -
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d
at

and the condition of stability, for real o, is that both the coefficients '

52=-{(h+k~1 +§)+ %‘(2y+h-k~[+27(p.>}52

on the right hand side should be positive.
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APPENDIX Formulas connected with a spherical triangle

If u, v, and w, are the angles of a spherical triangle with
sides 6, € , and A, we have the following formulas.

sinuw _sinv _ sinw
sin © sin € sin A

cos (A - £) = cos
cos & -~ cog (A + €

v =./ (6 = A) ~ cos e’

cos ’
cos € = coS (O * A)

5
)

]
w.\/cos(é—ﬁ)—-cosk

cos A ~ co3 (& + 0)
cos & =cos€& cos A+ sin€ sin A cos u
cos€ =cos A cos &+ sinA sind cos v
Cos A =cos 8§ cos€ +sin b6 sin€ cos w
Cos U = ~coSvcecoswW*sginvsinw cos &

cos coswecosu+ sinw sinu cos €

L4
L]
)

cos cosucos v+ sinusinv cos A

£
"
i

cos v sin 6= sin\ cos € =-cos A sin€ cos u .
cos v sinA= sin 6 cos€ = cos 6 3in€ cos v

cosw sin 6 = sin€ cos A~ cosé sin N\ cos u

cosw sin€ = 5ia 6 cos A - cos & sin A cos v

cosu sind = sin€ cos §~cosée sin &6 cos w

cosu sin€ = sin\ cogs 6 ~cos A sin & cos v

cos € sin w cos v+ cosu sin v cos A

#
(%]
5
=

cos€ sinu= sinw cos v+coswsinv cos b
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cog A sinu =
CosS A sinv =
cos § sinv =

cos & sinw =

< » o

bR

sin w sin & = €

gin v cosw tcos v
sinu cos w 4 Ccos u
sinw cosu + cos w

gin v cosu +cos v

-

*

- Acosu-~bcosw

i w cos &
sin w cos &
3in v cos €

sin u cos A

. . [ .
sinvsesin A= 8~ €cosgw=~Acosv

[} » »
sinusiné€ = A - Hcosve~£€cCosu

The above formulas mav be used to average expressions with
In particular, since

respect to u.

1
'an
0

1
- 2n

and

L3

= cos €

cos

cos 6

2n

2n

du x
a+bcosu

du

a 3/2

f (a2 + b cos u)2 i (a.2 - b2)

0
we find, for €<\, the following averages:

cOSA

2 = cosze cos2 A +%‘ sin

1 1
L+ cos b COS € + COS A
T 1
1 - cos & cosS € = cO5 A

= cos € .
s:'Ln2 6 coszg - c.os2 A
cos b -
simE 6 cos’e¢ =~ cos A
38
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? = 1 ~co8¢€

sin” v
s:i.n2 A
s:'mE 6 - 2 1
(1 + cos 5)2 COS € - COS A
1 - L1 *cose cogs )
(1 + cos 6)2 (cose + cos )\)3
2 2
cos & . Cos’e +cog A+cos€ cos -1
(1 + cos 5)2 (cose + cos X)B
cos w sin & = gin € cos A
“¢cos v sin b = cos € sin A
cos W sin & - sin ¢
(1 + cos 6)2 (cose + cos 1)2
cosvsind = sin A
(1 + cos IS)2 (cos € + cos X)?’
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