UNCLASSIFIED

AD NUMBER

AD002209

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution: No foreign.

AUTHORITY

ONR 1ltr., 9 Nov 1977

THIS PAGE IS UNCLASSIFIED




S

Noer
R

SERVICE CENTE

o
J

T
4
BUILDING, DAYTON, 2, 0K

K

v
KNOT

S it Y o] bt

=
ﬂﬂw > N
7//‘“...
o = 5, T
) i
e T Y Gy A, )
L 4
! .., ’ Y " u
G T 3
L A 3
=1 i
OS> Il .m
_ﬁ.n/.... S Pl 3
BT WA 3
g
(.

A VT T
g :

e 2T e

e AT AL NS AP . e AL A T e M PR A TEDIR Y, | E A o a2 e s i B T e S e o At . VU, WL I




DIFFERENTIAL EQUATIONS WI!TH
A DISCONTINUQUS FORCING TERM

A

=== =TT A

by

Donald Wayne Eushaw

Experimantc! Towing Tank
Stavens institute of Technoicgy
Hoboken, New Jersey



EXPERIMENTAL TOWING TANK
STEVENS INSTITUTE OF TECHNOLOGY
711 HUDSON STREEY HoBOKEN, NEW JERSEY

TrLePHON: HOBOXIN 3.3080

KENNETH 6. M. DAVIDS8ON, DIRECTOR HUGH W. MAC DONALD, EXECUTIVE DIRECTOR
ALLAN B. MURRAY, AGSISTANT DIRECTOR GEORGE R. MORRIS, FINANCIAL OFFICER

ENCLCSURE: E.T.T. Report No. 469, "LDifferential Equations
with a Discontinuous Forcing Term, " by
Donald Wayne sushaw.

The enclosed report presents a thorough study of the dif-
ferential equation

mX + cx + kx = Df(x,x) ,

where f 1is a discontinuous function which assumes only
the values ¥1. The study shows how f should be defined
in order that any error in (x,Xx), that is, any deviation
from (0,0), will vanish in a minimum of time. Curves are
drawn in the xx phase plane showing where f should
"switch" its value from +1 to -1 or vice versa. The work
should be of interest to people concerned with the design
of servomechanisms and similar devices.

The report was written as a dissertation for a Doctor of
Philosophy, Department of Mathematics, Princeton University.
The work involved, however, was a part of the research pro-
gram urder the Office of Naval Research, Limit Control
project, Contract Nonr-26302, NR 341-009 at the kxperi-
mental Towing Tank, Stevens Institute of Technology. It is
therefore being published by the latter organization as a
technical report on the project.



Experimental Towing Tank
Stevens Institute of Technology
Hoboken, New Jersey

DIFFERENTIAL EQUATIONS
WITH A DISCONTINUCUS FORCING TERM

A Dissertation
Presented to the Faculty of Princeton University
In Candidacy for the Degree of Doctor of Philosophy

Recommended for Acceptance
by the Department of Mathematics
June 1952

Donald Wayne Bushaw

Prepared Under

Contract No. Nonr-2€3(02)
U.S. Navy
Office of Naval Research

(E.T.T. Project No. EALL03)

January 1953 Report No. L9



TABLE OF CONTENTS

SUMMARY

ACKNOWLEDGEMENTS

I.

II.

I11.

Iv.

VI.

INTRODUCTION PP 00 Bo S FAONS ORI PO LR OSSO TR OSSP e PO O -
Term.inOlOgy 0 ®00A6P00CGSSNDOI RSN PIIFIO0L e PN COCOOSENOOSEPPS LI
LINEARSWITCHING P PP P OO POPO0BODB00SEITONSEEES IR IErRRPRIOIEPREETS

THE MINIMAL THEORY; GENERAL CONSIDERATIONS .eeeeccvsvccesos

TI-IE MINIM-AL T}IEORY: g(x’y) =by (AN NN EENENENENNNNEEREENENEEENR )

THE MINIMAL THEORY: g(x,y)
A. lb l < l (THE SPIRAL CASE) L BN BN B BN BN BN BN AN AN BE BE BN BN NN BN BE N B RE RN RN B NN AN NN AN A ]
B. | b | > l (THE NODE CASE) ® 00 09 PO FET PN PP PRt sty

x+2by LA BN B R L K B

THE MINIMAL THEORY: g(x.y) = -x + 2by; SUMMARY vevesveees

SUMMARY OF THE MINIMAL THEORY FOR g(x,y) LINEAR ...cecevsesse

VII.

g(X,y) NONLINEAR PO EP VN E S PO IS SO PSS PSS QIO ES PPN ORI PG
A' g(x,y) INDEPENDENT OFXI"O.!IO..O' ooooo e s e s v e0e s
B. LIMIT CYCLEJS ...tcccl..!o‘lﬂcl'a!..c':ooowcooonnoncoo-.l

APPENDIX I: VE:LOCI‘I.Y CONTROIJ 0O PO SO0 S ES S0P ONEERDOOORIPOIEEIPeN

APPENDIX II: MULTIPLE MODE CONTROL 0 @ 8 0 8 QQ 00 FP® PPCOC OSSO0 r00 e & 0068

APPENDIX III: COULOMB DAL%PING 28 000000000000 8® e 69O ¢ o 5000088080010

BIBLIOGRAPI{Y eoaonon;cooonoao.o-oonaaooaoocc-nlolcncsala.o-"oo

Page

U TN, G

17
2l

30
30
51

59
63 .

6l
6l
66

71
73
76
79

R-469



R-1,69

DIFFERENTIAL EQUATIONS

WITH A DISCONTINUOUS FORCING TERM

by

Donald Wayne Bushaw



T e e e e

R-L69

A DISSERTATION
Presented to the
Faculty of Princeton University
in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance by the
Department of

Mathematics

June 1952



R-L69

SUMMARY

In many problems arising in connection with designing servomechanisms

and similar systems one has to solve

2

dx dx +
m + ¢ — +kx =D
E;? dt

with the discontinuocus forcing term tD , and to find a transition or
switching curve in the phase plane so that solutiens reach the zero state
in minimum time, :
This problem arises in designing the systems so as to obtain optimum
performance, and is therefore of considerable practical as well as mathe-
matical interest; but very little work has previously been done on it, and

that mainly from a physical rather than mathematical point of view.

In this thesis there is given a complete solution of this problem.
The treatment is much more lengthy than one would expect, because it has
been necessary to break the problem up into cases; none or the general
methods available in the literature apply. The final result is given in

Theorem 10, page 63.

In addition we have recalled the situation that occurs when the
switching curve is linear. We have also, at the end, touched upon certain
problems that arise when the equation is nonlinear, notably of the wvander Pol
tyvpe. This case, however, is so much more complicated than the linear case

that no attempt has bcen wmade to give a complete solution.
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I. INTRODUCTION

A simple example will serve to illustrate the kind of physical situa-
tion in which the central problem of this paper arises. Consider. there-
fore, a servomechanism which consists of a motor, a source of power, and a
feedback circuit, We shall suppose that the purpose of the servomechanism
is to hold the output of the motor constant, say at the value Vo where
to fix the ideas we shall suppose that the output of the motor is measured
in terms of the angle y of the rotor with respect tc some fixed reference

y = Jo
r -
£ y
POWER ~ | FEEDBACK | . |, ooop -
SOUHCE CIRCUIT (LOAD)

position. The feedback circuit is sensitive to errors in y , i.e., to the
quantity y - Yq 0 and its object is, upon sensing such an error, to apply
to the motor an input the effect of which will be to tend te nullify this
error. The input to the motor is denoted by f , and will be supposed to
depend on x =y - Yo and the first derivative with respect to time of this

quantity.

x
The differential equation for such a system can be taken toc be

1 & +R§%=K'f(x,g—:)

2
d™x dx _ . dx
Id—t’z*Ra'E‘“("'—dt) (1)

where I 1is a constant representing the moment of inertia of the rotor,
R is a constant representing various sources of energy dissipation in

the system, and K is the "torque constant.” For a given motor (so

¥ See, e.g., James, Nichols, and Phillips: Theory of Servomechanisms
(1947}, g+ 1L.

R-L69
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that I, R, K are fixed) the crucial element in this equation is nat-
urally the function f , which is determined by the design of the feedback

circuit and by the strength of the power source. \

The problem to be considered here arises when one puts a further as-
sumption on f , namely the assumption that this function can take on only
the two values :B , where B8 1is a certain positive constant. This situa-
tion occurs when the feedback circuit acts simply as a swiich (relay) which
applies to the motor the full strength of the power source either directly

(#8) or after inverting its polarity (-3). This scheme has the prima facie

advantages that (1) the feedback circuit, since it no longer needs to yield
a continuously varying output, can be vastly simpiified; and (2) it wonld
seem likely that, by always using the full strength of the power source,
one should be able to smash any transient errors to zerc more rapidly than
by any other means. For the first reason, such servos are in fact exten-
sively used; but it seems to be the cpinion of many experts that the second
reason is not sound, for such an intense, "bang-bang" servo is too crude to
give a delicate response, and is prone to display several kinds of highly
undesirable behavior: high-frequency. low-amplitude oscillations ("chat-
tering"), medium-frequency oscillations of constant or increasing amplitude
("hunting"), and others. But naturally all this depends on the character
of f , and there is no reason to deny the possibility that there may exist
some function f or class of such functions which would avoid these un-~
pleasant phenomena and, in fact, give excellent performance. It will be
preved below that there do exist such functions and that there even exists
a unique such function f which gives the best possible performance, where
"best possible™ has a certain natural and definite meaning. This will in-

deed be shown for the more general equation

m 2—% +r —+cx =Df (x,%%) s (2)
dt i

dx +
where m , r , ¢, and D are constants and f (x,af) = -1, This equa-

ticn can be put into one of Lhe three simple forms



dhu du i du +

d—-g“?bﬁ"u:‘#(u,a;), ¢ =-1, (21)
T

dpu du _ du _ o+ .

g:? + b 'd_.; = Y (u,a;) ’ \P = =1 N (d“)

d2 du d + |

d—% + 2b a; - u 6 (u,é%) [ 9 = ‘1 s (2"‘)
T

tv choosing the proper units for time (t) and error (x), according as ¢
is positive, zero, or negative. (The constants m and D are assumed to
be different from zero; it is nc restriction of the generality to suppose
that they are both positive.) For instance, to get (2') from (2) when

¢ >0, put

olo

u , t =\/f§-r sy b= %

~
n

The problem which will be treated in this paper is:

In
2
s () - 4(F) 2

where g(x,y) 1is a given function of class Cl and ¢ (x,y) is a2 function

which assumes only the values =1 » how should ¢(x,y) be chosen so that
= )

" dt
reaches the state x =0, x = 0, and in fact reaches it in less time than

the solution of (3) for any set of initial conditions (xo,io) (i

for any other choice of ¢ (x,y)?

(In terms of our mechanical example, this means: how should the feed-
back circuit be designed so that if the output suddenly undergoes a dis-
turbance which results in a certain error and rate of change of error, then
these two quantities are brought back to zero simultansously and as rapidly

as pessible?)

A restricted form of the problem has been thoroughly studied by a
group of people represented by I. Fliigge-Lotz and K. Klotter (see the

R-L69
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bibliography); they treat the equation (2') with O < b <1 and assume that
¢ has the speciai form

@ (x,y) = sgn(Kx + My)

where sgn 1is the function whose value is +1 for positive argument and
-1 for negative argument, and K , M are constants. Their results will
be outlined in TI, where it will appear that in this case the problem as
stated above is insoluble and that the problem of choosing the '"best" ¢,
j.e., the "best" values for K and M, becomes one of avoiding as many
undesirable phenomena as possible. The "best"™ ¢ so determined indeed de-
pends for its efficacy on the assumption that the equation (2') gives an
essentially incomplete description of the physical situation, that in fact
"time lags"™ occur. D. McDonald (McDonala (1)) has discussed the problem
for the equation (2") with ¢ again general and has stated the correct re-
sult for this case, on the basis of a heuristic argument. Except for these,

no results have been given for the problem stated above.

The first principal new result of this paper will be Thecrem 1, which
greatly restricts the class of functions ¢ (x,y) which one needs to con-
sider in seeking a solution; then, on the basis of this theorem, the problem
is solved for all linear g(x,y) . After this something is said abcut the
nonlinear case, and the paper concludes with brief discussions of some dis-

tinct but closely related problems.

It should be remavked that the problem admits of various generaliza-
tions, for none of which significant results are known. For example, one
can consider a higher order differential equation, say of order n {(n > 2)
and require that on any solution the quantities x , %% ,...,qkﬁ (k < n)
should at some instant vanish simultansously and in the shortest possible
time; or cne might consider systems of equations, each involving a dif-
ferent function of the type ¢ (x,y) , for exanmple:

-

Z
da'x dx Qy) - dx d )
‘d_tg".gl (X:E{)Y:d{ ¢l (x!'dT’y,a%
Z ) )
dy (. & t’iy), dx dy)
z + g2 kx"d_t.’y’dt' = ¢2 (X,'d'{_:,y,a-g o

j=h

t




(This would represent the problem fcr a mechanical system with two degrees
of freedom with coupling.) Problems of a different character arise when

one remains with the equation (3) but supposes that the externally caused
errors are not of the simple, square-wave type we have considered, but of
some more intricate but statistically describable type. In view, however,
of the difficulties involved in dealing with the simpler problem here dis-
cussed, the possibility of obtaining significant general results for the

more complicated problems seems, at present, rather remote.

Terminclogy

The equation (3) is equivalent with the system

dx
T

(L)
%% = ¢(x,y) - glx,y)

where g(x,y)scl and ¢ (x,y) = 5.

Suppose for the moment that ¢ (x,y) = +1 . Then the system (L) has
a unique soliution through every point (xo,yo) of the plane; in other words,
the family of curves defined by (L) wita ¢ (x,y) = +1 covers the entire
plane exactly once. This family of curves will be called the P-system

(P for positive), its curves P-curves, and the arcs of its curves P-arcs,

In the same way, when ¢ (x,y) = -1, one gets another family of curves
covering the plane; this is the N-system (N for negative) and N-curves and

N-arcs are defined correspondingly.

A positive direction of motion (an orientation) on each P- or N-curve

iz automatically defined in terms of ¢ .

Now if ¢ (x,y) d1s allowed to be as before, i.e., any single-valued
funetion whose domain is the entire plane and whose range is confined to
the values of i'1  the classical theory of differential equations does not
provide a definition Yor the noticn of a solution of (4). If ¢ (x,y) is
simple enough it becomes clear how such a soluticn should be defined; but

when ¢ (x,y) 1is general this is not so clear, and some care must be taken.

R-L69
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The definition which follows ssems best. It is expressed mainly in geometri-

cal terms, but the translation to analytical language is easy.

Suppcse that P, (xo,yo) is the poini from which the solution is

sought, and suppose <#(xo,yb) = +1 . Then one of the three following mu-

tually exclusive possibilities must be realized:

(i) There exists a P-arc beginning at P, cf positive length along

wnich & (x,y) = +1 .

(ii) The condition (i) is not satisfied, but there exists an N-arc from

P, along which ¢ (x,y) = -1 (excluding P, ).

(iii) Neither (i) nor (ii) holds.

If (i), either there exists a first point after p, °n the P-curve
from P, at which ¢ (x,y) changes sign. or there does not. If there does,
the solution is defined to begin with the P-arc from P, to this point pl .
If there does not, the solution from P, is defined to be that part of the

P-curve through P, which follows p_ (the P-semicurve from P, ).

If (ii), the preceding paragraph should be applied with I in place
of P.

If (iii), no solution from P, is defined.

Cases (i) and {ii) thus ieaa either to a definition of the entire solu-
tion from P, s o7 to a definition or tne solution up to sore definite point
By = (xl,yl) . In the latter case, tne above process should be repeated,
with P, in place of P the letters P <2 N interchanged, the numbers
5] interchanged, and the phrase M"excluding 1 " added at the end of (i).
Tais will lead to the same «richotomy: either the zolution is not defined be-
yond p, , or it consists of a whole N- or P .semicurve beginning at Py s OT
it Toi.ows Ty with a .iefinite arc PyP, - Then the whole proacess should
be applied tc p, (when this peint occu;s; otherwise there is nothing left
to do); but now P . N . and lLl.should be in their orieginal places. This

either accounts for the resi of the solution. or leads to a point Pj like

" 1o be precise, let x(t) , y(t) represent the P-curve such that x{(0) = x_,
y(0) =y , and Jet T dinf (tl t> 0, $[x(t),:t}] = -1} . Then
the "fir§t point" mentionad is (x(t),y(71)) .
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Py which should be treated like Py ; and so on. The whole curve obtained
in this way is, by definition, the solution of (L) from P,

Ir ¢(xo,yo) = -1 , the solution from Py is dsfined ccrrespondingly.

If each of the points p_ (n =0, 1, 2,...) is assigned to the adga-
cent P-arc if <¢(xn,yh) = +] , the adjacent N-arc if ¢>(xn,yn) = =1,
then the salution of (L) from p, consists of a countale (possibly finite
or even vacuous) well-ordered sequence of alternating P- and N-arcs such
that the initial point of the first arc is P, s the terminal point of each
arc is the initial point of the next, and ¢ (x,y) = +1 on the P-arcs,

-1 on the N-arcs,

The solution of (4) from a point p , if it exists, is unique. This

follows at once from the definition ana the fact that P- and N-curves are

unique.

It is also easy to see that if A is the solution of (4) from p , and
p' is any point on A , then the solution from p' is that part of &
which follows p .

From these facts it follows in turn that a solution cannot intersect
itself at a peint p unless it is periodic beyond p . (Here a solution
can be "periodic beyond a point" without being completely periodic, despite

the uniqueness, because our solutions are defined only unilaterally.)

A point on a solution which is the terminal point of a P-arc and the
initial point of an N-arc will be called a PN-corner. NP corners are de-
fined analogously.

ITI. LINEAR SWITCHING

Linear switching occurs when ¢ (x,y) = sgn(Kx + My), i.e., when
¢ (x,y) = 1 in one of the half-planes determined by the line Kx + My = 0O

ana -1 1in the other. This case for the equation

[oB
»

+x = ¢(x’%%) (0 <b <1) (21)

“d

+*

N
Sl&

* If, e.g., ¢>(xn,y ? = +1 while the two adjacent arcs are both N-arcs,
P, is to be regaraed as a degenerate P-arc.



has been thoroughly discussed in several papers (Fligge-Lotz (1),(2);
Fliigge-Lotz and Klotter (1)). The summary of their results given in this
section (based on Fligge-Lotz (2), Chap. l4) will serve the double purpose
of showing how much can be done with such a ¢ (x,y) and of displaying

some of the unwelcome phenomena that can occur in such problems.

In this case (L) becomes

dx _
Y

(5)
g% = -x - 2by + sgn(Kx + My) .

The constant b is taken as fixed, and the focus of attention is the
pair of constants K , M . We shall suppose that they are both different
from zero; what happens when either of them vanishes is essentially the
same as what happens in one of the other cases. There will then be four

cases to consider, as tabulated:

M=>0 I III
M<O0 II v

As is well known, the equations for the P- and N-curves belonging

to (5) can be explicitly computed; they may be expressed in the form

x(t) = e-bt(Aeiat . Be-iat) + 1
. , (6)
(t) = -~ [(b - a1)2e™% + (b + a1)Be™i0F)
ﬁhere a = +\/i - b2 and
A= 5%1; {y(O) + (b + ai) [x(0) * 1]} . B=4a . (7)

Wherever an equivocal sign occurs, the upper sign pertains to the P-system,
the lower to the N-system. These equations represent spirals spiralling

into the foci (11, 0).



A solutiocn of (5) can thus be cbtained explicitly in terms of a se-
aquence of formula pairs (6), defined on successive intervals of time, each
representing that part of the solution between two successive zeros of

Kx + My.

Case I. In this case the "switching line" Kx ¢ My = O passes
through the second and fourth quadrants. To the right of it, ¢ (x,y)=+1;
to the left, -1. Thus a solution consists of a sequence of arcs of spirals,
sach with its focus on its own side of the line Kx + My = O and its ends

on this line,

The condition for the existence of a periodic scoluticn is that there

should exist (say) a P-arc of the type described whose end-points are

CASE I

equidistant from the origin; ror then, by symmetry, there exists an N-arc
on the other side of the switching line joining the same two points, and
these two arcs together form the periodic solution. W= shall see below

that a periodic solution can occur in our case,

Let SP' SN be the points on Kx + My = 0 where a ©- and N-curve

respectively are tangent; let RP and RN ve the last intersections pre-
ceding SP and SN with the switching line of the P- and N-curves through
these points, SP and SN are symmetric with respect to the origin, as
are RP and RN . Suppcse that b, K, and M are such that RN is out-
side the closed segment S?SN i then the situation is as shown in Figure A
(next page). s soluticn starting sufficiently near the segment SPSN will
move away frow the line in one direction or the other -- according to the

R-459
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switching line at all. Since solutions can only start near SPSN , but can-

not cross it, the points of this scgment are called start points. {(Strictly

speaking, ¢ (x,y) 1is not derined in this segment, so that one cannot sgeak
of a solution starting on it.) Also, since any solution starting in this
manner does not return to the switching iine but merely spirals uown to one

focus or the other, such points are alsc rest points; the control represented

ty the function ¢ is at rest on the solution from such a point. It is

easy to see that the points of RNSP and SNRP are also rest points, but
net start points. In general, irrespective of the values of b, K, and
M (for Case I), the segments S RP and RNSN consist of rest points and

P

the segment SDS‘\I consists of start points, as one can easily convince him-

self, .
In the case illustrated in Figure A no periodic solution can exist;

for it can be snown that every P-arc wnich lies tc the right of the line

Kx + ¥y = O and has its ends on this line also has the property that its

terminal pecint is nearer the origin than its initial point; thus the condi-

tion for a periodic soluticn can never be satisfied.

If, however, Rﬁ and RP are on ihe segment SPSN (Figure B), then
Lhaorz elists a periodic sciution. This may be sceen as tollows: the parti-
cular P-arc RPSP vegins nearer tne origin tnan it ends, by assumptiong

out P-arcs which begin sufficiently far from the origin on tne switching
line have ine reverse property; tnerefore, by continuity, some intermeciate
P-arc of this type must begin and end at the same cistance from the origin;
and this is exactly the condition for a periodic soiution. Extended analysis
bears this cut, and shows that the periodic soluticn is unique and orbitally
stable. All solutions beginning outside the periodic solution spiral onto
it, and those sclutions which begin inside the periodic coluticn but outside
the shaded area (which represents rest poirts) also spiral onto it. When
there is no periodic soiution, as in Figure A, &1l solutions have finitzl
many corners and then c¢piral down with no further c.rners to one of the foci
(fl.()). Obviously, none of these kinds of behavior is welcome in terms of

the prcblem at hand.
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Case II. This case differs from the first in that the switching line
Xx + My = O now passes through the first and third quadrants. The arcs

which occur in solutions are as in Case I. No periodic solutions occur in

this case. Let RP ’ RN , SP . SN be defined as before; then the pcints
RP ’ SP , 0, SN ' RN lie on the switching line in this order. The inter-
vals RPSP and SNRN are eas.ly seen to consist of rest points; but on
the interval SPSN a new phenomenon occurs. Consider any soiution which

reaches this interval, say at the point E. What does the solution do at

y
/Kx + My =20
\\
/’_\\ \\
* // \\ / \
/ A g \
\ \
// N \ SP \
- [ +1
f - A1 | X
! 41N //
\ \
\ //éN \ /
\ —_—— N /
\ ~ s

CASE II

this point? It shoul& have a PN-corner at E , for it has reached a
point where ¢ changes sign; but the K-curve from E goes back into
the same half-plane from which the solution entered E , and on this

side a solution can contain only P-arcs; on the other hana, the sclution
certainly cannot follow the P-curve through & beyond this point., Thus
the solution is not defined beyond E; it ends at E . For this reason,
such a point is called an end point. Ir a manner oi speaking, end points
are inverted start pcints and, like start points (but uniike rest points)

can occur on the switching line only.
Any solution starting outside the region just considered spirals in

toward the origirn until it reaches a point on the interval RNRP , beyond

which its behavior is determined by the above considerations.
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In practice, due to mechanical traits of the physical system involved
wiich prevent it from obeying our idealized hypotheses exactly, there arises
a time lag, this means that a solution meeting the line Xx + My = 0 ac-
tually proceeds for some distance beyond it before it has the corresponding
corner. In Case I such a time lag, provided that it is not too large, does
not affect the essential behavior of the system; such a system might there-
fore be said to be "structurally stable with respect to time lags."™ But in
Case II the presence of a time lag does make a difference; for consider a
solution entering an end point; because of the time lag, it no longer ends
there, but proceeds for a certain distance beyond and then has a corner,
where a solution is still defined., From this corner it crosses the switching
line in the reverse direction, moves for a short distance beyond, has another
cofner. and so on, The successive intersections of such a solution with the
switching line move away from the origin, so that sooner or later one of the
corners lies in the set of rest points, and from this corner the solution
preceeds to spiral down, without further corners, to the corresponding focus.

(See the picture below.)

CASE II WITH TIME LAG

ihe situation in Case II can thus be summarized as follows: In the ab-

P - . i
sénce of time lags, every sclution either terminates in an end point on S_S

PoN?
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or it eventually spirals down to one of the two focl (:1,0). In the presence
of a time lag, all soluticns behave in the latter way. Thus Case II is alsc

unfavorable from our point of view.

‘Case III. In this case the switching line lies as in Case II, but the
arcs which occur in selutions now belong to spirals about the focus on the
side of the line opposite from the arc itself. In other words, P-arcs occur
on the left, N-arcs on the right. In this case 2 stable periodic solution
always exists, and it dominates the whole situation, for all other sclutions

spiral onto it.

CASE III
That a periodic solution exists can be seen as follows: consider the

two arcs BC and B'C' , where B lies

_l_ very near the origin; then

. _—
\t>6:// 0C - 0B >0

But. by the character of the spirals,
if B' is far enough out

yd oC' - OF' < U .

Thus, by continuity, there must ve an

internediate arc !"(" such that
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OCh - GB™ = O 3 but this, as pointed out earlier (p. 9), is' exactly the
conditicn for the cccurrence of a periodic solution. An extended discus-
sion of such periodic sclutions can be found in Bilhars (1); quantitative
‘information about the particular periodic sclutions arising here, for A
varying values of the parameters, are glven in Fliigge-Lotz (2).

The behavior of the solutions within the periodic solution is simple
enough. It is clear that, if Sp and Sy are the points of tangency defined
as bafore, the segment SPSN consiste of starting points. A solution
starting from such a point (in either direction} simply spirals out to the
pericdic solution; and since the totality of solutions obtained in this
way covers the interior of the region bounded by the periodic solution,
ihere ‘are no other éolutions to consider. (See the picture below.)

o

CASE III NEAR THE ORIGIN

Thus all solutions spiral onto the periodic sclution and this, from
the point of view we have adopted, is also unfavorable. It may be seen that
in this case, as in Case I, we have "structural stability with respect to
time lags"; i.e., the presence of a small time lag would not change things

essentially.

Case IV. In this case the switching line is as in Case I, the arecs
of solutions as in Case I[[. It may be shown that no periodic solution

can exist in this case; in fact, every arc with its ends on the switching



It iainia Aih

2

VNSl

CERTL O i T

e

CAOERN

e P A A TR W T A SR R AT N L AR R R

R-L4&9
-16-

linc has its terminal point nearer the origin than its initial point, and
the condition for a periodic sclution cannot be satisfiled.

CASE IV WITHOUT TIME LAG

In this case the segment S5, consists of end points, and by tracing
the solutions which end on it backwards one can see that these cover the

the switching line.

But here again, as in Case II, the presence of a time lag makes a
difference. The time lag makes no difference of importance until the so-
lution inrquestion reaches SPSN; then, instead of ending, the solution
proceeds for some small distance beyond the switching line, has a corner,
recrosses tne switching line, has another corner, and so or. It may be
gseen that the successive points of crossing obtained in this way have the
property tha: each is closer to the origin thdr its predecessor, until one
of them 1Z.es on the other side of the origin. After this nas happened the
solution oscillates Around the origin in a more or less irregular way, but
with a high mear Irequency and small mean amplitude. This is the most
favorable of the possibilities so far considered, fur every solution moves
into the origin with ihe passing of time, and this irrespective of the mag-
nitude of the constiniz b , K, and M . But the manner in which it does
so is unsatisfactecry, for it involves a rapid fluctuation in the sign of $
("chattering") which, in general, continues indefinitely.
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Thus, at best, linear switching leads to solution behavicr which, toth
qualitatively and (as we shall see) quantitatively, is far from perfect; it
will be shown later (Theorem 7) that all its defects can be avoided by taking

a different kind of ¢ .
5

N ..
AN

L

CASE IV WITH TIME LAG

ITT. THE MINIMAL THEORY; GENZRaL CONSIDERATIONS

We now return to the problem stated at the bottom of page 3. If the
second order equation (3) is replaced by the equivalen® first-order systcm
(L), the problem may be described as that of finding a function ¢ (x,¥)

such that for any point p in the x,y-plane the scluticn from p of
dx 4 + 1 ,
TV s 6% = ¢(x,¥) - g(x,y) (¢ - 1, g ¢ ¢ (1)

has the following properties:
(i) it passes through the origin (x = y = 0);

(ii) the lengtn or time necessary to move {rom p to the origin alcng
the solution from p is minimal with respect to ¢ ; i.e., no other ¢

could make this time shorter.

{The parametrization of a solution in terms of t is naturally in-
duced in the obvious way by the known parametrization in terms of t of
its component arcs; thus the "time" required to move from one point on a

solution to another which follows it is a well-defined quancity.)
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The object of this section is %o study the problem in this general
form. It will first be shown how the problem is equivalent to one of a con-
ceptually simpler character, and then {in Theorem 1) it will be shown that

this problem in turn can be greatly simplified.

It has been pointed out that a solution of (L) consists of a sequence
of alternating P~ and N-arcs, the initial point of the first being the ini-
tial point of the solution, and the terminal point of each being the initial
point of the next. Our point of view will be to consider, for an arbitrary
point p 1in the plane, the class of all curves of this kind which begin at
p and pass thrcugh the origin; and wur purpose will be to find in this
class a curve along which the time necessary to reach the origin is shortest.
Thus we make the following definitions (the function g(x,y,) . and there-
fore the P- and N-systems, being fixed):

A path from the point p 1is a finite or countable, well-ordered se-

quence of alternating P- and N-arcs such that:

1) The sum of the 1engths* of the arcs is finite (=7 ),

2) The initial point of the first arc is p .

3) The terminal point of each arc is the initial point of the next.

L) If there are finitely many arcs, the terminal poinﬁ of the last
arc is the origin; if there are infinitely many, then

x(t)=~0 and y(t) =0 as t—=-— 1 ,

the curve composed of the arcs being parametrized in the obvious way in
terms of the parametrization of the component arcs.

5) No two of the arcs intersect.

(In order to avoid a conflict between 3) and 5), we regard each arc
es containing its initial point but not its terminal point; this convention
will have no effect on the time-length characteristics of paths, and there-

fore does not really restrict the generality of what follows,)

- "Length," "longer," and similar expressions should be understood to refer
to time, not geometric length, here and throughout what follows.



A péth from p can tnerefore almost be described as a curve which
could occur as-that part of a solution from p (for some ¢ ) which con~
nects p with the origin. "Almost,™ because 5) need not hold for a solu-

tion of (4). This point will be cleared up presently.

A path from p which is not longer than any other path from p will

be called a minimal path from p .

In order to solve the problem stated on page 17 it is sufficient to

find a2 unique minimal path from each point p .

Namely. one needs only to'define ¢ (x,y) = +1 on P-arcs which oc-
cur in the minimal paths, and ¢ (x,y) = -1 on the X-arcs which cccur in
the minimal paths. (¢ (0,0) is to be left undefined, or it can be given
either value.) Such a ¢ (x,y) automatically yields the minimal paths i

solutioﬁs,'and the minimal path from a point:is, by defirition, the shortest

" possible solution connecting p with the origin. " Twc things must be veri- .

fied: (1) that this method defines ¢ (x,y) uniqueiy at every point eXCept""

the origin, and (2) that notning is lost by leaving out of consideration

. those possible solutions for wanich 5) rails.

To verify (1), oﬁserve first_tﬁatrevéry point p must lie on at least
one minimal path, namely the minimal path which tegins at p . Thus ¢ (xy)
is defined everywhere, 1 there were some point at ﬁaich'it failed to be
unique, then this point p would need to lie both on an N-arc belonging to
‘one minimal path Aa (from the point a'? and on a P-arc beionging to an~
other minimal path A b (from b ). Denote those parts of Aa and Ab wiic.
lie between p and the origin by A!a and A'b respectively; then their
~ time lengths r(A'a) and f(A*b) stand in some relation to each other,
say T (a' ) S t(A' ). Then T (3 - Ay ¥ pr) €t (a) . A - flb v
may not be a true path (for it may cross itself), but a true path B, ‘may
be obtained from it by cutting out whatever closed loops or retracings it
may contain; and cbviously r(Z%) € r(Ab), wihich contradicts the assump-~

tion that Ab was the unique minimal path from b .

1o check (2), it will suffice to show that any curve A which might
occur as a solution conrecting p with the origin and faling to satisfy
5) can be replaced by another such curve, at least as short, which satisfies

5) and is therefore a path. Let A be as described, and let &' Dbe the

R-L69
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path obtained from A by cutting off all of & beyond the first intersec-
tion of this curve with the origin, A!' contains the origin just once, and
ends there; since 4 is not longer than A , it is enough to show that At
satisfies 5). Suppose the contrary; if A!' intersects itself at a point

q beyond whicn, by page 7, it is therefore periodic, it follows that A!
containz the origir at least twice: once foliowing the second passage
through q (for A' ends at the origin) and therefore on the period con-
necting the first passage of A' through q with the second. This iz a

contradiztion,

The problem with which we shall actually be concerned is therefore
that of finding a unique minimal path from any point p , givern the func-

tion gi{x,y) .

A path will be called canonical if it contains no NP-corners (:see

p. 7) above thé_iuaxis'éﬂd’no FN-corners below.

Theorem 1. Given any path & from p which is not canonical, one

can find a canonical path from p which is shorter (in terms of time)
than A4, '

Proof. (Iﬂ saying that a corner lies above or below the x~axié. we
mean that *he arcs adjacent to the‘corn?r are, for values of % suffi- "
cienfly near *he valus corresponding *5 the somer itself, above ar below
the x-axis- respectively; the cornar itsélf, regarded as a point, may £hus

lie on the axis.)

Theridqa of the pfoofris simpes given,,say; 4 path with the NP--
corner p - abors the x-axis, one denotes by p: either the last commer of
the pa*h praceding p orrthg last intersestion preceding p of the path
7 with the x-axis (wnichaver iz nearer p ),
and denotes hy p" the corresponding point

with "foi’owing" in place of "preceding" aﬁd
"Pipst™ in piace of Miast.," One ther draws

the P-~urve forward from pe and the N-curve
biuizkward from p" , tharesby obltaining a four-

5ided figure a, shown. If one now modifies

the given path by replacing p'pp" by p'p"y,
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tiie NP-corner p is removed, no other such corner is introduced, and the
path is shortened. To see this last fact. note that. by (L),

dx

T (p'pp") = f R T (p'phph) = j

dx
prppn p'Pp"

(These two integrals must converge, for the quantities t(p'pp") and
t(p'p"p") are obviously finite.) However, y is greater {for a given
vajue of x ) on p'p"'p" than on p'pp" ; therefore the second integral
is smaller than the first, as was claimed. Thus if one applies this pro-
cess to every WNP-corner above the x-axis, and *“ne corresponding process -
to every PN-corner below the axis, one obtains a canonical path shorter

-than the given one.

Two things must be proved: (1) that it is 2lways possible to con-

 struct the "quadrilateral® of the type shown; and (2) that the process

described does not produce any self-crossings, so that a true path is in
fact obtained,

ﬁeti ﬁ ’ p;r.'and p" be as described above; if the initial point
of a path is regarded as a corner, p' always exists, and 'p" always
exists since the p;th goes to the origiﬁi It willrbe shbwn first that .
the P-semicurve [ beginning at p' passes over p'pp" and crosses the
vertical line through p" . That [ moves to the right as long as it
remains above the axis follows from the first equation in (L). Sﬁppose
that Il is parametrized by t in such a way that t =0 gives p' ;

then [ has one of the following two properties:

S

(i) D goes arbitrarily close to the x-axis as t ~oo (i.e., it

either crosses the x-axis for some t >0 or 1iﬂ;iﬂ£ y(t)[on 0] =0 .

(ii) I goes to infinity in the sense that

sup {xl (x,y) € n} = +00

For assume that (i) is false; then there exists a number € > 0
and a value t >0 of t such that for t >t_, y(t) (on 1] > €,

Since %% =y , this gives
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t
x(t) = x(to) +f y( t)dr > x(to) + Ae(t - t,o)*oo as't -
t

0
so that (ii) holds.

Since, as t increases, [I moves steadily to the right, it is clear
what ]l must do; it must either move off to infinity as in (ii), or cross

the x-axis at-some point, or tend -to some point on the x-axis as t -« .

[1 starts off from p' above p 'pp" , for in the upper half plane
the P-curve through a point always has a greater slope there than the N-
curve through that point, and even if p' 1lies on the x-axis (whereupcn

the two slopes are Mequal! --- both int'inite) the radius of curvature of the

P-curve at -p' 1is greater than that of the N-curve. (A1 this follows fram N

()3 in parficular, the fact that we can *alk about radii of curvature fol-
lows: from the fact that g(x,y) € Cl,, so that x(t) and y(t) -~ the func-
tioﬁs defining “H - have'éoﬁtinuous second derivativeér)‘" cannot cross
ths N-are P’ P , by what was just said about slopes; it cannot CrOoS ‘the
P-arc pp" , for P-curves are unique; and it cannot tend as t ——® to
either of the points p or p" (one or both of which may be on the x-axis)
for this would imply that the point concerned would be a singulaf_point of
the~P~system. which would in turn belie the fact that both points belong to
the ordinary finite P-arc pp" . Thus all that was claimed fbr I is true.

-The correspondihg argument can be applied to i ,qthe N-zemicurve ob-

‘tained by follokihg the N-curve through p" backwards, and it turns out

that it too lies above p'pp" and, in-particular, crosses the vertical line
through p' . Thus II and N musﬁ intersect at least once. That they in-
tersect only once may be seen in several ways, the simplest of which perhaps
is to observe that if they intersected twice (with no other intersections
between), one of the intersections would involve a crossing with the wrong
inequality between the slopes. Thus we obtain the unique intersection p™t
and the "quadrilateral" sought.

This proves (1) on page 21, To prove (2), we note first that in the
process just discussed (and its complement for the lower half-plane) the
upper and lower half-planes are treated separately, so that in looking for
possible self-crussings introduced by this process we need only consider

LISt ]

ek
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(say) what happens to thoée parts of the original path which lay above the
x-axis, Let H1 and H2 , then, be any two parts of the original path, '
each contained between successive points where the path crosses the X=-axis
and in the upper half-plane. It is clear that the process for removing
NP-corners cannot introduce self-crossings in either of the separate pieces
H, or H, ; hence it is only necessary to show that the process can not

1 2 :
cause H, to cross H2 « Since Hl and ,H2 do not cross, their epds

1
a; bl R a2 s b2 on the x-axis must lie in one of the following orders:
(l)a1bl!a29b2.(2)al)32!b2’b1;(3)a23819b19b2;
(L) a, 2 > 3y s b, . (1) is essentially the same as (L), and (2) as (3),

SO we con51der only (1) and (2).

Our process has the property that it leaves the points where the given

oath crosses the x-axis unchanged; no such points are rémoved, and none are

—1ntroduced Therefore the curves H.' and Hz' -belonging to the final

1
path and obtained from H, and Hz_ by the process have the same ends on

the x-axis as before. No& in case () there is ﬁothing further to say, for.
Hi' lies entirely over the interval (éi,bi) (i = 1, 2); since these inter-
vals are disjoint, H,' and H,' cannot intersect. In case (2), H)! and
- H,'must beas shown; each H.' consists
of a P-arc followed by an N-arc (one of
which might be vacuous). Suppose they
intersected; say the intersection oc-
curred on the arc agc2 . Then, since
(both of

cannot intersect
them being P-arcs), a,, ,C, must inter-

32C2 . alcl

sect clbl by the previcus argument about slopes, these twoc arcs can only

intersect once; therefore czb2 must intersect clbl y Since b lies be-

" tween a, and ~bl . But this is impossible, for these are both N~urcs.,

1
The same line of reasoning applies if c2b2 is assumed to intersect 810y

Thus Hl' and “H2f are disjoint, as claimed; and this completes the proof

of Theorem 1.

Corollary. In seeking a minimal path from a point it is only neces-

sary to consider canonical paths from that point.
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-curves at q .

For it follows directly from Theoram 1 that a path which is hinimal

with respect to the class of all canonical paths is also minimal with re-

spect to the class of all paths.

“rom this point on it will

therefore gg

‘tacitly assumed that all paths mentioned are canonical.

If g(x,y) has the particular property that g(-x,-y) = -g(x,y ) ,

there is more one can say.

For then, if in the equations

g(x,y) (L)

y= -Y ! ¢(X9Y) = e

dx a
TV, 3= blxy) -
we make the substitutions  x = -X ’
dX _ ay _
aT"“Y’ d+ q.l(‘{ Y) —g\}‘ Y)

i.e., equations of exactly the form

€L). This means that if p and q

are two points symmetrical with respect to the origin, then whatever can

be said about the P- and N-curves at

(E g., if it can be
must begin with a P-arc, it fol]ow"

must begin with an h-arc.,) -~

Since g(x,y) always has the

(homogeneous), and’ g(k;y) will be”

this observation will find extensive use,

p can be said about theN- and P-

oroved that a minimal path from p

at once that a minimal path from q

roperty m=ntioned when it is linear

o

f’this_t;p in most of what follows,

Any result obtained from an-

other by an appeal to i% will be said tu have been obtained by symmetry.

Iv. TdE MINIMAL TnDORY'

This sectﬂon begnnc the systematic

in IIT for the 1mportant case thut
suffice to suppose that,

-X + by , where i each case b is

section we study the: firs? of these;

‘given at the very outse* and, of cou

solution of the problem for b 2 0O

gix,y) = by

study of the prebiom discussed

gix,y) is lincar. By page 3,

g(x,y) has cne of the three forms by, x + by ,

an arbitrary real congtant. In liis
it arises from the physical example
rse, in many other ways. The correct

has been previously stated {McDonald

(1)), but without a convincing argument.

V(X,Y) , we obtain

it will

Brwhetvie §

o B
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The character of the P~ and N-systems associated with the equations

=l
fl
ed

ad
s a% = ¢(x5Y) - by

depends, of course, on the value of b ; but this much can be said: since
the left members (disregarding ¢ ) depend only on y , all the P-curves
can be obtained from any one of them by translation along the x-axis. The
same, of course, can be said for the N-curves, which are in fact obtained

from the P-curves by reflection in the origin.

The P-curves determined by the origin and (for b # O ) the point
(0,2/b) for representative values of b are sketched below; that the solu-

tions have the gualitative propefties involved can be'easily verified,

Tl

y= : '
/ b<0 | b=0 -1 " v>0

When b < 0 , something strange (bﬁt not unexpected) occurs: there

- exist points from which there‘gre no paths. More precisely, a path from

the point (xo,yo) exists if and only if |y | < b7t . For suppose

Yo < b <0 3 then

dZ _ o+ i ) .
T =21-by <-l-1

vy,

"

Vo

This means that once any curve, P- or N-, is below the line Yy = b“l it

stays below; thus no path from such a point could cross this line, as it
would need to do to reach the origin. Similarly for any point above the
line y = —b”l > 0 . That paths exist from any point between the two

lines will be secen below.
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When b 2 0, a path can be found from any point in the plane.

We shall denote by [ that part of the P-curve through the origin
which lies below y = 0, and by [I'™ its reflecticn in the origin. T~
is therefore that part of the h-curve through the origin which lies abovs

y=0.

Theorem 2. (g(x,y) =by.) Let C= TI''+0+ TI'. This is a simpls

curve which divides the plane in%to an upper and a2 lower part. The unigue

4

minimal path from any point p above C (and below y = -b =, if b <0)

is obtained by following the N-curve from p wuniil it reaches O([') and

then followin [ into the origin. IF 2ies below C and above
g Anto the oragin b

y = bt , if h < 0 ) the unique minimal path is given by following the

P-curve from p to C{[") anl then folowing [~ intec *he origin. (The
solution of the originai probl:iw is to take ¢ = -1 zbove C ard on
' +1 beiow C andon [ .)

» .

Proof. Note first that if pyg 1is an N-arc with p on the x-~-axis
and qr is the P-arc from q back to the axis, then t{pgr) , the total
time length of ihis pair of arcs, is a4 munolone increasing furnction of the

distancae batween p snd r , or equivalently of the arsa bounded by pqr

‘and the segment pr of *he axis; for t{pq) and 7 (Q") are both in-

creasing functions of ~yq . yq being the ordinate of q ; but tais in
turn is such a funchtion »f the two gquantitiez rentioned.

We shall denot2 that path from p wnich, accrording to the thecrem,
is minimal by & . The r2st of the prosf will be broker up irtoe several

parts,

'3

- - . ~ ) . -~ -
iizs on the positive hal® of the x axis, A& is the

A, If

anique minZra: path from p oo

~
Let ﬁr be 