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List of Symbols

Q, z, r Cylindrical coordinates, Fig. 1

u, v, w Longitudinal, tangential and radial displacementii of the cylindrical
shell. Fig. 1. Note that a positive displacement w is inward.

Uk, Vk , Wk Coefficients defining the shape of modes in vacuo, Eq. (1)

0,,k ývkh OW u, v, and w components of displacement pertaining to the generalized
coordinate qk, Eqs. (2) and (3).

k = 1, 2, 3 Subscript

a Radius of cylinder

Ck Coefficient

c Velocity of sound in medium

dA Element of surface area of shell

F(r) r-dependent function in expression for potential

L Length of longitudinal half-wave of mode of vibration

Mk Generalized mass (coordinate qk)

m Mass of shell per unit area

mv Virtual mass of entrained medium

N, Nuw, Nvw Coefficients, see Eqs. (40), (46)

n Number of circumferential waves of mode of vibration
z -iflt

P = P(t, 9, z) cos n 9 sin Tr- e External radial force (positive if outward)

p Pressure in medium

pa Radial pressure of medium on cylinder

PC Static pressure in medium

Qk Generalized force (coordinate qk)

qk GGeneralized coordinate

R Large value of the radius r

S(t) Time dependent function in expression for potential

t Time

wst w due to static force

Wk
ak = Uk2 + k2 . Wk Coefficient

-iii-



r

see Eqs. (19), (37)

A Coefficient, see Eqs. (26), (30), (38) and Tables 1 and 2.

p Mass density of medium

I S(t)F(r) cos n 9 sin "L- Potential function

Frequency of free or forced vibration of shell surrounded by medium

Frequency of cylinder in vacuo

1iv..



Summary

A method is presented permitting the determinmtion of the frequencies of vibra-

tions of infinitcly long thin cylindrical shells in an acoustic medium. (Sections I and 3)

Expressions are also obtained for the displacements of the shell and for the pres-
sures p in the medium in the case of forced vibrations due to sinus'oidally distributed

radial forces. The results indicate that there is a low frequency range where no radi-

ation takes place, and a high frequency rangre where the external force provides energy

which is radiated. Resonance occurs in the low frequencies range only, in the high

range it is peevented by the damping due to radiation.

Free and forced vibrations of steel shells submerged in water are discussed in

detail (Sections 3 and 4). With limitations, the theory may be applied approximately to

stiffened shnlls.

The method requires only a minor modification to account for the effect of static

pressure in the surrounding medium (Section 5).

The results are also used to draw a general conclusion concerning the treatment

of transient problems, (Section 6), particularly of the problem of shock loads.
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1. Free Vibrations

The free and forced vibrations of a submerged infinitely long, thin cylindrical

shell are studied in this paper by considering the shell without the fluid as a separate
structure responding to the applied forces combined with the dynamic forces exerted by
the surrounding infinite acoustic medium. Using the modes of free vibration of the shell
in vacuo as generalized coordinates, its response can be expressed in terms of the in-

finite number of these modes.

The frequencies and modes of vibrations of infinitely long thin cylindrical shells
required for the purpose were determined in ref. 1. The individual modes can be clas-
sified by the length L of the longitudinal half-wave of the displacements and by the inte-
gral number n of circumferential waves. For each length L and number n there exist
three frequencies Wk(k = 1, 2, 3). The displacements of the modes corr'_sponding to all
three frequencies are sinusoidal, but the ratios of longitudinal, circumferential and
radial displacements, u, v and w differ. Excluding the case n = 0, the displacements
corresponding to the frequency w may be written:

1rz

U = Uk cos n 9 cOS -r

V= Vk sin n 0 sinT (1)

TTZ

W = Wk cos n O sin-"z

The modes defined in Eqs. (1) contain an arbitrary factor, only the ratios 1k /Uk and
Wk/Uk can be determined and are contained in ref. 1. It might also be mentioned that
Eqs. (1) can be generalized by adding phase angles, which is equivalent to changing the
origin of the coordinates 0 and z.

The mo-St general response of a cylindrical, Shel W-ill eL a combination of the
modes for all values of L and n, However, in order to find for a submerged shell the
frequencies and modes of free vibration of selected values L and n, one need consider
only the three modes of shape (1) having the same parameters L and n. This simplifi-
cation is due to the fact that the wave equation (8) for the surrounding medium has a
solution containing the factor cos n 9 sin 7-, , and the pressure belonging to such a so-
lution does not excite modes of different values L or n.

Selecting the coefficients Wk in Eqs. (1) as generalized coordinates WK = qK, and
using the abbreviations

Uk
4•,,• W~.cos ngOcos "-

Vk irz
= C sinn 0 sin -- (2)

•w = cos n 0sin "-



the displacements u, v and w can be expressed as functions of the three generalized co-

ordinates qj, q2 , q3

u = q, Ou., + q2g U,2 + q 3 cui (3a)

v = q, 4OvI + q2 ý,, 2  + q ,., (3b)

w = (q, + q 2 + q5 )jt (3c)

The symboi 4) in Eqs. (2) and (3) does not have a second subscript, as there is no dif-

ference in the w - displacements of the three coordinates qk.

Due to the inherent orthogonality between the displacements represented by the

generalized coordinates, the equations of motion contain each only one of the coordinates

qk,

2
Mkqk + Mkwkqk = Qk (k = 1, 2, 3) (4)

where the generalized mass Mk is

2C 2 2
Mk = m(f I +A M + + p,)dA (5)

In the case of free vibrations the generalized force Qk is due solely to the radial pres-

sure p, of the medium on the cylinder at r = a:

Qk = fJA padA (6)

Hence, Eq. (4) becomes

2 f fA pL (wdA

4k + Wk Iqk (7) ~d
I4 SA k . )dA

The integrals in Eq. (5) to (7) are to be taken over the surface of a section of the cylin-

drical shell of length L.

The shell is assumed to be subm•r-gvd a -..a 9coustic medium, the velocity poten-

tial I for which is governed by the equation

1 2 4 (8)c 2 t 2

A solution of this equation suitable for the preser, t pi-oblem is

I' S(t)F(r) cos n 0 .in -L S(t)flr) (9)

where S(t) and F(r) are functions at ouc disposal. At the surface of the shell (r = a), the

radial velocity of the shell must equal that oi the medium:



-@ J ~ (10)

Iiubstituting Eqs. (3c) and (9) one obtains

(4 1 +q2 + 3 ),Ow -S(t)F= (a)

or

+ (e 2 + )SO(F, (a+q)

(Note: F' (a) (1)

The radial pressure exerted on the shell by 'the surrounding medium is the pres-

sure at r = a:

P "- P r - - pS(t)F(a)O. (12)

or substituting Eq. (11),

-F (a)4. (q1 + ý2 + q3) (13)

Eqs. (6) and (7) become

Qk= pF (c 1 + 42 + 3) f f dA (14)

and

2 P(Lk F
4k + wkqk E R (q,+ +2+ q3) (15)

where

2 ,dA _____

ak = = (16)

J(4A,k + t, w dk + +:,A

The last equation is obtained by substituting Eq. (2). Numerical values of ak for various

-;Wudes are given in the tables of ref. 1.

The function F(r) is obtained from Eq. (8), which reads in full

Z+ + 1 a T1 , 1 82, (8a)
ar r ar rW @ 8z C 8t

Assuming periodic solutions for the generalized coordinates qk

qk = Cke (17)

d-



Eqs. (9) and 11) give

it= -i W(Ci +C, +C)eiflt (18)

Introducing the symbol

C2 -2

L2~ (19)
L c

Eqs. (8a) and (18) lead to the differential equation

F"(r) + - -I + (r) 0 (20)
r

As boundary conditions we require that the velocity of the medium at r = t vanishes in

such a manner that the kinetic energy in the medium remains finite,

rI F(r)J,.• - 0 (21)

A solution of Eq. (20) is

F(r)= (ipr) (22)

which satisfies Eq. (Zl) provided the real part of p is positive.

Computing

F'(r) = (iPr) + Hn_1'0 (iorFIr (23)

and

F~ (a)a)
n - i Ha n ( i-) -(-

H, (i~a)

Eq. (15) becomes:
2 a

4k +-k4 qk = -m ak (OI + q2 + 43) (25)

where

a (Pa) (26)
H~ (ipa)

, ~n - ip)a "-
H H' (ipa)

Substituting Eqs. (17) into (25) three homogeneous equations in the coefficients Ck are

obtained

(W-k 2 )C k •-ak •A(CI+C2 +C3)= 0 (k= 1,Z. 3) (27)

-4-



Non-vanishing solutions of these equations exist only if their determinant vanishes,

which after evaluation leads to the frequency equation

_ I_2 Q3 2M (28)
Q2 2 2 _ 2 212 2( I - ~ • 2 2 . ,,: - 2 p a • 2 A

valid for n t 0.

For the previously excluded case, n = 0, the cylindricL0 shell in vacuo has again

three modes for each value L and n, One of these modes is, however, a purely tor-

sional motion with displacement components u = w = 0. This mode is not excited by

the radial forces from the surrounding medium, and only the two non-torsional modes

need be considered. Instead of Eq. (25) one obtains for n 0:

qk + Wkqk a(29)

... here

iHl (ipa)
a Z H1) (30)

Pa H, (ipa)

The frequency equation for n - 0 is:

__ ,_ _____ Zm

2 2 (31)
nA - 2 - Q panlA

The solution of the frequency equations (28) and (31) is further discussed in Section

3.

2. Forced Vibrations due to Radial Forces

Any arbitrarily distributed radial force P(t, 9. z) can be expanded in a Fourier

integral (or series) of terms

inz inft
P(t, 0, z) e cos n 0 sin=e l(3

The following treatment will be restricted to the consideration of such individual terms,

i.e. to force components P(t, 0, z) defined by Eq. (3Z). These forces P are counted

positive if acting outwards. Non-radial forces can be treated in a similar manner but

will not be considered.

Eqs. (4) and (5) of Section 1 apply again, but Eq. (6) for the generalized force Qk

must be replaced by

Wk = pc wdA- e , wdA (33)

-5-



7
Proceeding essentially in the same manner as in Section 1, using Eqs. (8) to (13)

inc., and Eq. (16) to (Z4) incl., the equations of motion for n t 0 become

4k + kqk - + -m (k = 1,2,3) (34)
-Mn

There is just one detail in the derivation of this equation which requires elucida-

tion. The solution (22)

F(r) = HM (1) (ipr)

does no)t satisfy the boundary condition (21) for frequencies fl > • because the argument

= a V/L 2

becomes purely imaginary. The boundary condition (21) is in this case replaced by the

requirement that the potential function Eq. (18)

i (C+I +Ca+C 3 )eie F(r)¢0 (35)

represents an outgoing wave for large values of r. This condition is satisfied for

F(r) = Hn (pr) (36)

where

and the positive sign of the square root applies. This leads to the value

2F(a) 2_ (38)'•~ F ~~):- 'F(a) H_21()
n - apa)

H• (na)

valid for Q >, -T-, while for Q,< "T" Eq. (26) remains in force.

Substitution of Eq. (17)

. qK = Ck e n

in the equations of motion (34), leads to three non-homogeneous linear equations for

the coefficient Ck. Their solution is

ak

Wk

= - (39)N,&l -I

where

-6-



2 2 2

N 2 2+ 2 2 2 2 (40)

Substituting the values Ck from Eq. (39) into the expression (18) for the potential

functionf and noting Eqs. (26), (32) and (38) leads to
i SaA Fr) 1 7P(t, 0, z) (1

F (a)r (41)
2-m-- [yaa 2 2z

where the function F(r) is given by Eqs. (22) and (36), respectively,

Hn W (iar) if Q < I4a

v~n (42a)
F(r) n: r"- if Q = 1T- and n 0(4b

H} (1) i0'(4Zb)
(2) rc

a, p and rare defined by Eqs. (19), (26), (37) and (38).

The pressure in the medium, p - p U-, becomes

P P(t, (), z) (3

The pressure p, on the surface of the cylinder is

P= -P(-,z) (43a)

1 - pa-YA

The knowledge of the coefficients Ck permits also the determination of the dis-

placements of the cylinder. Of particular interest are the radial displacements w

obtained from Eq. (3c)
: w = ~1 .Pt,9, z) (4

= Fn ipA (44)

If one goes to the limit 0 - 0 this equation gives an expression for the deflection

wst under static loading P(9, Z) =4w

W' = lim w = - 2a + -2  (44a)
Q 0 Wz 2jW3

while a similar process for the pressure leads to the obvious result lim p 0.

The expressions for the longitudinal and tangential displacements u and v due to

the radial force P(t, 0, z) are somewhat more complicated

-. 7-



Nuw cos n 9 cos Te
U mNf22  aU z - - • rN

•z Int (5
NvW sin n G sin rue

paA
2 m

mNQ - r" e

where

Uk
3 ak Wk-•Q

N =w = i7 2 _2
k = 1 ¢Wk - S

(46)

Vk2

NVW= 2 W.2

k = 1 ) .2

The above Eqs. (40) to (46) were derived for the case n f 0, but with exception of

Eq. (42b), they remain valid for n = 0 if theterms referring to the non-existing frequency

W3 are omitted when computing N, N,,, and N,, from Eqs. (40) to (46).

The degenerate solutions (42b) for n = 0 and for n = 1 do not satisfy Eq. (21) and

the total kinetic energy in the medium is in these cases not finite. This indicates that

steady state vibrations for n = 0 or 1 in an actually infinite medium are not possible if

l = Tr- . If one considers the infinite boundary of the medium as an approximation of a

far boundary, r = R, the solution (42b) for n = I may be considered an approximation of

physical meaning because the energy is then finite and the velocities at the boundary

are small, as /iR. A similar reasoning does not apply for n = 0, because the longitudinal

velocity r2 is not small for large values of r; the physical impossibility of this solu-

tion expresses itself in the fact that A = o. To obtain a physical meaningful solution for

n = 0 it is necessary to consider the actual conditions at the distant boundary.

To facilitate numerical computations, Tables I and 2 list the values of A occuring

in Eqs. (41) to (46)for n = 0 to 4 incl. 0ý

3. Discussion of the Frequency Equation

The discussion can be restricted to the frequency equation

':(Values of A for n < 20 can be obtained from ref. 4, hut only if 0 >1 L - . The acoustic

reactance aW resistarncc ratios X, and OQ shown in Fig. I and 2 of ref. 4 can be used
to compute X -(a .

L-8--
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As a rule one, and for many configurations two values ak are quite small, indicating
that the radial displacements of such modes are small. In such gases the coupllnk, 'of
the motion of the shell and the surrounding medium is slight, and the frequencies ib ýýf

such modes will be very close to the frequencies w in vacuo.
To simplify the numerical determination of the roots of the frequency equatl.on

Table 1, giving values of a for real arguments ap, has been provided. After a frequency
Q has been obtained the shape of the mode can be determined by computing the coefficient

Ck from Eqs. (2?).

Effect of Compressibility

It is of n_ ,-, cUe ixaere,gt to consider the effect of the compressibility inporder

to •eterriine when it might be nelected. The compressibility appears in the deri'a tion

of Eq. (8) where the velocity of •,,ind c occurs, and the solution for an incompresq1b e

fluid may be obtained by using c ". This does not change the frequency equatiolq (28),

but the argument ap used in determnining the term a in this equation is in this casp

ap a• (49)

instead of the value given in Eq. (4C) which depended on the frequency ,. Compary,1g

Eqs. (47) and (49), it is apparent týh4t the compressibility may be neglected only if

cc

the nuniber o' frequenicies •k. ,, i•L obvjoust that ioots higher than -r- found for th'i in-

compressible case are unreal,

Complex Roots of FrequencgEquation

The fact that the number of reati roots 0 of the frequency equation may be e r

than the number of frequencies Wk in vacuo raises the question of the existence of

plex roots in lieu of the missing real roots, and of the physical meaning of con.vr•A.

roots if any. In order to have physic J meaning the solution corresponding to :: ;or,,2x

root S1 must represent an outgoing wa. e, and :r',tst also decay with time.

In order to recognize the wave ,th•.tracter nA the solution it is convenient to ne "nTrc
potential function in the form (36) enipyb)yed in Section 2 for fi> >"

Ce H(, ()

To avoid incoming waves the real p ) if 5 mu.t not be negative. Based on this exlpres-

sion one obtains a "wave frequency ecaaLdon' t , which is identical with Eqs. (28) or "31),

except that the value a is a function .ff aF and must be computed from Eq. (38) instead

of Eq. (26). It is to be nofed that the rorgLamen', aT in Eq. (38) will now be complex. A

study of the potential function (50) indicates that for complex roots Q. for which the time

dependent term e is damped, the . H,,' (:r) becomes 0o at r o. Suovi roots and



the vorr..sponding solutions appear at first to have no physical significance. It should
be pointe:.A out however, that these complex roots and the corresponding solutions occur

and have aiignificance as asymptotic solutions in transient problems. In such cases the

validity of the asymptotic solution is limited to finite values of r and the fact that

H,(2)( r) does become infinite at r - oo is immaterial. For example, a heavy shell in a

light rried:um, like air, is capable of slightly damped vibrations. The frequency equa-

tion in su1,.h a case has complex roots Q the real parts of which are close to the frequen-

cies wý, iz- vacuo, while the imaginary parts are quite small. Expression (50) is then

the aptrovrimation of a possible motion, valid in the range t > T and r < R, where T

must be selected so large that the transient effects of the initiation of the motion have

passed ou.side the cylinder having the arbitrarily selected radius R.

Th'Ž numer' -a! value -if complex frequencies Q can easily be determined approxi-

mately :f, either the imaginary part of S1 is small, or if I aŽ is large. If the imaginary

part of Q s sma", the value of A (ag) computed for the adjoining real part of 9, found in

Table 2, -may beiused. This procedure would be applicable for the above mentioned case

of a heavy shell In a light medium, if the absolute value of the frequency I01 is large

such that the ar. ament I aýI >> 1, the term A (aý) may be determined by using asymptotic

expressic ks for the Hankel Functions,

, .,'•) 1 + iaB (51)

F reqgentt'- it i..' permissible to neglect even the real part of the denominator in this
S~~equation,, _;Avint!

- i (52)

These aP'. 'oxi-' .,.- ; t : ;ll values of n, but give better results for small values

of n. A 1:, - • f o"'.oximation can be obtained by comparing the re-

,,ur~s of - , , . :',, v A'lt f o real arguments aý in Table 2.

Vrw . . ossO e t'. .o simýAify the frequency equation by neglecting the two

h..gher thi .... .. an apnrr..ximate equation for the lowest frequency. This

equaf ion ce i n t 4r'e .. ý . .d in - .. le manner using the concept of the " virtual

masslt of ):" b'* a

':.Th, *-.'JI ." V values of C4 an.Wk • occuring in Eq. (6b, are 1---r in ref. 1. These
""i. "thin ther ranve 1 - 10 the first term of Eq. (28), al -l •), •s

V a L

"""''er two if fn < wi; for L values near 1 this is so becauseviý'ry rouci -, a' * "'• ;•"_,. . . .2 2

P, SV' i' . = .dues Ibecause w2 and I3 are very much larger than

-Negl.t. t.* ',,-,,.. .. d at leads after rearrangement to

al pa
(1"+ -~-a)c 1 -- (53)

-11,

W.
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IFi

This indicates that the lowest frequency 1' of the submerged shell is equal to the fre-

quency of a shell in vacuo whose mass has been increased by the "virtual mass" my of
a portion of the medium vibrating with it

mV= ( (54)

A is a function of the frequency given by Eqs. (19) and (26), but if w, << the effect of

the frd;quency is negligible and Eq. (49) for the incompressible case may be used instead

of Eq. (19). mv may be computed quickly by the use of Table 1.
The sanie approach can be used also for n = 0, but gives good results only if L < 2.

For longer shells the second term in Eq. (31) remains large and can not be neglected,

thus making the simple virtual mass concept inapplicable.

Steel Shells Submerged in Water

When applying the frequency equations to thin steel shells (say > 30) submergedL

in an infinite body of water it is found that for ratios 1£ L 4 l0 and n > I one and only

one frequency in vacuo is lower than , while for n = 0 all frequencies wo are above

this limit.* It follows that for n = 0 one and only one real root 0 exists; for n > 0 there

is at least one root and according to the previous discussion the possibility of a second

one. A second root S1 can only occur, see E' in Fig. 3, if the second frequency W2 is

close to . Ref. 1 shows that in the range 1 L 10 the second frequency W2 is much

larger than the limit 1, and there will therefore be just one real frequency for each

value of n.** This frequency can be determined from the simplified Eq. (53), except ifL
n =0 and-L > 2.

Similar conditions prevail for ratios L/a > 10, except for n > 2, where for

extremely large ratios, due to the effect of the bending stiffness of the shell all the
frequencies in vacuo may lie above -, resulting in no real roots. in the limiting

case L = only complex roots occur for any value of n. This case has been discussed

independently in ref. 2.

If L < 1 the above result is expected to remain valid, unless the length of the half
a

wave is so short, comparable to the thikkness t, that all frequencies in vacuo lie above
'ITC

Complex roots of the frequency equation representing waves exist and can be

determined approximately by using the asymptotic values for A(a•), Eq. (52). However

the solutions corresponding to the compiex roots lack physical meaning, except as

asymptotic solutions of transient problems dincussed in the previous section. In the

*The frequencies in vacuo for I,< L .< 10 can be obtained from ref. 1.
**This count excludes the frequency of the purely torsional made of the shell for n = 0.

This mode was excluded when deriving Eq. (31) as it is not coupled with the surround-
ing medium.
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case of a steel shell in water where 1 4 10, the asymptotic solution is a combination

of the free vibration, corresponding to the real frequency n, and of damped wave mo-

tions corresponding to the complex roots 0 . If the motion is such that the undamped

motion is at all excited, the asymptotic solution converges rapidly toward the undamped

vibration of real frequency n1 and the damped motions due to complex frequencies will

give only unimportant contributions.

4. Discussion of Results for Forced Vibrations

Response of Shell and Medium

The most significanlt feature of the results of Section 2, is the fact that the re-

sponse is entirely different for frequencies 0 of the applied force above and below the

limit 0 = - . Different expressions, see Eqs. (42 a - c), apply in the two ranges, re-

sulting in different physical behavior.

If 0 "r' the ratios Hfl(') (ipr)/I. ) (ipa), and as a consequence the Values of the

coefficient A(ap), are real. Eqs. (43) to (45) indicate that in this case the pressure p

and the displacements are in phase with the applied force P. There is no input of

energy by the applied force and no radiation. It is of interest that the pressure p de-
creases very rapidly with increasing radius because Hn(I) (iPr) decreases like

e-• /F. As expected the expressions for the pressure and displacements contain a

denominator which vanishes if 9 becomes equal to one of the roots of the frequency

equation for free vibrations, indicating resonance
If the frequency S1 is sufficiently smaller than r the effect of the compressibility

becomes unimportant and the approximate Eq. (49) for ap may be used. For low fre-

quencies, Sl.< • w one can neglect the modes q2 and q3 . The resulting equation can be

interpreted by means of the virtual mass defined by Eq. (54), indicating that the response

is identical with that of a shell of increased mass (m + mv) in vacuo.
Trc (2) 12)If sl > c conditions are quite different. The ratio Hn (fr)/Hii (Fa) is complex

and the coefficient &(aI) also is complex. As a result, the pressure p and the displace-

ments are not in phase with the applied force, the phase angle being suCn that the ap-

plied force supplies energy which is radiated. There are no real roots of the frequency•c
equation above - and resonance does not occur in this range.

The rarnge 0 > -L- can be further subdivided in two distinct ranges if n /0. Table

2 indicates that for small values of aF the imaginary part of A is very much smaller than

the real one, while for large values of aý the opposite is, true. The dividing line is quite

sharp, but depends on the value of n. For n >. 2 it lies above aj r/2. This indicates

that, particularly if n > 2, there is an extensive range of frequencies 0 > "- where ra-

diation and damping are quite small. The decay of the pressure p as function of r is

also different in the two ranges. If the radiation is large the pressure decays very

slowly, approximately as I/ Y1. If the radiation is small, the pressure decays much

-13-
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faster, nearly as fast as in the non-radiating case (although for very large values of r

the decay becomes again I/ )r).
Considering the response as function of the forcing frequency n, a number of

significant frequencies, in addition to frequencies of free vibrations, can be found by

considering the denominators of Eqs. (43) to (45). If the frequency 0 is equal to one of

the frequencies W1k in vacuo, N ,- o. and Eq. (44) gives p0 = P(t, 0, z); the pressure in

the medium is in this case equal to the applied pressure, as if the shell were non-

existent. This is physically understandable, because at such a frequency the shell

vibrates without requiring any outside force, and the entire applied force is transmitted

to the medium.

Other significant values of the frequency Q are those for which the term N vanishes.

Consideration of Eqs. (40) and (46) rhows that this occurs, in addition to the trivial

value Q = 0, once between successive values of the frequencies Wk in vacuo. If N = 0,

both p and w vanish everywhere, indicating that there is no response at all of the fluid

at such frequencies. This rather startling result is due to the fact that for these fre-

quencies the three modes (or two modes if n = 0) interact in the manner of a vibration

damper. If the longitudinal and radial displacements u and v are determined it is seen

that they do not vanish, only w and p are zero. The frequencies at which this phenome-

non occurs are necessarily the same as for the shell in vacuo.

At the end of Section 2 it has been pointed out that, and for what reason, the solu-TC
tion for n = 0 loses its meaning for 9 "- The formulas for the response for frequen-tTc
cies very close to S . "- must also be used with caution, because they might be affected

by the conditions at the distant boundaries of the medium.

Steel Shells in Water
L

Considering cases in the range 14 L .< 10, there is for n >I one frequency in

vacuo, w, , below r, while the other two, w2 , w3 , are much higher. The frequency

equation of the submerged shell has one real root, 0 1 < w , and two complex ones near

W2 and W3.

Figs. 4 and 5 show the amplitudes of the radial response w and the maximum

pressure p, at the surface of the shell in non-dimensional manner for a typical case,

n= 2, L = 4. -Ea- a 4. (The ratio La- = 4 indicates that the mass of the water displaceda m (h M.p
by the shell is 2.0 times the mass of the shell) Fig. 4 shows in solid lines the ratio*

jw/wst/wttc of the amplitude of the displacement w to the static deflection of the shell

as function of the ratio-M . Attention is drawn to the fact that the right half of the

diagram is enlarged and shows 1001w/AvAtatict . The same figure showsfor comparison

in dashed lines the response of the shell in vacuo. Fig. 5 shows the ratio of the peak

values of the surface pressure p, to the peak value P of the applied pressure P(t, 9, z).

*Often called amplification.

-14-
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The diagrams show clearly the previously mentioned fact that w and p become

zero at two points, where N = 0. which is due to the vibration damper effect. The dif-

ference between the response in vacuo and in water fcr ".5L 1 as shown in Fig. 4 isIrc
essentially that between an undamped and damped system, the response curve showing

peaks near the undamped natural frequencies wý .

The principal point of interest in the response curve for the pressure, -p Fig.

5, is its sawtooth pattern. There is the expected resonance at the one real root S1,O!L
followed by a minor minimum' near L- I-; then, near w2 and 3, there are zero values

followed closely by peaks of unit value. It is also of interest that the pressure decreases

with increasing frequencies only slowly, much slower than the response w,

Figs. 6 and 7 show the radial response w and the pressure p, for the case n = 0.

The difference between the responses w in vacuo and in water is much more pronounced

as in the case n = 2. This is principally due to the fact that the only frequency 0 1 of the

submerged shell is very much lower than the fundamental frequency wi of the shell in

vacuo. Attention is drawn to the extreme narrowness of the peaks of the curves in Figs.

6 and 7 at the resonant frequency S 1 .The response curve w near .L = 1 has beenI wec

omitted, because at this point the solution for, an infinite medium becomes meaningless

(See the last paragraph but one of Section 2).

Stiffened Shells

It is worth noting that the theory developed is applicable, approximately, to ring

stiffened shells provided the length L of the half wave is several times the stiffener

spacing. In such a case modes of vibrations of the stiffened shell exist for which the

displacements are approximately sinusoidal, so that the modes may be expressed again

in the form of Eq. (1). If the frequencies and the shapes of the modes in vacuo are

known* the previously derived formulae can be applied and furnish approximate results

for stiffened shells. Such a treatment should give good approximations at low frequen-

cies, while at high ones detail will be lost,, because the vibrations of the shell between

stiffeners have been neglected.

5. Effect of Static Pressure

The theory presented in Sections 1 and 2 neglected the effect of a static pressure

in the surrounding medium on the shell.

The effect of the static pressure on the medium is indirectly allowed for by the

use of an appropriate value c for the velocity of sound, but the "buckling effect" of the

static pressure on the shell does not appear in the previous derivations.

Consider the shell in vacuo on which an external pressure p0 (smaller than the

*It is intended to treat engineering methods for the determination of these modes in a
future report.
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buckling one) is applied by an imaginary inertialess device. The modes of free vibra-

tions and frequencies can be determined, furnishing a set of new modes having in

general lower frequencies than in the case p, = 0. To acc6unt for the effect of the

static pressure it is necessary to use these new modes and their frequencies in the

previous analysis.

Provided p. is smaller (say at least 10%) than buckling pressure of the shell in

the mode having the same half wave length L and circumferential wave number n, the

shape of the modes in vacuo for zeio pressure and for a pressure p, will not differ

substantially. One can conclude that this is the, case, by applying the reasoning used in

ref. 1 (pp. 28, 29) to show that the shape of the modes in a thin shell will not be appre-

ciably affected by its bending stiffness. ýý It is therefore permissible to use the shapes of

the modes without static pressure (given in ref. 1) as approximation of the new modes,
but new, corrected values wp for the frequencies must be used. The corrected frequen-

cies cp can be found from Raleigh's principle. If this is done it is found that even the

frequencies change only very slightly, except the fundamental ones for n >, 1. It is

therefore sufficient to correct the fundamental frequencies for n >, 1, and use the origi-

nal ones for n = 0, and for the higher frequencies if n ; 1.

The additional term in the expression for the potential energy due to a radial

pressure p, is known from the theory of buckling (ref. 3, p. 130)

- we- i- Zawuddz (55)

where the symbols are those of ref. I. To be able to apply the theory for the infinitely

long shell to a shell of great, but finite length it is of interest to be able to include also

the effect of a longitudinal compression due to the pressure P. on the end surfaces. The

additional contribution to the potential energy is

-2- 2a C[W, + 2,
. 2[w iv. ]d~dz (55a)

Applying Raleigh's principle the corrected fundiamental frequency is
• 2 POP,

wam B (56)

where, in the case of radial pressure only

2 2 aw 2 2U1  Vi+WB=(nz _ 1) W1 _ Z -F-WUp +n Up 57

U U2+ V 1 2+ WI 2

while for combined radial and longitudinal pressures
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2 1)W 2 air WU 2U2+1 Id 1 ar 2
2(n -l)W, WU, +n U v1 a 12SB = L ( 5 .7a )

2 2 2
U1 2 + V1 + W1

The values of B have been determined for n = I to 4 incl. and are listed in Table 3 for

I L •< 10. It will be noted that some of the values B for n = 1 are negative, indicating

an increase of the frequency due to radial pressure only.

6. A Conclusion Concerning Transient Problems

The results of the analysis of forced vibrations may be utilized fur the solution

of transient problems. In such cases the force can be expanded in multiple Fourier

series (or integrals), the individual terms of which will have the response found in Sec-

tion 2.

The fact that there is a fundamental difference in the response depending on
lcwhether is larger or smaller than I, may be used to predict the character of the

response of transient problems, and especially the type of approximation permissible

for a particular problem.

In shock and impact problems an important part of the force will be in the range

of high frequencies. The response during and shortly after the application of the force

will be governed by the compressibility of the medium and radiation will be important.

If on the other hand th- 7-.sponse is to be studied after a certain time has elapsed the

high frequency effects will have vanished and the elastic and inertial effects will be para-

mount.

Consider, for example, the case of the transverse bending stresses due to shock

or impact in a submerged shell or other structure.* In order for these stresses to
reach their maximum, a time comparable to the fundamental period of vibration must
have elapsed. In this time the compressible effects had time to decay, and the elastic

and intertial ones control. It is therefore possible to study the response with good ap-

proximation by an expansion into the modes of free vibration of the submerged structure.

It should, however, be remembered that the results obtained in such a manner are not

valid for the pressure in the medium or other effects shortly after the impact.

A case where the compressible effects are paramount is the response of a cylin-
drical shell to a transverse step shock wave treated in ref. 2. The major effect occurs

in the two lowest modes within a time much too short for the compressible effects to

decay. In this case the response of the shell was expressed in terms of the modes of

the structure in vacuo, treating all the fluid pressures as external forces acting on the

shell. The use of the modes in vacuo, and not of the modes of the submerged shell, is

*The paper considered cylindrical shells, but it is evident that the general behavior of
all types of structures must be similar.
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required in cases involving infinite media where the compressibility remains important.

This is due to the fact that for a shell in an infinite medium for each value of n only a

finite number of frequencies and modes exist, even if complex frequencies are included.

(In the above mentioned example there is for n = 0 just one frequency which is complex.)

This finite number of modes is not sufficient to express the infinite number of states

(for each value of n) of which the system consisting of shell and medium is capable.

The number of modes available is sufficient to express any state of displacement and

velocity of the shell at a given moment, but additional terms representing waves in the

medium of appropriate pressure and velocity must be superimposed to express all pos-

sible simultaneous states of the medium. The use of the modes of the submerged struc-

ture is in such a case of no advantage as the additional terms mentioned remain of

paramount importance. If in a shock problem sufficient time has elapsed for the effects

represented by these terms to decay the solution converges asymptotically towards the

modes. Because of the decay of the modes belonging to complex frequencies, only the

free vibrations of real frequency will remain. This is of course nothing else but the

already discussed case where compressibility is unimportant.

It can therefore be stated that, if high frequency terms occur in the force, or

shock effects are wanted within a short time after the application of the force, a treat-

ment using solely modes of vibration of the submerged structure would be incomplete,

as additional terms occur in the solution.* As an alternative approach the modes of

free vibration of the structure may be used as generalized coordinates describing the

response of the structure fully, but leaving the medium to be treated by means of the

differential equations for the potential, or in any other way desired.
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Table 1

Values of A if n 4C --

ap a•ia - i n=0 n l n: 2 n 3 n=4

0 0 2.000 1.000 0.667 0.500
0. 1 4.928 1.952 0.997 0.666 0.4998
0.2 3.670 1.863 0.99e 0.664 0.499
0. 4 2. 551 1. 661 0.965 0. 658 0.497
0.6 1.989 1.473 0 929 0.648 0.493

0.8 1. 640 1.312 0.888 0. 635 0.487
1.0 1.399 1.177 0.844 0.619 0.481
1.5 1.028 0.928 0.737 0.575 0.460
2.0 0.814 0.761 0.645 0.528 0.436
3. 0 0.577 0.556 0.505 0.443 0.385

4.0 0.447 0.437 0.411 0.375 0.338
5. 0 0.365 0. 360 0.344 0.322 0.298
6. 0 0.309 0. 305 0.296 0.281 0. 264"
7.0 0.267 0.265 0.259 0.249 0.237
8.0 0.236 0.234 0.230 0.223 0.214

9.0 -0.211 0.210 0.206 0.201 0.195
10.0 0.191 0.190 0.187 0.184 0.179

Assymptotic solution for all values of n

4S= Zp-a'+1

iii
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Table 3

Values of B in Eq. (56)

Radial Pressure Only Combined Radial and Longitudinal Pressure

L
a

n = 1 n = 2 n = 3 n =4 n = 1 n =2 n= 3 n = 4

1.00 0.282 2.604 7.108 13.86 4.963 7.171 11.718 18.55
1.25 0.111 2.362 6.956 13.81 2.949 5.186 9.869 16.80
1.50 -0.0427 2.222 6.906 13.82 1.810 4.142 8.923 15.90
1.75 -0.0457 2.152 6.903 13.85 1.252 3.555 8.391 15.39
2.00 -0.212 2.126 6.922 13.89 0.763 3.207 8.071 15.07

2.25 -0.240 2.123 6.947 13.92 0.539 2.991 7.865 14.86
2.50 -0.248 2. 132 6.973 13.95 0.405 2.851 7.726 14.72
2.75 -0.245 2.147 6.997 13.97 0.323 2.758 7.629 14.6i
3.00 -0.236 2.165 7.019 13.99 0.273 2.693 7.559 14.53
3.50 -0.211 2.200 7.056 14.02 0.222 2.616 7.466 14.43

4.00 -0.185 2.231 7.083 14.04 0.202 2.574 7.410 14.36
5.00 -0.140 2.278 7.120 14.07 0.195 2.534 7.348 14.28
6.00 -0. 107 2.310 7.143 14.08 0.201 2.518 7.316 14.24
7.00 -0.0842 2.330 7.157 14.09 0.209 2.511 7.298 14.21
8.00 -0.0672 2.345 7.166 14.10 0.215 2.507 7.286 14.20

9.00 -0.0547 2.356 7.173 14.10 0.221 2.505 7.278 14.19
10.00 -0,0452 2.364 7.178 14.10 0.225 2.503 7.273 14.18
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