<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD001781</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEW LIMITATION CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO</td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution: No foreign.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONR ltr., 26 Oct 1977</td>
</tr>
</tbody>
</table>
POLAROGRAPHIC REDUCTION OF HEXAMINOCOBALT (III) ION.

THE EFFECT OF NONCOMPLEXING ELECTROLYTES

by

H. A. Laitinen, A. J. Frank and P. Kivalo

Technical Report No. 2
to the
Office of Naval Research

Contract No ori-07136-MR 052-282

at
University of Illinois

January 5, 1953
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Addressee</th>
</tr>
</thead>
</table>
| 1 | Dr. Ralph G. H. Siu, Research Director
 General Laboratories, 2M Depot
 2800 South 20th Street
 Philadelphia 45, Pennsylvania |
| 1 | Dr. Warren Stubblebine, Research Director
 Chemical and Plastics Section, RDE-MPD
 Quartermaster General's Office
 Washington 25, D. C. |
| 1 | Dr. A. Stuart Hunter, Tech. Director
 Research and Development Branch MPD
 Quartermaster General's Office
 Washington 25, D. C. |
| 1 | Dr. A. G. Horsey
 Wright Air Development Center
 Wright-Patterson Air Force Base
 Dayton, Ohio
 Attention: "CPBS-4" |
| 1 | Dr. A. Weissler
 Department of The Army
 Office of the Chief of Ordnance
 Washington 25, D. C.
 Attention: "ORDTB-FS" |
| | Research and Development Group
 Logistics Division, General Staff
 Department of The Army
 Washington 25, D. C.
 Attn: Dr. W. T. Read, Scientific Adviser |
| 2 | Director, Naval Research Laboratory
 Washington 25, D. C.
 Attention: Chemistry Division |
| 2 | Chief of the Bureau of Ships
 Navy Department
 Washington 25, D. C.
 Attention: Code 340 |
| 2 | Chief of the Bureau of Aeronautics
 Navy Department
 Washington 25, D. C.
 Attention: Code TD-4 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| 2 | Chief of the Bureau of Ordnance
 Navy Department
 Washington 25, D. C.
 Attention: Code Rexd |
| 6 | Mr. J. H. Heald
 Library of Congress
 Navy Research Section
 Washington 25, D. C. |
| 1 | Dr. H. A. Zahl, Tech. Director
 Signal Corps Engineering Laboratories
 Fort Monmouth, New Jersey |
| 1 | U. S. Naval Radiological Defense Laboratories
 San Francisco 24, California
 Attention: Technical Library |
| 1 | Naval Ordnance Test Station (Inyokern)
 China Lake, California
 Attention: Head, Chemistry Division |
| 1 | Office of Ordnance Research
 2127 Myrtle Drive
 Durham, North Carolina |
| 1 | Technical Command
 Chemical Corps
 Chemical Center, Maryland |
| 1 | U. S. Atomic Energy Commission
 Research Division
 Washington 25, D. C. |
| 1 | U. S. Atomic Energy Commission
 Chemistry Division
 Brookhaven National Laboratory
 Upton, New York |
| 1 | U. S. Atomic Energy Commission
 Library Branch, Tech. Information, CRE
 P. O. Box E
 Oak Ridge, Tennessee |
| 1 | Dr. W. K. Wilmarth
 Department of Chemistry
 University of Southern California
 Los Angeles 7, California |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Addressee</th>
</tr>
</thead>
</table>
| 1 | Dr. A. W. Adamson
Department of Chemistry
University of Southern California
Los Angeles 7, California |
| 1 | Dr. W. Conard Fernelius
Department of Chemistry
Pennsylvania State College
State College, Pennsylvania |
| 1 | Dr. L. L. Merritt, Jr.
Department of Chemistry
Indiana University
Bloomington, Indiana |
| 1 | Dr. A. E. Martell
Department of Chemistry
Clark University
Worcester 3, Massachusetts |
Polarographic Reduction of Hexamminecobalt (III) Ion. III.
The Effect of NoncompleXing Electrolytes

by

H. A. Laitinen, A. J. Frank and P. Kivalo

Abstract

The diffusion current region of the first reduction wave of hexamminecobalt (III) ion in perchlorate, chloride and nitrate solutions shows anomalous dips at higher concentrations of reducible ion. The irregularities are due to formation of a film, probably of cobalt (II) hydroxide. The effects of gelatin, of various salts, and of pH on the film formation were studied. The pH range for film formation varies with the nature of the buffer.

Reduction of hexamminecobalt (III) ion in the presence of aquated cobalt (II) ion showed that no addition to the second wave is caused by a small addition of cobalt (II). This is explained by precipitation of the latter by ammonia released during reduction of the hexamminecobalt (III) ion. At the second wave, this ion is reduced directly to the metal without the intermediate formation of the hexaaqio cobalt (II) ion.

Another type of film formation, caused by direct interaction of mercury, is found in the presence of bromide, thiocyanate or iodide ions. Although mercury is involved, the film consists of cobaltous hydroxide.

A study of the effect of various electrolytes on the diffusion current shows that, after the effect of viscosity is taken into account, there remains a suppressing effect which increases with increasing anionic charge.
The results of a study of the reduction of the hexaminecobalt (III) ion in certain complexing media was previously reported. The present investigation deals with reduction in non-complexing electrolytes. The experimental details were the same as previously described.

Results and Discussion

The Effect of Hexaminecobalt (III) Concentration

In the polarographic reductions hitherto reported, the concentration of the complex ion has been millimolar or less. It was therefore of interest to determine if the characteristics of the reduction remained constant at concentrations approaching the upper limit of useful polarographic work. Figure 1 shows the current-voltage curves for the reduction of the complex at various concentrations in 0.1 N sodium perchlorate. It can be seen that at concentrations of 0.5 to 2 millimolar, fairly regular waves appeared for both the first and the second reduction steps, the half-wave potentials being, as usual, about -0.250 and -1.230 v. vs. S.C.E., respectively. As the concentration of the reducible ion was increased (curves 5 and 6) the current increased at the right potential, but did not reach the expected height and then, at increased potential, suddenly dropped to a minimum. The minimum
appears to be independent of the concentration of the cobalt complex. When the potential was made more negative the current started to increase again. The current at the top of the second wave was proportional to concentration, and normal in magnitude.

Similar curves were also obtained in $0.1 \, \text{M}$ sodium chloride and nitrate solutions. In the nitrate medium, the second reduction step starts about 200 mV. earlier than in the two other cases, and seems to consist of a "prewave", which precedes the actual second wave. Brdicka\(^2\) has reported the same phenomenon in the

\begin{itemize}
\item[(2)] Brdicka, R., Coll. Czechoslov. Chem. Communs., 5, 113 (1933).
\end{itemize}

reduction of cobaltous chloride in neutral solution. He explained the prewave as being due to the pentaaquomonohydroxocobalt (II) ion formed by hydrolysis, the ion being in slow equilibrium with the hexaaquo cobaltous ion.

Gayer and Voontner\(^3\) have recently shown that the hydrolysis

\begin{itemize}
\end{itemize}

of cobalt (II) actually exists. Figure 2 shows Brdicka’s "prewave" obtained in the reduction of a mixture of 1 millimolar hexamminecobalt (III) and 4.78 millimolar cobalt (II) in $0.1 \, \text{M}$ sodium perchlorate containing 0.01% gelatin.

The sudden drop in the current, occurring at higher concentrations of the hexammine complex, is no doubt caused by a film
formation. Similar current limiting film formations have been reported, e.g., by Kolthoff and Miller and Kolthoff and Lingane.

A plausible explanation for the occurrence of such a film may be postulated as follows: The first product of the reduction of hexamminecobalt (III) is the divalent hexammine complex, the latter, however, being a labile complex rapidly exchanges its ligands to satisfy the equilibrium condition in the medium in question. If the supporting electrolyte is a noncomplexing ion like nitrate or perchlorate, the result of the exchange will be the hexaaquo cobaltous ion. Thus ammonia will be liberated increasing the pH at the surface of the dropping mercury electrode. It is known that an addition of small amounts of ammonia to a cobalt (II) solution gives precipitates of corresponding basic salts. In the present case, however, where the ammonia

(7) Haberman, J., Minaash., 5, 445 (1884).
(8) Strömholm, D., Arkiv Kemi Min., 2, 16 (1907).

concentration is actually greater than the cobalt (II) concentration, it is likely that the cobaltous hydroxide is precipitated.

That ammonia actually was liberated during the first step
of the reduction, was shown by an experiment in which cadmium ions were present in the solution. It was thought, that the reduction of cadmium would be affected due to the precipitation of a basic salt or the hydroxide of cadmium (cadmium ammine complexes are not likely to be formed at the low ammonia concentration). However, the experiment showed, that the reduction wave of the cobalt (III) complex was itself almost suppressed up to the potential where cadmium was reduced. The small amount of cobalt (III) being reduced gave enough of ammonia to raise the pH to the point, where a film, probably of a basic cadmium salt, was formed. When the potential became negative enough to reduce the cadmium, the reduction proceeded normally, the wave height was equal to the sum of the corresponding waves recorded separately.

As can be seen from Figure 1, Curve 1, the film formation starts at around -0.8 v. and disappears around -1.0 v. At higher concentrations the film formation starts earlier. This apparent dependence of the film formation on the potential probably is due to electrostatic effects on the colloidal precipitate formed at the electrode surface.

A microelectrolysis experiment was conducted in an attempt to make the film visible. The cell used was a special H-cell in which the cathode compartment held only 1 or 3 of solution. Utilizing a droplet of mercury as a cathode, a potential of -0.9 v. vs. S.C.E. was applied, the solution being a 5 millimolar hexamminecobalt (III) chloride in 0.1 M sodium nitrate. Oxygen was removed as usual with nitrogen by means of a fine glass
capillary tubing inserted in the small cathode compartment. After a current of 60-100 microamperes had passed for an hour a greenish precipitate was observed on the mercury surface.

The Properties of the Current Limiting Film

Some of the properties of the film were also studied. It was found that an addition of gelatin removed the film. The irregularities shown in Figure 1, Curve 5, disappeared after a minimum addition of 0.02% gelatin, which acts as a protective colloid preventing the formation of the adherent film. As previously reported from this laboratory, the addition of gelatin causes a large shift of the half-wave potential to more negative direction.

It was also found that by increasing the concentration of the supporting electrolyte the irregularities disappeared. The electrostatic adsorption of the colloidal precipitate is probably affected by the presence of high concentration of neutral salts. For instance, when the concentration of the complex was 5 millimolar, it was necessary to increase the concentration of sodium nitrate to 2 M in order to remove the irregularities.

On the other hand, it was expected that salts of higher charge type would coagulate the colloidal precipitate and make the film formation more pronounced. One tenth molar barium nitrate solution used as supporting electrolyte, did, however, not show

any film formation at all nor did 0.1 M sodium sulfate, or 0.1 M phosphate buffer (pH 6-10). The explanation might be a peptization effect of adsorbed ions and/or a complexing effect to form a soluble divalent cobalt compound. When a sufficient concentration of ammonia and ammonium salt was present to prevent the divalent cobalt amine from transforming to the aquated ion, no irregularities appeared. It was also found that an addition of ammonia only, actually increased the formation of the precipitate, which is explained by the fact that the divalent cobalt amines are stable only in the presence of ammonium salts.11

The Effect of pH

The effect of variation of the hydrogen ion concentration was studied primarily to elucidate the film formation. The pH-effect was, however, masked by side effects. The acidity was varied from 1 M hydrochloric acid to acetate buffer (total acetate concentration 0.1 M) pH 4.40 to 6.65, phosphate buffer (total phosphate concentration 0.1 M) pH 5.50 to 9.50, borate buffer (total borate concentration 0.1 M) pH 7.85 to 9.80, and finally using sodium hydroxide up to a concentration of 2 M. As expected, in acid solution no film formation was observed, because of the fact that the ammonia formed during the reduction is immediately neutralized. In the case of the acetate buffer, the first sign of a precipitate occurred at pH 5.5 and the film formation became
more pronounced with increasing pH. It is of interest to notice that when the pH was between 5.5 and about 6, the second reduction step started at around -0.9 v. vs. S.C.E., indicating a hydrolysis effect similar to that mentioned above. On both sides of this pH interval, the second step started at -1.15 v. As already mentioned, no film-formation was observed when a phosphate buffer was used. Using boric acid buffer the pH had to be increased to 9 before any precipitation started.

In the experiments, in which the supporting electrolyte contained sodium hydroxide, very interesting results were obtained. It was thought, that because of the limited solubility of cobaltous hydroxide, the reduction would be suppressed by a strong film formation. If the concentration of sodium hydroxide was between 0.005 and 0.03 molar the first reduction wave was suppressed, the second wave again seemed to be of normal light. However, one tenth molar sodium hydroxide solution gave a very well defined diffusion current for 2 millimolar cobalt (III) complex, and the same was true for any concentration up to 2 M of the hydroxide. Even a 5 millimolar cobalt complex gave a smooth current-voltage curve with 0.1 M sodium hydroxide. It was observed that the half-wave potentials of the first wave stayed practically constant with increasing concentration of sodium hydroxide but the second wave shifted to more negative potentials (ca. 0.2 v.). However, no

quantitative interpretations can be made because of the irreversibility of the reduction.

The disappearance of the film at higher alkali concentration can be due to two causes, either a peptization or a complex formation or both. It was shown in the first part of this investigation that a hydroxo complex is formed as an intermediate in 10 M sodium hydroxide. This complex is said to exist also in 3 M alkali. Gayer and Garrett showed that the principal ionic

reaction which determines the solubility of cobaltous hydroxide in dilute sodium hydroxide, is the formation of the acid anionic salt radical, or the trihydroxy complex:

\[
\text{Co(OH)}_2 + \text{OH}^- \rightarrow \text{HCoO}_2^- + \text{H}_2\text{O} \quad \text{or} \quad \text{Co(OH)}_3^- \\
\]

There is another possibility of forming a soluble product in the reduction of hexamminecobalt (III), namely, a formation of a mixed complex, for instance

\[
\text{Co(NH}_3)_6^{3+} + e^- + \text{OH}^- \rightarrow \text{Co(NH}_3)_5\text{OH}^+ + 3\text{NH}_3 \\
\]

Such complexes do not appear to have been reported in the literature, but there seems to be no reason why they could not exist in solution as metastable intermediates.
Reduction of Hexamminocobalt (III) in the Presence of Co(II)

If the reduction of the hexamminocobalt (III) ion proceeds in a noncomplexing medium with the hexaaquo cobaltous ion as an intermediate, then the simultaneous presence of cobalt (II) in the solution should increase the height of the second wave. This was studied in an experiment in which a solution containing 0.1 M sodium perchlorate, 0.01% gelatine, 1 millimolar hexamminocobalt (III) and increasing concentrations of cobaltous nitrate was electrolyzed at the dropping mercury electrode and the height of the second wave recorded. It was found that the second wave did not increase until the concentration of cobalt (II) was about 1 millimolar. Because of the fact that the ammonia concentration at the surface of the drop is about 6 millimolar part of the divalent cobalt approaching the electrode will be precipitated. If the concentration of the divalent cobalt is below about 1 millimolar, all of it will be precipitated and will not be reduced at all. By increasing the concentration above this limit the current rises proportionally to it. By the precipitation of cobaltous hydroxide ammonium ions are formed, decreasing the pH enough so that the rest of cobalt (II) is soluble.

An important conclusion can be drawn from this experiment, namely, that the reduction to the metallic state occurs without the hexaaquo intermediate.

Reduction in the Presence of Halide and Thiooxanate

The first reduction step of hexamminocobalt (III) is complicated with a film formation using halides and thiooxanate as
supporting electrolytes. Figure 3 shows a family of curves representing the first reduction step in various halide and thiocyanate solutions. Chloride does not give a film formation, but the half-wave potential is more positive than that observed in a nitrate solution and the wave starts at zero applied potential with a small current. Bromide shows clearly a film formation and the fact that the reduction starts earlier than in the presence of chloride. Thiocyanate and iodide give a strong film formation. The iodide solution is only 0.1 M because of the limited solubility of the hexamminecobalt (III) iodide. Figure 4 illustrates the fact that the reduction starts at early potentials, but is masked by the anodic dissolution of mercury.

The phenomena has a simple explanation: the cobalt (III) complex oxidizes mercury in the presence of halides to form hexamminecobalt (II) and mercurous halide. The divalent cobalt complex decomposes by aquation and is precipitated as the hydroxide, which is the film forming substance. The mercurous is reduced electrochemically to give the current.

The height of the suppressed part of the first wave depends on the concentration of halide ion and seems to have a minimum around 0.1 M concentration in the case of thiocyanate. Calculations showed that the film cannot be pictured as a monolayer, but rather as a multilayer adsorption. It was also found that the film formation of 2 millimolar hexamminecobalt (III) did not have any effect on the electrocapillary curve of 0.1 M potassium thiocyanate, suggesting that the film is rather loosely adsorbed at
the surface. However, the height of the suppressed part of the first wave was directly proportional to the height of mercury column, and the current-time behavior inverted (decreasing current with increasing time). Both of these observations are consistent with a surface-limited current.

That mercury is spontaneously oxidized by hexamminecobalt (III) in halide and thiocyanate solutions was confirmed by test-tube experiments. Deaerated solutions of halides containing the cobalt complex were shaken with mercury. It was found that the solutions turned green due to the formation of a precipitate and that ammonia was liberated. The relative time required to complete the reactions was shortest for iodide and increased for thiocyanate and bromide and for chloride actually was very long. The green precipitate was analyzed and consisted of cobaltous hydroxide. Curve 3 in Figure 4 shows that an addition of ammonia buffer will remove the film, as expected, if it is cobaltous hydroxide. Apparently the rate of direct interaction between mercury and cobalt (III) complex is faster than the electroreduction of cobalt (III) at zero applied e.m.f. With increasing negative potential, the rate of the electrode reaction will increase. The correlation between the potential at which the film formation ceases and the solubility of the corresponding mercurous halide (Fig. 3) may be accounted for on the basis that adsorbed halide ion takes part in the direct reaction. The adsorption of halide ion will decrease with increasing potential again favoring the electroreduction reaction.
The second reduction step was found to occur at about the same potential in the presence of the halides as in nitrate solutions.

The Effect of Electrolytes on the Diffusion Current

Laitinen, Bailar, Holtzclaw and Quagliano observed that the diffusion current was suppressed in solutions containing sulfates, tartrates and citrates and also that the half-wave potential of the first wave varied with the supporting electrolyte. These effects were attributed to the formation of a "super complex", the hexamminecobalt (III) ion being the central ion of an aggregate held by electrostatic attraction.

Several investigators have observed that the diffusion currents of various metal ions in certain supporting electrolytes are inversely proportional to the square root of the specific viscosity of the medium. Also it has been found that

the diffusion current.

Since the diffusion rate of ion aggregates is masked by a viscosity effect, it was desirable to measure the diffusion current of hexamminecobalt (III) in various supporting electrolytes of different charge type and known viscosity.

In this investigation it was found that the diffusion current is inversely proportional to the square root of the viscosity and that the effect was independent of the nature of the electrolyte, provided the change of the ion is kept constant. Figure 5 and the following table show the results of the experiments.

Curve 1 is the plot of i_d vs. $\sqrt{\eta}$ for univalent anions, Curve 2 for divalent anions. The single point corresponding to a trivalent anion appears to lie on a third curve.

It can be concluded that after the effect of viscosity has been taken into account, there remains a suppressing effect, which increases with increasing charge of anion. This is consistent with the concept of an electrostatic clustering or "super complexing".

As mentioned above, the half-wave potential of the first reduction step is sensitive to variation of the supporting electrolyte. For instance, as seen in the table, the half-wave potential is shifted about 0.2 v. to the negative direction changing the supporting electrolyte from 1 M nitrate to 1 M sulfate. It was, however, found that this is not all due to the super complexing but that the change of the ionic strength also affects the potential. Keeping the ionic strength practically constant ($\mu = 1$) with potassium nitrate an addition of 0.1 M potassium sulfate
shifted the potential only 25 mv. whereas the shift was 170 mv. if the supporting electrolyte consisted of only sulfate.
TABLE I

Reduction of 1 millimolar Co(NH₃)₆ in Various Supporting Electrolytes

Electrode I

<table>
<thead>
<tr>
<th>Monovalent Anions</th>
<th>Conc.</th>
<th>n/1/2</th>
<th>i_d/a</th>
<th>i_d'1/2</th>
<th>E₁/₂, V. vs. S.C.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NaCl</td>
<td>1.0</td>
<td>1.047</td>
<td>3.59</td>
<td>3.75</td>
<td>-0.193</td>
</tr>
<tr>
<td>2. CaCl₂</td>
<td>1.0</td>
<td>1.073</td>
<td>3.31</td>
<td>3.55</td>
<td>-0.220</td>
</tr>
<tr>
<td>3. Na benzoate</td>
<td>1.0</td>
<td>1.285</td>
<td>2.68</td>
<td>3.41</td>
<td>-0.300</td>
</tr>
<tr>
<td>4. NaClO₄</td>
<td>1.0</td>
<td>1.023</td>
<td>3.56</td>
<td>3.65</td>
<td>-0.240</td>
</tr>
<tr>
<td>5. NH₄NO₃</td>
<td>1.0</td>
<td>0.985</td>
<td>3.63</td>
<td>3.57</td>
<td>-0.250</td>
</tr>
<tr>
<td>6. Na acetate</td>
<td>1.0</td>
<td>1.180</td>
<td>3.00</td>
<td>3.54</td>
<td>-0.345</td>
</tr>
<tr>
<td>7. NaOH</td>
<td>0.5</td>
<td>1.051</td>
<td>3.53</td>
<td>3.71</td>
<td>-0.355</td>
</tr>
<tr>
<td>8. CoCl₂</td>
<td>1.0</td>
<td>1.097</td>
<td>3.13</td>
<td>3.43</td>
<td>-0.195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divalent Anions</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Na Tartr.</td>
<td>1.0</td>
<td>1.155</td>
<td>2.22</td>
<td>2.57</td>
<td>-0.380</td>
</tr>
<tr>
<td>10. Na₂SO₄</td>
<td>0.7</td>
<td>1.074</td>
<td>2.95</td>
<td>3.17</td>
<td>-0.450</td>
</tr>
<tr>
<td>11. Na₂SO₄</td>
<td>1.0</td>
<td>1.110</td>
<td>2.64</td>
<td>2.94</td>
<td>-0.465</td>
</tr>
<tr>
<td>12. CoSO₄</td>
<td>1.0</td>
<td>1.163</td>
<td>2.43</td>
<td>2.82</td>
<td>-0.440</td>
</tr>
<tr>
<td>13. (NH₄)₂SO₄</td>
<td>1.0</td>
<td>1.055</td>
<td>2.96</td>
<td>3.12</td>
<td>-0.465</td>
</tr>
<tr>
<td>14. K₂SO₄</td>
<td>0.7</td>
<td>1.036</td>
<td>3.09</td>
<td>3.20</td>
<td>-0.465</td>
</tr>
<tr>
<td>15. H₂SO₄</td>
<td>1.0</td>
<td>1.043</td>
<td>3.19</td>
<td>3.33</td>
<td>-0.385</td>
</tr>
<tr>
<td>16. Na₂SO₄</td>
<td>0.1</td>
<td>1.01</td>
<td>3.20</td>
<td>3.24</td>
<td>-0.430</td>
</tr>
<tr>
<td>17. Na₂CO₃</td>
<td>0.5</td>
<td>1.135</td>
<td>2.82</td>
<td>3.20</td>
<td>-0.455</td>
</tr>
<tr>
<td>18. MgSO₄</td>
<td>1.0</td>
<td>1.170</td>
<td>2.24</td>
<td>2.63</td>
<td>-0.452</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trivalent Anions</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Na₃ Citrate</td>
<td>1.0</td>
<td>1.175</td>
<td>1.75</td>
<td>2.06</td>
<td>-0.350</td>
</tr>
</tbody>
</table>

Figure 1

Polarograms obtained in 0.1 M sodium perchlorate, with various concentrations of hexamminecobalt (III) chloride. Electrode I, Damping 1.

<table>
<thead>
<tr>
<th>Curve</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc. vs.</td>
<td>Millimolar</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 2

Polarogram obtained in 0.1 M sodium perchlorate containing 0.013% gelatine, 4.75 millimolar cobalt (II) and 1 millimolar hexamminecobalt (III). Electrode I, Damping 1.

Figure 3

Polarograms of 2 millimolar hexamminecobalt (III) in various supporting electrolytes (first reduction step):

<table>
<thead>
<tr>
<th>Curve</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supp.</td>
<td>1 M</td>
<td>1 M</td>
<td>1 M</td>
<td>1 M</td>
<td>0.1 M</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>NaNO₃</td>
<td>NaCl</td>
<td>NaBr</td>
<td>KSCN</td>
<td>NaI</td>
</tr>
</tbody>
</table>

Figure 4

Polarograms of 2 millimolar hexamminecobalt (III) obtained in: Curve 1, 1 M sodium nitrate; Curve 2, 0.1 M potassium thiocyanate; Curve 3, 0.1 M potassium thiocyanate containing 0.1 M ammonia and 0.1 M ammonium nitrate. Electrode I.

Figure 5

The diffusion current of 1 millimolar hexamminecobalt (III) plotted versus \(\gamma^{1/2} \) of various supporting electrolytes. Electrode I.