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List of Symbols

Cylindrical coordinates, Fig. 1

Longitudinal, tangential and radial displacementis of the cylindrical
shell. Fig. 1. Note that a positive displacement w is inward.

Coefficients defining the shape of modes in vacuo, Eq. (1)

u, v, and w components of displacement pertaining to the generalized
coordinate q,, Eqs. (2) and (3).

Subscript

Radius of cylinder

Coefficient

Velocity of sound in medium
Element of surface area of shell

r -dependent function in expression for potential

Length of longitudinal half-wave of mode of vibration
Generalized mass (coordinate q)

Mass of shell per unit area

Virtual mass of entrained medium

Coefficients, see Egs. (40), (46)

Number of circumferential waves of mode of vibration
9 sin T—rrf— e-im External radial force (positive if outward)
Pressure in medium

Radial pressure of medium on cylinder

Static pressure in medium

Generalized force (coordinate qy)

Generalized coordinate

Large value of the radius r

Time dependent function in expression for potential
Time

w due to static force

Coefficient

-iii-




BB see Eqs. (19), (37)

& Coefficient, see Eqs. (286), (30), (38) and Tables 1 and 2.

p Mass density of medium

$= S(t)F(r) cos n 6 sin % Potential funiction

Q Frequency of free or forced vibration of shell surrounded by medium
Wy Frequency of cylinder in vacuo
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Summarz

A method is presented permitting the determination of the frequencies of vibra-
tions of infinitcly long thin cylindrical shells in an acoustic medium. (Sections 1 and 3)

Expressions are also obtained for the displacements of the shell and for the pres-
sures p in the medium in the case of forced vibrations due to sinusoidally distributed
radial forces. The results indicate that there is a low frequency range where no radi-
ation takes place, and a high frequency range where the external force provides energy
which is radiated. Resonance occurs in the low frequencies range only, in the high
range it is prevented by the damping due to radiation.

Free and forced vibrations of steel shells submerged in water are discussed in
detail (Sections 3 and 4). With limitations, the theory may be applied approximately to
stiffened shells.

The method requires only a minor modification to account for the effect of static
pressure in the surrounding medium (Section 5).

The results are also used to draw a general conclusion concerning the treatment

of transient problems, (Section 8), particularly of the problem of shock loads.
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1. Free Vibrations

The free and forced vibrations of a submerged infinitely long, thin cylindrical
shell are studied in this paper by considering the shell without the fluid as a separate
- structure responding to the applied forces combined with the dynamic forces exerted by
the surrounding infinite acoustic medium. Using the modes of free vibration of the shell
in vacuo as generalized coordinates, its response can be expressed in terms of the in-
finite number of these modes.

The frequencies and modes of vibrations of infinitely long thin cylindrical shells
required for the purpose were determined in ref 1. The individual modes can be clas-
sified by the length L of the longitudinal half-wave of the displacements and by the inte-
gral number n of circumferential waves. For each length L. and number n there exist
three frequencies wy(k = 1, 2, 3). The displacements of the modes corresponding to all
three frequencies are sinusoidal, but the 'ratios of longitudinal, circumferential and
radial displacements, u, v and w diiffer. Excluding the case n = 0, the displacements
corresponding to the frequency oy may be written:

z
u = Uy coancosl}_—'-
. s T2

v = Vi smn@smr (1)
. mZ
w=W,(cosn(-)smr

The modes defined in Eqgs. (1) contain an arbitrary factor, only the ratios Vi /Uy and
W,/U, can be determined and are contained in ref. 1. It might also be mentioned that
Egs. (1) can be generalized by adding phase angles, which is equivalent to changing the
origin of the coordinates 6 and z.
will be a combination of the
modes for all values of L and n, However, in order to find for a submerged shell the
frequencies and modes of free vibration of selected valuss L and n, one need consider
only the three modes of shape (1) having the same parameters L and n. This simplifi-
cation is due to the fact that the wave equation (8) for the surrounding medium has a
solution containing the factor cos n 8 sin -T;:z- , and the pressure belonging to such a so-
lution docs not excite modes of different values L or n,

Selecting the coefficients W, in Eqgs, (1) as generalized coordinates Wy = qi, and
using the abbreviations

Ui
duk =W;cos chos-’iE

Vi

Py = W-ksinn 0 sin 7%

(2)

2

. TZ
bw cos n @ sin

-1-




the displacements u, vand w can be expressed as functicns of the three generalized co-

ordinates q;, gz, 3

u=4q 6y, tdaduz t+gadup (3a)
vV Eq by tGebya + dsby3 (3b)
w=(q; +qz *+qzld, (3¢)

The symbot ¢, in Eqgs, (2) and (3) does not have a second subscript, as there is no dif-
ference in the w - displacements of the three coordinaies q.

Due to the inherent orthogonality between the disblacements represented by the
generalized coordinates, the equations of motion contain each only one of the coordinates

Ak,
" 2 .
Myqu + Mywyqy = Qy (k =12, 3) (4)

where the generalized mass My is
2 2 ,2
My = J.JA myx t iy T+ fw)dA (5)

In the case of free vibrations the generalized force Qx is due solely to the radial pres-
sure p, of the medium on the cylinder at r = a;

-

Qx = ‘“‘A Po pwdA (o

Hence, Eq. (4) becomes

Ij Pa ¢wdA
A

qe + wlqy = (7)
m ”A @ui + 4y +7)dA

The integrals in Eq. (5) to (7) are to be taken over the surface of a section of the cylin-
drical shell of length L.
The shell is dssumed to be subme=gzd :a . acoustic medium, the velocity poten-

tial ¢ for which is governed by the equation

2
vie =L 22 (8)
c- ot
A solution of this equation suitable for the present prublem is . .
& = S(t)F(r) cos n 8 sin :I:Z— = S(t)F(r)dy (9)

where S(t) and F(r) are functions at ou. disposal. At the surface of the shell (r = a), the

radial velocity of the shell must equal that oi the medium:

!
L’
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Oubstituting Eqs. (3c) and (9) one obtains
(41 + gz + da}dy = - S(HIF' (a) by
or

T - (4, +9; +4qs)
5(t) = (@)
(Note: F' (a) = dFrr)] )

The radial pressure exerted on the shell by the surrounding medium is the pres-

(11)

sure atr = a:

Pa=-p 2] - p8(tF(ale | 12
('3 p WJ rea pS( w (12)
or substituting Eq, (11),
Pa = Ppdbw (i1 + 82 + @) (13)
Egs. (6) and (7) become
Q = p gy (@ + 2+ ds) HA¢5dA (14)
and
. pay o e s
i + wiaK =—&1—1:F~::£(a-'-)) (G + 42+ 4a) (15)
where
2
Jfezan W
ag = = (16)

] 2 2
2 2 .2, + P W
jL(%,k + ¢v.k + ¢y )dA U Vk T

The last equation is obtained by substituting Eq. (2), Numerical values of a, for various
mivdes are given in the tables of ref, 1,
The function F(r) is obtained from Eq. (8), which reads in full

2 2 2
8% , 1 0% 1 82 , 0% 1 8¢
¥e, 1oy, 152,088 108 (8a)
ar r ar z'2 a8 az2 c2 atz

Assuming periodic solutions for the generalized coordinates q

t

qk = Cye'" (17)




Eqs. (9) and 11) give

2= -1058s, (C/ +Cp +Cye'™ (18)
Introducing the symbol
2 2
Q
BV - (19)
L

Eqs. (8a) and (18) lead to the differential equation
1 .., 2 o
F"(r)+FF(r) -{p~ + -;! (r)=0 (20)

As boundary conditions we require that the velocity of the medium at r = % vanishes in

such a manner that the kinetic energy in the medium remains finite,

2
r? F(r)],_oe =0 (21)
A solution of Eq. (20) is
)
F(r) = Hy " (ipr) (22)
which satisfies Eq. (21) provided the real part of B is positive.
Computing
N W . ¥,
Fi(r) = :p[m';—nn' (ipr) + Hy. < (ipr) (23)
and
Fla) _ -a
‘FT((‘T"“ Y, (24)
2 Hp-i (ifa)
n - ipa

HY (i)

Eq. (15) becomes:

de +wpqy = '%“k A(G) + Gz +d3) (25)
where
-2 F(a 2
a = a(pa) = 22 = (26)
a Fla H.‘.fl) (ipa)
n - ipa ——
H, (ipa)

Substituting Eqs. (17) into (25) three homogeneous equations in the coefficients Cy are

obtained

(0f - )Ch - anfE A (CI+Ca+Cay=0  (k=12.3) (27)




Non-vanishing solutions of these equations exist only if their determinant vanishes,
which after evaluation leads to the frequency equation
a, az 0'3 2m

T + = (28)
w2 - Qz maz - 92 paQZA

valid for n ¢ 0.
For the previously excluded case, n = 0, the cylindric.! shell in vacuo has again

three modes for each value L and n, One of these modes is, however, a purely tor-
sional motion with displacement components u = w = 0, This mode is not excited by
the radial forces from the surrounding medium, and only the two non-torgional modes
need be considered, Instead of Eq. (25) one obtains forn = 0;

ay + 0l = -S—fﬁaw(ﬁl + q3) (29)
where
i1 (ipa)
A= T (30)
fa H; * (ipa)

The frequency equation for n = 0 is;

Q| a2
+ - 2m (31)

w.z-Qa waz-Qz panA

The solution of the frequency equations (28) and (31) is further discussed in Section

2. Forced Vibrations due to Radial Forces

Any arbitrarily distributed radial force P(t, 0, z) can be expanded in a Fourier

integral (or series) of terms
n
P(t. 0, zj = e'"’ cos n 6 sin % = e'm4>W (32)

The following treatment will be restricted to the consideration of such individual terms,
i,e. to force components P(t, 8, z) defined by Eq. (32). These forces P are counted
positive if acting outwards. Non-radial forces can be treated in a similar manner but
will not be considered.

Eqgs. (4) and (5) of Section 1 apply again, but Eq. {(6) for the generalized force Qx

must be replaced by

Qy = (pacp,,dA. - j e Vol aa (33)

v




3

#

Proceeding essentially in the same manner as in Section i, using Eqs. (8) to (13)
incl,, and Eq, (16) to (24) incl., the equations of motion for n § 0 become

15t

. a " ,. " Q
dy + ol = - £an A + b2 +83) - e (k =1,23) (34)

There is just one detail in the derivation of this equation which requires elucida-
tion. The solution (22)
111 N
F(r) = Hy  (ifr)

does nnt satisfy the boundary condition (21) for frequencies Q> % because the argument
T o
ap - a‘ﬁ% -
L c

Becomes purely imaginary. The boundary condition (21) is in this case replaced by the
requirement that the potential funiction Eq. (18)

3 = - F-‘,%T (C, +C, +Cz)e™ F(r)ow (35)

represents an outgoing wave for large values of r. This condition is satisfied for

(2}

F(r) = Hy (Pr) (36)
where
g=1/% - (@3> 1) (37)
CZ LZ

and the positive sign of the square root applies, This leads to the value

F
A = A(Pa) = - é .aa)) = = Z(‘z) e (38)
n - Pa—pr——
H.° (fa)

valid for 2-’{‘::-, while for Qg -1{5 Eq, {26) remains in force,

Substitution of Eq. (17)

Cqy = C,.eim
in the equations of motion (34), leads to three non-homogeneous linear equations for
the coefficient C;. Their solution is

(39)

where




2
a 2 ﬂzﬂa uaﬂa

wlz- Qz wza- Qa waz- Qz (40

Substituting the values Cy from Eq. (39) into the expression (18) for the potential
function & and noting Eqgs. (26), (32) and (38) leads to

. r
- iQad ¢ 1 F(r)
® ° 5w Qz F—é—;a P(t, 6, z) (41)
N-

a L2
mQA-

where the function F(r) is given by Egs. (22) and (36), respectively,

u," (ipr) if o< IS
(42a)
F(r) = r" if o =7 and 0
(x) s nt (42b)
{2) . rc
H r fQ>.
n (F ) 1 Q E’ (42(:)
A, P and B are defined by Egs. (19), (26), (37) and (38),
The pressure in the medium, p= - p 5t * becomes
1 F(r
p =T-_Zm_ F%E% P(t, 8, z) (43)
i palNA
The pressure p, on the surface of the cylinder is
Pq = P(t, 8, z)
TZm (43a)
paNA

The knowledge of the coefficients Ci permits also the determination of the dis-

placements of the cylinder. Of particular interest are the radial displacements w
obtained from Eq, (3c)
1 Pt 8, z)

mnalz'%A '1%’]

If one goes to the limit @ —~ 0 this equation gives an expression {or the deflection

w = (44)

wyy under static loading P(9, z) =

Wgy = lim W= -t — 4 — 1 (44a)
t—+o w) wzz w3z m
while a similar process for the pressure leads to the obvicus result lim p =0,
Q-0
The expressions for the longitudinal and tangential displacements u and v due to

the radial force P(t, 8, z) are somewhat more complicated




104
Nyw cOs n 8 cos %e

v 2 pa 1

in (43)
Nyw sinn 6 sin %e ¢
Ve mN 0? pa_ 5 1
Zm N
where
Uy 2
3 [+ 3% W;Q
Ny = R S—
k=1% U
(46)
Vi 2
g 3 ag W;Q
vw T 3 7
k=1we -9

The above Eqgs, (40) to (46) were derived for the case n # 0, but with exception of
Eq. (42b), they remain valid for n = 0 if theterms referring to the non-existing frequency
w3 are omitted when computing N, N, , and Nyw from Eqs. (40) to (46).

The degenerate solutions (42b) for n = 0 and for n = 1 do not satisfy Eq. (21) and
the total kinetic energy in the medium is in these cases not finite. This indicates that
steady state vibrations for n = 0 or 1 in an actually infinite medium are not possible if
Q= "E— . If one considers the infinite boundary of the medium as an approximation of a
far boundary, r = R, the solution (42b) for n = 1 may be considered an approximation of
physical meaning because the energy is then finite and the velocities at the boundary
are small, as VJR. A similar reasoning does not apply for n = 0, because the longitudinal
velocity g% is not small for large values of r; the physical impossibility of this solu-
tion expresses itself in the fact that o = o, To obtain a physical meaningful solution for
n = 0 it is necessary to consider the actual conditions at the distant boundary.

To facilitate numerical computations, Tables | and 2 list the values of 4 occuring
in Eqgs. (41) to (46)for n = 0 to 4 incl.*

3. Discussion of the Frequency Equation

The discussion can be restricted to the frequency equation

*Values of a for n € 20 can be obtained from ref, 4, hLut only if Q >'ﬂ% . The acoustic

reaciarnce a resisiance x'utios__xn and 6, shown in Fig. 1 and 2 of ref, 4 can be used
to compute= Xn(aB) - 18a(aB).

=
~EQP>A

i mmaryy dAtw <

P -
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E<E- L

As a rule one, and for many configurations two values ay are quite small, indicating
that the radial dxsplacements of such modes are small, In such qyases the c0upling ‘of

“the motion of the shell and the surrounding medium is slight, and the frequencies :Q k\bf

such modes will be very close to the frequencies w in vacuo, ‘

To simplify the numerical determination of the roots of the frequency equatfon
Table 1, giving values of A for real arguments ap, has been provided. After.a frequency
Q has been obtained the shape of the mode can be determined by computing the codj!iment
Cy from Eqs. {27). “-« ’

Effect of Compressibility

It is of ~OFLiGe T mcerest to consider the effect of the compressibility in: or/.ier

‘to determine. when it might be ne;. lected. The compressibility appears in the derniation

of Eq. (8) where the velocity of glqnmd ¢ occurs, and the solution for an mc.ompres inle
fluid may be: obtained by using ¢ 100 . This does not change the frequency equation (Zb),‘
but the argument ap used in deteqnming the term A in this equation is in this cas,e ;

o o ’ ar L “
i . o a = . 49) !
\ ;“\‘ B=1 (

instead of the value gwen in Eq. {4’ () which depended on the frequency 2 . (‘nmpaq ug
Eqs (47) and (49), it is apparent r,h at the compressibility may be aeglected only if ;

o

If ite compreesih -*v is negleicted the number of real roots Q is always equa! to

the' numbec of frequencles Wy . ,1; La obw\;u'& *hat roots hlgher than 7— found for tht in- ‘
,p’
compre..sible case are unreal, ) QH 4 >

Complex Roots of Frequericy Equatwn ;

i |

The fact that the number of reai roots Q of *lhe frequency equahon may be g ‘/&""'h-'
than the number of frequencies wyg in vacuo ram\es the question of the existence of (':9
plex roots in lieu of the missing real roots and of the physical meaning of com».ﬁefr
roots if any, In order to have physn. 1 meaning ‘the solution corresponding to { ‘ "oqn \\, 2%
root Q@ must represent an outgoing wa.e, and m +igt algo decay with time. :

In order to recognize the wave :.,%.1 aracter of the solution it is convenient to s

potential tunction in the form (36) emjpioyed in Eéection 2 for > IEE :

P ',:eaﬂt, “ Er) ¢u ; (50)

To avoid incoming waves the real pa.. of f must not be negative. 'Based on this expres-
sion one obtaing a "wave frequency ecuarion” , which is identical with Eqgas. (28) or ,31),

_ except that the value A ig a function »f AP and must be computed from Eq. (38) instzad

of Eq. (26). It is to be noied that the nrgumens aff in Eq. (38) wiil now be complex, A
study of the potential function (50) indicates that for complex roots 2 for which the time
*is daniped, the teri. . H,E'r:') (Br) becomes wat r -, Such roots and

dependent term ¢ "

10w
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the -worresponding solutions appear at first to have no physical significance. It should
be po‘inte;;i out however, that these complex roots and the corresponding solutions occur
and have ‘significance as asymptotic solutions in transient problems. In such cases the
validity of the asymptotic solution is limited tos finite values of r and the fact that

Hn(Z)(B'r) joes become infinite at r - ig immaterial. For example, a heavy shell in a
‘ tight med:um, like air, is capable of slightly damped vibrations. The frequency equa-
- ‘tion in such a case has complex roots Q the real parts of which are close to the frequen-
cies wy i1 vacuo, while the imaginary parts are quite small. Expression (50) is then
the appgrm:.:imation of a possible motion, valid in the range t > T and r < R, where T
must be selected so large that the transient effects of the initiation of the motion have
passed oucside the cylinder having the arbitrarily selected radius R.

'I“ibfz numer’ ~al values “f complex frequencies Q can easily be determined approxi-
mately ¥, either the imaginary part of Qis small, or if Q| is large, If the imaginary
part of 2 .s sma'‘ the value of A (aP) computed for the adjoining real part of 2, found in
Table 2, ™may be;‘used: This procedure would be applicable for the above mentioned case
of a heavy shell ‘n a light medium, If the absolute value of the frequency |Q| is large
such that the ar;v.;mem lafl >> 1, the term A (af) may be determined by using asymptotic
expressic s for the Hankel Functions,

‘ ¢ -4
@& & s a(af) 1+ 2iap (51)

N
g !
AN

=

Frequently it iz permissible to neglect even the real part of the denominator in this
equation, ‘ving

wfB) = - :—; (52)

These app “oxiv cue gy o #1) values of n, but give better results for small values

of n, A rnospmiey of (e

4. %4 i s+ -oximation can be obtained by comparing the re-

sulis of Exg, i+ %2, wih b values o5 real arguments aff in Table 2,

E

For 8 7 i s poss.hie to simplify the frequency equation by neglecting the two
Uk higher svaodes, thus obtaa o g an approximate equation for the lowest frequency. This

equation can tiedhose snferpoaad in o nisple manner using the concept of the " virtual

masat of e e ivamad ecdivm,

eThe o rinal values of ay and wy occuring in Eq. (co) are givep in ref, 1. These

TR RENPUR N _
- T e i s . vithin the range 1 g a%s 10 the first term of Eq. (28), q;/(w, - Q°), is
B ) e = \\‘ L
Fiather i < Wi = is i
very mouch nrser thay tas el two if @ < w;; for = values near 1 this is so because

L 2 2

. and uy ave sinall o gy 7 "5 - 2lues because w2 and ws are very much larger than
2, ¥ AVE SR, SR

e Negleciiny, the i tons with # «.id a3 leads after rearrangement to
a;pa

WLt g A) = of (53)
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This indicates that the lowest frequency {2 of the submerged shell is equal to the fre-
quency of a shell in vacuo whose masa has been increased by the " virtual mass" m, of
a portion of the medivm vibrating with it

\,=n|Ez-A | (54)

4 is a function of the frequency given by ‘Eqs. (19) and (26), but if w; << %c- the effect of
the fréquency is negligible and Eq. (49) for the incompressible case may be used instead
of Eq. (19). my may be computed quickly by the use of Table 1,

The sanie approach can be used also for n = 0, but gives good results only if E <2.
For longer shells the second term in Eq. (31) remains la.rge and can not be neglected
thus making the simple virtual mass concept inapplica.ble=

Steel Shells Submez;ged in Water

When applying the frequency equations to thin steel shells (say {a-‘ > 30) submerged’
in an infinite body of water it is found that for ratios 1< ¢ € 10 and n > | one and only
one frequency in vacuo is lower than -L— , while forn =0 all frequencies wy are above
this limit* It follows that for n = 0 one and only one real root 2 exists; for n > 0 there
is at least one root and according to the previous discussicn the possibility of a second
one. A second root § can only occur, see E' in Fig, 3, if the second frequency w; is
close to "E' Ref, 1 shows that in the range 1 g L £ 10 the second frequency wp is much

. larger than the limit T.T , and there will therefore be just one real frequency for each

value of n. ** This frequency can be determined from the simplified Eq. (53), except if
=0 and - > 2. -

Sxmllar conditions prevail for ratios L/a > 10, except for n > 2, where for
extremely large ratios, due to the effect of the bending stiffness of the shell all the
frequencies in vacuo may lie ﬁtbove JTEC-; resulting in no real roots, In the limiting
case L, = © only complex roots occur for any value of n, This case hzmH been discussed
independently in ref. 2. ""

. ik 7 <1 the above result is expected to remain valid, unless the length of the half

wave is so short, comparable to the thiukness t, that all frequencxes in vacuo lie above
me ‘
Complex roots of the frequency equation representing waves exist and can be
determined approximately by using the asymptotic values for a(af), Eq. (52). However
the solutions corresponding to the compiex roots lack physical meaning, except as

asymptotic solutions of transient problems dincussed in the previous section. In the

“*The frequencies in vacuo for 1 g % 10 can be obtained from ref. 1.

**This count excludes the {requency of the purely torsional mode of the shell for n = 0,
This mede was excluded when deriving Eq. (31) as it is not coupled with the surround-
ing medium.
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case of a steel shell in water where 1 € % £ 10, the asymptotic solution is a combination
of the free vibration, corresponding to thge real frequency 2, and of damped wave mo-
tions corresponding to the complex roots Q. If the motion is such that the undamped

. motion is at all excited, the asymptotic solution converges rapidly toward the undamped

vibration of real frequency Q and the damped motions due to complex frequenc1es will
give only unimportant contributions.

4. Discussion of Results for Forced Vibrations

Response of Shell and Medium

The most significant feature of the results of Section 2, is the fact that the ‘t"ew
sponse is entirely different for frequencies Q of the applied force above and below the
limit Q = 'I? Different expressions, see. Eqs (42 a - c), apply in the two ranges, re-
sulting in different physical behavior, ‘

1f 2¢ 2 the ratios Ha' (1pr)/Ha

coefficient A(ap), are real. [Eqs, (43) to (45) indicate that in this case the pressure P

0. :
w (ipa), and as a consequence the values of the -

and the displacements are in phase with the applied force P There is no input of
energy by the apphed force and no radiation. It is of mterest that the pressure p de-
creases very rap1dly with increasing radius because H,. (ipr) decreases like

g' /V' . As expected the expressions for the pressure and displacements contain a
denominator which vanishes if 2 becomes equal to one of the roots of the frequency
equation for free vibrations, indicating resonance.

If the frequency Q is sufficiently smaller than "E' the effect of the compressibility
becomes unimportant and the approximate Eq. (49) for ap may be used, For low fre--
quencies, 2. w, one can neglect the modes q, and q3 . The resulting equation can be
interprotéd by means of the virtual mass defined by Eq. (54), indicating that the response
is identical with that of a shell of increased mass (m + m, ) in vacuo.

Ifo> % conditions are quite different. The ratio H, (2) (B'r)/[—l,.m (Pa) is complex
and the coefficient a(aP) also is complex. As aresult, the pressure p and the displace-
ments are not in phase with the applied force, the phase angle being sucn that the ap-
plied force supplies energy which is radiated. There are no real roots of the frequency
equation above -TEE ) and resonance does not occur in this range.

The range Q > 'LT can be further subdivided in two distinct ranges if n 7 0. Table
2 indicates that for small values of ap the imaginary part of A is very much smaller than
the real one, while for large values of af the opposite is true. The dividing line is quite
sharp, but depends on the value of n. For n 2 > 2 it lies above aPp = n/2, This indicates
that, particularly if n > 2, there is an extensive range of frequencies Q > IT where ra-
diation and damping are quite small, The decay of the pressure p as function of r is -~

- also different in the two ranges. If the radiation is large the pressure decays very

slowly, approximately as 7 yT. If the radiation is small, the pressure decays much

13-
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faster, nearly as fast as in the non-radiating case (although for very large values of r
the decay becomes again 1/ y7).

-Considering the zjesponse as function of the foi'cing frequency Q, a number of
significant frequencies, in addition to frequencies of free vibrations, can be found by
considering the denominators of Eqs. (43) to (45). If the frequency Q is equal to one of
the frequencies wy in vacuo, N =, and Eq. (44) gives p, = P(t, 6, z); the pressure in . '
the medium is in this case equal to the applied pressure, as if the shell were non-
existent, This is physically understandable, because at such a frequency the shell
vibrates without requiring any outside force, and the eritire applied force is transmitted
to the medium. . H

Other significant values of the frequency 2 are those for which the term N vanishes,
Consideration of EQs. (40) and (46) chows that this occurs, in addition to the trivial
value Q2 = 0, once between successive values of the frequencies w, in vacuo. If N =
both p and w vanish everywhere, indicating that there is no response at all of the fluid
at such frequencies. This rather startling result is due to the fact that for these fre-
quencies the three modes (or two modes if n = 0) interact in the manner of a vibration
damper. If the longitudinal and radial displacements u and v are determined it is seen
that they do not vanish, only w and p are zero. The frequencies at which this phenome-
non occurs are necessarily the same as for the shell in vacuo,

At the end of Section 2 it has been pointed out that, and for what reason, the soiu~ '
tion for n = 0 loses its meanmg for Q = '-;._‘3 The formulas for the response for frequen-
cies very close to Q2 = T.._ must also be used with caution, because they might be affected
by the conditions at the distant boundaries of the medium,

Steel Shells in Water

Considering cases in the range 1 % £ 10, there is for n 21 one frequency in
vacuo, w;, below % , while the other two, w,, w3z, are much higher. The frequency
equation of the submerged shell has one real root, 2, <w, and two complex ones near

wp and wa .
Figs. 4 and 5 show the amplitudes of the radial response w and the maximum

pressure p, at the surface of the shell in non-dimensional manner for a typical case,

= 2, %— = 4, % = 4, (The ratio %‘" = 4 indicates that the mass of the water displaced
by the shell is 2.0 times the mass of the shell) Fig. 4 shows in solid lines the ratio*
iw/'wsm"cj " of the amplitude of the displacement w to the static deflection of the shell
as function of the ratio—g—% . Attention is drawn to the fact that the right half of the
diagram is enlarged and shows 100|wﬁv,u“c| . The same figure shows for comparison
in dashed lines the response of the shell in vacuo, Fig. 5 shows the ratio of the peak
values of the surface pressure p, to the peak value P of the applied pressure P(t, §, z).

*Often called amplification,
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The diagrams show clearly the previously mentioned fact that w and p become
zero at two points, where N = 0, which is due to the vibration damper effect, The dif-
ference between the response in vacuo and in water for —= QL > 1 as shown in Fig. 4 is
essentially that between an undamped and damped system, the response curve showing
peaks near the undamped natural frequencws Wk .

The pr1nc1pal point of interest in the response curve for the pressure, "p" F1g
5, is its sawtooth pattern, There is the expected resonance at the one real root Q,,

followed by a minor minimum: near e 1;

; then, near wz and w3, there are zero values

followed cl_osély by peaks of unit value. It is also of interest that the pressure decreases
with increasing frequencies only slowly, much slower than the response w’.

Figs. 6 and 7 show the radial response w and the pressure p, for the case n = 0.
The difference between the responses w in vacuo and in water is much more pronounced
as in the case n = 2, This is principally due to the fact that the only frequency 2, of the
submerged shell is very much lower than the fundamental frequency w of the shell in
vacuo. Aitention is drawn to the extreme narrowness of the peaks of the curves in Figs.
6 and 7 at the resonant frequency §2; . The response curve w near QTCI:‘- = 1 has been
omitted, because at this point the solution for an infinite medium becomes meaningless
(See the last paragraph but one of Section 2),

Stiffened Shells

It is worth noting that the theory developed is applicable, approximately, to ring
stiffened shells provided the length L of the half wave is several times the stiffener ’
spacing. In such a case modes of vibrations of the stiffened shell exist for which the ‘ 2
displacements are approximately sinusoidal, so that the modes may be expressed again ‘
" in the form of Eq. (1}. If the frequencies and t'he Qhapes of the modes in vacuo are
known* the previously derived formulae can be applied and furnish approximate results
for stiffened shells, Such a treatment should give good approximations at low frequen-
cies, while at high ones detail will be lost, \,‘b‘écause the vibrations of the shell between
stiffeners have been neglected. '

5. Effect of Static Pressure

The theory presented in Sections 1 and 2 neglected the effect of a static pressure
in the surrounding medium on the shell,

‘ The effect of the static pressure on the medium is indirectly allowed for by the
use of an appropriate value ¢ for the velocity of sound, but the "buckling effect" of the
static pressure on the shell does not appear in the previous derivations.

Consider the shell in vacuo on which an external pressure p, (smaller than the

#It is intended to treat engineering methods for the determination of these modes ina
future report.
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buckling one) is applied by an imaginary inertialesa device., The modes of free vibra-
tions and frequencies can be determined, furnishing a set of new modes having in
general lower frequencies than in the case p, = 0. To accé)unt for the effect of the
static pressure it is necessary to use these new modes and their frequencies in the
previous analysis, .

Provided Po is smaller (say at least 10% ) than buckling pressure of the shell in
the mode having the same half wave length L and circumferential wave number n, the
shape of the modes in vacuo for zefo pressure and for a pressure p, will not differ
substantially, One can conglude that this is the case, hy applying the reasoning used in
ref, 1 (pp 28, 29) to show that the shape of the modes in a thin shell will not be appre-
ciably affected by its bending stiffness. Itis therefore permxss1b1e to use the shapes of
the modes without static pressure (g1ven in ref, 1) as approxnnat1on of the new modes,
but new, corrected values wp for the frequencies must be used, The corrected frequen-
cies wp can be found from Raleigh's principle, If this is done it is found that even the
frequencies change only very slightly, except the fundamental ones for n 2 1. It is

“therefore sufficient to correct the fundamental frequencies for n > 1, and use the origi-

nal ones for n = 0, and for the higher frequencies if n > 1.
The additional term in the expression for the potential energy due to a radial
pressure p, is known from the theory of buckling (ref. 3, p. 130)

Po ([ o,
-;—U[wz - wol- ugl- 2awuy, Jdodz (55)

where the symbols are those of ref. 1 To be able to apply the theory for the infinitely
long shell to a shell of great, but finite length it is of interest to be able to include also
the effect of a longitudinal compression due to the presshre p. on the end surfaces. The
additional contribution to the potential energy is

P 2 | o
-~ ” -3 [w +vildedz ‘ (55a)

Applying Ralelgh's principle the corrected fuu,;iamental frequency is
Po o
Wp = Q ~ am B (56)
where, in the case of radial pressure only

2 2 aw 2 . .2
(1’1 '1)W| -2 .W,U,+n U|
L (57)

Ul vii+wt

while for combined radial and longitudinal pressures
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_(n -1 W, -z*{lw.umn U+ 3V +Za_‘%_w.

- (572)
ul+ v+ w’

The values of B have been determined for n = 1 to 4 incl, and are listed in Table 3 for

1< % < 10, It will be noted that some of the values B for n = | are negative, indicating

an increase of the frequency due to radial pressure only.

6. A Conclusion Concerning Transient Problems

The resulis of the analysis of forced vibrations may be utilized for the solution
of transient problems. In such cases the force can be expanded in multiple Fourier
series (or integrals), the individual terms of which will have the response found in Sec-
tion 2,

The fact that there is a fundamental difference in the response depending on
whether Qis larger or smaller than % , may be used to predict the character of the
response of transient problems, and especially the type of approximation permissible
for a particular problem.

In shock and impact problems an important part of the force will be in the range
of high frequencies. The response during and shortly after the application of the force
will be governed by the compressibility of the medium and radiation will be important.

If on the other hand th~ r_sponse is to be studied after a certain time has elapsed the

high frequency effects will have vanished and the elastic and inertial effects will be para-
mount.

Consider, for example, the case of the transverse bending stresses due to shock
or impact in a submerged shell or other structure.* In order for these stresses to
reach their maximum, a time comparable to the fundamental period of vibration must
have elapsed. In this time the compressible effects had time to decay, and the elastic
and intertial ones control. It is therefore possible to study the response with good ap-
proximation by an expansion into the modes of free vibration of the submerged structure,
It shculd, however, be remernbered that the results obtained in such a manner are not
valid for the pressure in the medium or other effects shortly after the impact.

A case where the compressible effects are paramount is the response of a cylin-
drical shell to a transverse s‘t'ep shock wave treated in ref. 2. The major effect occurs
in the two lowest modes within a time much too short for the compressible effects to
decay. In this case the response of the shell was expressed in terms of the modes of
the structure in vacuo, treating all the fluid pressures as external forces acting on the
shell. The use of the modes in vacuo, and not of the modes of the submerged shel], is

*The paper considered cylindrical shells, but it is evident that the general behavior of
all types of structures must be similar,
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required in cases involving infinite media where the compressibility remains important,

This is due to the fact that for a shell in an infinite medium for each value of n only a

- finite number of frequencies and modes exist, e\fén if complex frequencies are included.

(In the above mentioned exaniplé there is for n = 0 just one frequency which is complex.)

This finite number of modes is net sufficient to express the infinite number of states

(for each value of n) of which the system cdn‘sisting of shell and medium is capable,

The number of modes available is sufficient to express any state of displacement and

velocity of the shell at a given moment, but additional terms representing waves in the

. medium of appropriate pressure and velocity must be superimposed to express all pos-

“sible simultaneous states of the medium. The use of the modes of the submerged struc-
ture is in such a case of no advantage as the additional terms mentioned remain of
paramount importance, If in a shock problem sufficient time has elapsed for the effects
represented by these terms to decay the solution converges asymptotically towards the
modes. Because of the decay of the modes belonging to complex frequencies, only the
free vibrations of real frequency will remain, This is of course nothing else but the
already discussed case where compressibility is unimportant,

It can therefore be stated that,. if high frequency terms occur in the force, or

shock effects are wanted within a short time after the application of the force, a treat-

~ ment using solely modes of vibration of the submerged structure would be incomplete,

as additional terms occur in the solution,* As an alternative approach the modes of

free vibration of the structure may be used as generalized coordinates describing the
response of the structure fully, but leaving the medium to be treated by means of the

differential equations for the potential, or in any other way desired.
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. Table 1

‘Values of & if Q € {E

ap=all" - Qz

5= n=20 n=1 n-=2 n=3 n=4
. c

0 o 2.000 1. 000 0.667 0. 500
0.1 4.928 1.9852 0.997 0.666 0. 4998
0.2 3. 670 1.883 0.992 0.664 0. 499
0.4 2. 551 1.661 0.965 0.658 0. 497
0.6 1.989 1.473 0 029 D. 648 0.493
0.8 1. 640 1.312 0. 888 0.635 0.487

1.0 1. 399 1.177 0. 844 0.619 0. 481
1.5 1.028 0.928 0.737 0.575 = 0.460
2.0 0.814 0. 761 0. 645 0.528 0.436
i 8.0 0.577 0.556 0.505 0.443 0. 385
4.0 0. 447 0.437 0. 411 0.375 0.338
5.0 0. 365 0.360 0.344 0.322 6.298;

6.0 0.309 0.305 0.296 0. 281 0.264

7.0 0.267 0.265 0.259 0.249 0. 237

v 8.0 0.2386 0. 234 0. 230 0.223 0.214
9.0 -0.211 0.210 0.2086 0.201 0.195
10.0 0.191 0.190 0.187 0.184 0.179

Assymptotic solution for all values of n

A=

“zpa sl
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Values of B in Eq. (56)

Table 3

Radial Pressure Only Combined Radial and Longitudinal Pressure
L B
a

n=1 n=2 In=3 n=4 n=1 n=2 n= 3 n=4

1.00 0.282 " | 2.604 | 7.108 | 13.86 4,963 7.171 11,718 18.55
1,25 0.111 2,362 | 6.956 | 13.81 2,949 5,186 9.869 16.80
1,50 | -0.0427 | 2.222 | 6.806 | 13.82 1.810 4.142 8.923 15.90
1.75 [ -0.0457 | 2.152 | 6.903 | 13.85 1.252 3.555 8.391 15,39
2.00 | -0.212 2.126 | 6.922 | 13.89 0.763 3.207 8.071 15.07
2.25 | -0.240 2.123 | 6.947 | 13.92 0.539 2.991 7.865 14.86
2.50 | -0.248 2.132 | 6.973 | 13.95 0.405 2,851 7.726 14,72
2.75 | -0.245 2.147 | 6.997 | 13,97 0.323 2.758 7.629 14.61
3.00 |[-0.236 2.165 | 7.0i8 | 13.99 0.273 2.693 7.559 14,53
3.50 | -0.211 2.200 | 7.0566 | 14.02 0.222 2.616 7.466 14,43
4,00 | -0.185 2,231 | 7.083 | 14.04 0.202 2.574 7.410 14.36
5.00 |[-0.140 2.278 7.120 14.07 0.195 2,534 7.348 14. 28
6.00 |[-0.107 2,310 | 7.143 | 14.08 0.201 2.518 7.318 14,24
7.00 |-0.0842 | 2.330 | 7.157 | 14.09 0.209 2.511 7.298 14,21
8.00 |-0.0672 | 2.345 | 7.166 | 14.10 0.215 2,507 7.286 14,20
9.00 |-0.0547 | 2.356 | 7.173 | 14.10 0.221 2.505 7.278 14,19
10.00 | -0,0452 | 2.364 7.178 14,10 0.225 2.503 7.273 14,18
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