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SECTION I

Introduction

The object of this technical report is to inform the Office
of Naval Research on the present status of their Project
NR 064 369, Contract No. N7onr=-32911, “The Dynamic¢ Properties
of Plastics and Rubber-1like Materials”, which is being con-
ducted by the Department of Mechanics at Illinois Institute of
Technology.

Two apparatuses are being used to study the effects of
dynamic loading on materials:

The first uses mechanical and optical devices to determine
directly the stress-strain curves of plastic and rubber-like
materials subjected to impact loads, the durations of which are
of the order of milliseconds.

The second apparatus, which is only partially built, will
use mechanical and electronic devices to determine the stress-
strain curves of elastic materials subjected to impact loads,
the durations of which will be of the order of microseconds.

In this report a general description of the apparatuses is
presented and the thearies of both methods are outlined briefly.
The mechanical and optical parts of the apparatus for testing
materials at low rates of compressive straining are described,
the theory of the experimental method is outlined, and the

influence of the principal causes of mechanical and optical

-9 -



error associated with the method are evaluated. It is shown how
the dynamic stress-strain curves for a given specimen under im-
pact loading can be calculated directly, when the hereditary
characteristics of the material are known. By comparing the
experimental and calculated curves it is possible then to
determine the accuracy of this experimental method of in-
vestigating the dynamic properties of materials., Some results
are given for a natural rubber of 30-durometer hardness,

The component mechanical devices and electronic equipment
for testing materials at higher rates of compressive straining
are described and the theory of the method is given.

A mathematical analysis of the longitudinal impact of a
round-headed, short bar on an infinitely long bar is presented.
This study follows that given by W. A. Prowse [1], [2], (3], [4].
but the analysis is extended so as to give final results in an
explicit form more suitable for numerical computation.

The propagation of a stress wave of known characteristics
through a cylindrical specimen held between the flat ends of two
elastic bars is analyzed. Three specimens are considered, namely,
one made of a purely elastic material, amnd a second and third
made of materials which display elasto-viscous and hereditary
characteristics, respectively. An approximate solution of the
problem is given in the report for each of these specimens.
Further, a more elaborate and complete theory of the same problems

is indicated. In Appendix A a mathematical analysis of the
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longitudinal impact of a ball on an infinitely<long cylindrical
bar is given, The final results of this analysis are presented

in tabular form for given initial velocities of the impinging

balls,.
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SECTION II

Description and Use of the Apparatus for Testing Materials

at Low Rates of Straining

A. General description of the apparatus

The apparatus employed in these experiments is shown in
Figures 1 and 2 and in the schematic diagram of Figures 3 and 4.
It éonsists essentially of:

1) two 3-foot, steel bars of equal mass suspended as
ballistic pendulums;

2) a rotating-drum camera, the drum of which rotates at
a known speed, and the shutter of which is synchronized to
operate with the motion of the steel bars;

3) an optical system which focuses the image of a very
thin slit on the knife edges machined on the adjoining ends
of the steel bars (a cylindrical specimen to be tested is
mounted between the two bar ends on which the knife ends are
machined) ;

4) an electromagnetic device which can r elease one or
both of the bars at the same time.

The cylindrical specimens of the rubber or rubber-like
materials are 1/2~inch in diameter and 1/2-inch long. The
first group of specimens has been fabricated from the following

materials:
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Figure 4, Schematic diagram of optical system.

eoooProjection Lamp, GE 750T12P
csoobround-Glass Plate, 2 in. x 3 in.

P
G
Seanoedlit, 0,001 in. x 7/8 in.
Koos.Knife Edges on bars

M

eoooMirror, first-surface set at 45°
to axis of lens arrangement

Fooo.Film, Kodak Linagraph Panchromatic LP421
Ll,Q,Condensing Lens, 6 in, ff1l, 4-=7/16 in. diam,

LyosoProjection Lens, 75mm f/1, 49mm diam coated
achromat

LyoooPlano Convex Field Lens, 17 in. f/1l, 3=1/2 in,
diamc

L4...Plano Convex Field Lens, 21 in f£/1, 3-1/2 in.
diam,

LgoooCamera Lens, Color Skopar £/3.5, 105 mm f/1
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as. Natural rubber (27-30 Durometer hardness)

b. Butyl-25 (3540 Durometer hardness)

ce Neoprene GN (35-40 Durometer hardness)

d. Hycar OR=15 (35-40 Durometer hardness)

@. Buna-N (35-40 Durometer hardness)

f. GRS=1585 (35-40 Durometer hardness)

The recipes for the rubber specimens are given in Appendix C.
The second group will be fabricated from the same materials,
but in about 70 Durometer hardness,

The specimens are placed on the plane end of one of the
steel bars such that the longitudinal axis of the bar and the
specimen coincide. The other steel bar is released from a
predetermined height and made to impinge upon the free end of
the specimen. During the impact, a photograph is taken of the
interval between the knife edges which lie in the plane of the
ends of the steel bars. The film is calibrated by taking a
still photograph of the interval when both bars are barely in
contact with the specimen.

The deformation of the specimen at succeeding instants of
time is measured directly on the film by means of a traveling
microscope. This instrument is fitted with two orthogonal,
independent motions, each calibrated to read a total excursion
of 4,5 inches in increments of 0,001 inch. From tyese measure-
ments it is possible to deduce the dynamic stress=-strain
relationship of the specimen.

With certain modifications, the same apparatus will be

used to test specimens at ambient temperatures other than room
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temperature. A small chamber will be constructed which will
completely enclose the specimen and yet not interfere with
any of the moving parts necessary to conduct the tests. Pre-
liminary designs of the chamber have been considered and it
will be constructed when the testing program at room tem-
perature has_been completed, With acetone and dry ice (or
possibly another solvent) it should be possible to conduct
tests at ambient temperatures of -68F, and, with hot water,
at +158F. These devices are not described in this report but
will be discussed more completely in a later technical report.
A static testing device has been built and is shown in
Figure 5. Static loads up to 200 pounds can be applied to the
specimen and a maximum deformation of l-inch can be measured
to within 0.00025 inch, The same size specimens (1/2-inch x
1/2-inch cylinders) are used for the static tests, Compression
set tests of each rubber stock are being conducted concurrently
by the staff of the Rubber Laboratory, Armour Research Founda-
tion, an affiliate of IIT.

B. Theory of the Method

In Figure 6 let F(t) represent the compreséive force acting
on the specimen at the instant t measured from the instant
t = 0, at which time the impinging bar first contacts the speci-
men. Let xl(t) and xz(t) be the horizontal displacements of

the two extremities of the bars measured from their position at
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the instant t = O and m be the mass of each of the two equal

steel bars,

The following relationship will be verified [5], [6], [7],

2
d®(x, - x,) 2
2 1 d®s
F=-m = -m (2.1)
dt? at2

Call ¢(t) the actual length of the specimen at the instant t
(¢ is deduced directly from the readings of the film).
Then

(k) =t = s(t)

where 50 is the initial length of the specimen,

By differentiating the experimental ( s, t) curves twice it
is possible to find the corresponding ( F, t) curves by the use
of equation (2.1). If we suppose that during deformation the
volume of the specimen remains constant and call A and Ao
the cross-section areas of the specimen at the instants t and

t = O, respectively, and Vo initial volume, we get

VO = Aoeo = A¢

The actual true stress will then be

o(t) = %{_}. - F(t) e(t)

@)

as compared to the engineering stress

S ot

o(t) = EE

4
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The actual true strain is defined as

1
S(t) = 1n -1-0(?)
as compared to the engineering strain

e(t) = E%FL
. o)

From the readings of the photographs it is possible to
determine the curves: ¢ (t), F(t), o(t), e(t) and finally the

dynamic stress-strain curves (o, €).

C. Degree of agcuracy of the mechanical and optical methods

employed

Two causes of possible error in the described experimental
method have to be taken into account. The first, of a mechanical
nature, is due to the elastic deformation of the steel bars
during impact. The second, of an optical nature, is due to the
finite dimensions of the slit.

The effect of these causes of error are negligible in the
case of plastics and rubber-like materials due to the fact that
during impact the forces acting on the metallic bars and the
induced deformations of the bars are very small, while the total
duration of impact is comparatively large. An evaluation of their
effects is given below.

1) Let the following notation be used;

Py Cesessnsss the density of steel

El veseesoans Young’s modulus of steel



cy cessssssse Velocity of sound in steel

p esssssasae pressure of the longitudinal wave produced
in bars by the force F(t) caused by the
impact

%% sssssessso the particle velocity of the same wave
a(t) eseveseees acceleration of the bar at the instant of
initial impact with the specimen

v cessssssse Velocity of the bar at the instant of

initial impact with the specimen

Al esesanssso Cross-section area of the bars

Ll seesescsnses length Of the baIS

The following relationships hold:

P=Pc %ﬁ (2.2)
where
0% = -?-i- , and
(2.3)
(0 = Bl - - ntgt)

From equations (2.2) and (2.3), it follows that

t
E,(t) = = -F"Tg-;-xl- { a(t)dt
(2.4)

L
£(t) = C [v, - v(t)]
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’
Let v, be the velocity (negative) of the bar after impact. Then
from equation (2.4) the maximum elastic deformation in the bar
is given by:

L ¢ 2Lv

! 0
gmax AEI [vo vy ] §§-cl (2.5)
which yields an approximate value for 13 of 0.0l-inch for

max
the bars used,

2) The finite thickness of the slit image of the film
gives rise to an error in determining the instants of time for
the experimental s(t) curves. The error is of the same order of
magnitude as the time taken by the film on the rotating drum to
move a distance equal to the thickness of the slit image on the
film and can be determined as follows:

Call 8 the thickness of the image of the slit on the film,
L, the total length of the film, n the number of revolutions per
second of the rotating drum. It follows that a 1* length of
film corresponds toI%i seconds and the thickness of the slit
image corresponds to é% seconds. If T is the total duration of
impact, the percentage error in the evaluation of time in our
measurements will be given by IgT” which indicates a possible

error in the indicated time of approximately 0.2 percent.

D. Direct computation of the dynamic stress-strain curves for a

given material, with known hereditary characteristics, under

impact loading.

When the hereditary characteristics for a given material are

known, as a function of time, it is possible to calculate directly




the dynamic stress-strain curve under impact. In order to
simplify the calculations we shall assume that under static
load conditions the material obeys Hooke’s law, while under
dynamic conditions the stress-strain relationship for the

material is

: t
0 = Ee+ S Pt - 7) E%%EL dv (2.6)

Suppose that such a material is subjected to an impact
test. Call,to its initial length, AO its initial cross-sectional
area, {(t) =2 o " s(t), its length at time t , and m the mass
of the impinging bar.

The following integro-differential equation will characterize
the motion during impact in the case of the assumed linear stress-

strain relationship:

2 A At
miﬁéii+3[%s+f%fo be - v S 4 =0

(2.7)

The solutions of equation (2.7) will be given for different types
of heredity. It is evident that if the equation is solved, i.e.,
the function s(t) is determined, then the stress-strain curves

can be calculated by the use of the formulas given in Section 1I B.

1. Heredity of the first degree: ¥ () = He @t

By a simple differentiation with respect to t equation (2.7)

can be transformed into the following differential eguation:




3 2 ,
o dst) o d%s(t) , (B + H Ao ds, AgFas(t) _

at dt* Lo at Lo
(2.8)
The solution of equation (2.8) is of the form
s(t) = C.le_nt + Czemptcosqt + Gse‘ptsinqt (2.9)

where -n; -p+iqg; -p-ig, are the roots of the algebraic equation:

3 2 (E + H)A A
m

x + ax + : +=2—mEa= 2.1
——jf;*—“g.x zom 0 ( 0)

From the initial conditions:

2

s =0, g% = v ; 45 - 0 for t = 0, it follows that
dt
Cp =¥1%e G2 = "V1Ver C3 7 Y2% (2.11)
where:
2p
'Y =
1 AR
(2.12)
L 2 v n? -l
2 glg® + (p=n) 9

9. Heredity of the first degree with residual:

¥ (t) = He"OF + H,

The solution of equation (2.8) is given by equations (2.10),
(2,11), and (2,12) where, in this case, -n, -p*dq, -p -iq are the

roots of the algebraic equation:
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(E+H+ H)A A (E+ H)a
xS + x2 + 0.9 4 4.0 0

a i a = 0 (2.13)
o o

3. Heredity of the second degree: ¥t) = Hleao’lt + H2e°a2t

By a double differentiation with respect to t equation
(2.8) can be transformed, in this case, into the following

differential equation:

4 3 2
d*s (t) d’s(t) d%s(t)
” + (al + 32) ____Em,f Cgiﬁ'(E + Hl + HZ) + ala2]_~g:7’

EA
+ 7S [Ela, + as) + aiHy + aHy] S22+ qran p=2 =0 (2.14)
Z:E‘[ 1Y e g * el F T

The solution of equation (2.14) is:

t

s(t) = Cle° nt, Czeﬂvc + Cseaptcosqt + C4e'ptsinqt

(2.15)

where - n, =§, -p+iq, -p-1ig are the roots of the algebraic

eguation:

A 2
xtt (og ¢ ap)x® + (% (B B ¥ Hy) * ajag)x

A ER
+ g2 [E(a, + ao) + a Hy + a,H.]x + a,a 2 =0 (2.16)
K:E'[ 1t % 1Hg + agHy 1%2 I8

The initial conditions for determining the four constants Cl’ CZ”

03 and 04 are:
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2 3 (E+ H, + H,}A
= . 98 _ . d’s _ o d’s - 1 2% ds
ST G T Vor 7708 Ty T e
for t = 0

The following four equations for determining the constants Ci

(1 =1, 2, 8, 4) are deriveds

Ci *Cy + Cg = O

ey "CCp m gt €y = vy,

2 2

Ny + Ly + (pPra?)Cg - 2o, = O (2.17)
-(n’ +nB)Cy - (€ + LBIC, + p(3q%-p?-B)C, + q(3pP-g%+BiC, = O

where:
(E + Hl + HZ)Ao

B =
A

4. Heredity of the second degree with residualg

t t

’ — =Q - )
¥(t) = He M1t 4 Hoe %25 + Hj

The solution of equation (2.8) is given by eguation (2.15)
and (2,17) where: =7, -0, =p *ig, -p =ig are the roots of the

algebraic equation:

4 3, Bo 2
x* + lag + ag)x” + [zzﬁ (E+H +Hy+ H)# aja,]x

(2.18)
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and B of equation (2,17) is given by:

B - (E + Hl + Hz + HO)A’O
T m

E. Determination of the hereditary characteristics of a material

from the experimental dynamic stress-strain curves

We shall‘demonstrate the method of analysis by considering
the case of heredity of the first degree with residual.
By equation (2.9) we note that s(t) can be written in

the form
s(t) = cpe ™t + ce™Pt 4 Te Pt (2.19)
where Cl and n are real, C and B are complex, and

c = 4 . iC3) | g =p+ iq (2.20)

We assume an expression for s(t) of the form of Equation (2.19)
and fit it to our experimental data by the method of least squares,
following the procedure of Prony (See reference [8], page 373).

Since -n, -B, and =P are the roots of the equation
x> + (n + 2p)x2 + (2pn + p2 + qz)x + n(p2 + qz) =0 (2.21)

We have by comparison of (2.13) and (2.21) the following three

equations for determination of a , Ho, and H:

a =n*t 2p

o,
E+H + H = Kzg (2pn + p2 + qz)




a(Ho + E) = :é% (p2 + qz)n

where E is the static secant modulus of the material.

Since
ds _ _ — .
TFlt=o = Vo = dCg - (n-plCy

we have a check on the accuracy of our calculations, as we

can obtain the initial velocity directly from the experimental
data,

With obvious modifications this method can also be used

to analyze viscous damping.

However, it should be noted that, in the relatiomnship

g =De + y%%

D is a lumped parameter which is obtained directly from the
dynamic test data; it may have no relationship to the static

secant modulus E. A close aporoximation of its value 1s

D=E+ Ho”




SECTION III

DESCRIPTION AND USE OF APPARATUS FOR TESTING MATERIALS
AT HIGH RATES OF STRAINING




SECTION III
Doscriptioh and Use of Apparatus for Testing Materials

At High Rates of Compressive Straining

A. General description of the mechanical apparatus,

The mechanical apparatus is shown in Figure 7. It
consists of:

1) two steel bars, 1” diameter, 6 feet long, and

2). a short impinging bar (hammer) with a round head.

‘This mechanical apparatus is equipped with a system of strain
gages, amplifier, radio frequency oscillator, oscilloscope and
photographic camera to record the longitudinal pulses which are
propagated along the two steel bars when the short bar strikes
the end of one of the long bars, The details of the electronic
eguipment are given in the next section,

The specimens to be tested, in the form of circular discs
of uniform thickness, with diameters slightly smaller than those
of the adjoining bars are placed between the carefully-lapped
plane ends of the two bars. For reducing friction between speci-
men and.bars both surfaces of each specimen are lubricated be-
fore being placed in the apparatus.

The hammer is released from a known height. When it strikes
the first steel bar én open ground circuit is completed which
triggers one sweep of the dual-beam oscilloscope. A compression
wave is propagated in the bar and its passage is recorded from

an amplified strain gage signal by the camera attached to the
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oscilloscope, When the compression wave reaches the other end
of the steel bar, a certain portion of the wave is reflected
back along the bar as a tension wave and the remainder is
transmitted through the specimen on to the second steel bar.

On the first steel bar, about 12 inches from the mounted
specimen, a strain gage is fastened. It is connected electri-
cally to a second trigger circuit which sets the second sweep
of the dual~beam oscilloscope., Thus, when the compressive wave,
which is being propagated in the second steel bar, reaches a
set of strain gages about 12 inches beyond the specimen a second
compressive trace is recorded by the oscilloscope camera.

From this photographic record then it is possible to cal-
culate directly the dynamic stress-strain curve of the specimen,
as will be shown later,

In this method, auxiliary electronic equipment is used to
amplify a signal from a set of strain gages, to superpose a
timing pulse on this signal, and finally, to indicate the mag-
nitude and length of the impact pulses on the screen of an

oscilloscope.,
Essentially, there are three circuits of importance,

1) the strain gage circuit, which amplifies the original
signal and mixes it with the timing pulse before it is fed into
the signal circuit of one beam of the dual-bean oscilloscope;

2) the time pulse circuit, which superposes 20 microsecond

pips on the strain gage signals and



3) the trigger circuits which set the sweep of one beam of
the oscilloscope to fire when they receive an external voltage
pulse.

The straiﬁ gages are arranged in sets of four at egui-
distant points around the periphery of the steel bars (Figure 7).
There are two sets, each about 12 inches from the head end of
the two steel bars. Since each set is connected in series, the
net effect of any bending modes will be zero and the voltage
change generated will be due entirely to the compressional pulse
being propagated along the steel bars,

The voltage pulse is amplified first by a four-stage triode
amplifier with a wide frequency response. A timing pip at in-
tervals of 20 microseconds is added to the output of the ampli-
fier,

The time interval of the pip is controlled by a Hewlett-
Packard audio-oscillator and can be varied if it is desired.

The pulse (pip) generator consists of an 884 gas triode and a
differentiating circuit. The output of the latter is formed by

a clipper circuit and then fed into a wide range amplifier in
order to obtain the proper phase relationship between the original
pulse and the timing pip. This corrected pulse is superposed,

in turn, on the amplified strain gage signal just before the
latter is fed into one of the signal circuits of the oscillo-
scope.

The phenomenon is transient rather than steady state and as

a consequence it is necessary to trigger the sweep of the oscillo-
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scopeljust before the aompressional pglse reaches the strain
gages. This is accomplished by making use of the circuits within
the oscilloscope and additional external circuits;

The sweep oscillator for each beamn of the‘osciiloscope is
set for a pre-d;termined sweep time, and then the other controls
are so adjusted that neither oscillator will fire until an
additional external voltage pulse is impressed upon them. Two
external trigger circuits are used to insure that the oscillators
will fire at the proper time;

The circuit for the first bar is energized when the hammer
completes a ground circuit at the instant of initial impact; for
the second, when the compressional wave passes a strain qaqé about
20 inches in front of the second set of recording strain gages,
In either case, a voltage pulse is amplified and then applied to
a sweep oscillator of the oscilloscope in order to produce a
single sweep at the instant the compressional wave passes- the
reqordinq strain gages, Thus, only one pulse from each set of
strain gages is recorded by the camera,

This method of testing will allow determination of the
stress-strain curves for rates of straining of the order of micro-
secords. The length of the direct pulse in the first long bar
is governed by the length of the striking bar (hammer) and the
relative magnitude of the pulse by the velocity at the time of
initial impact. |



In the following table we give some of the computed character-

istics of the pulses,

TABLE I

Theoretical time of contact in microseconds as

a function of height of drop and hammer length

Drop height Sem 10 cem 15 cm 25 cm

Hammer length

25 cm 140 136 134 130
S50 cm 239 233 231 228
75 cm 336 331 328 325
100 cm 432 427 424 421

This experimental method of determining dynamic stress-strain
curves for very high rates of straining is subject to certain
restrictions, as is the method based on the use of the Davies-
Hopkinson pressure bar [10], [11], namely,

1) The waves propagated in the bar are assumed to be elastic
waves, i.e,, the stress at every point in the bar must always be
within the region where the stress-strain curve is linear and
reversible,

9) It is assumed that the pressure wave is propagated
without distortion. This assumption is only true when the wave
lengths of the elastic waves are large compared with the lateral

dimensions of the bars. When this condition is not fulfilled,
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the wave suffers dispersion and the form of the pulse is dis-
torted as it travels along the bar,

3) A third assumption implicit in the method is that the
pressure in the pulse is uniformly distributed over the cross-
section of the:bar, even when the force acting on the end is
concentrated over a small area surrounding the center.

However, this method of investigation presents the followe
ing advantages in comparison with the method using the Davies-
Hopkinson Bar:

1) While in the Davies method it is possible to record
only the first part of the stress-strain curve, i.e., the part
when the specimen is compressed but not when it recoils, with

this method the complete stress-=strain curve can be investigated.

2) The determination of the stress=strain curves from the
experimental data is much simplexr, and there is less possibility
of making mistakes in the numerical computation. In fact,
while in the Davies’ method a numerical differentiation has to
be performed, in this method the stress=strain curves are ob-
tained through numerical integration of the experimental data,

a method of computation with many inherent advantages.

B. Theory of the method

When the hammer hits the first bar a direct compressive

wave Op (Figure 8) is transmitted undistorted along the first
..7 L]

long steel bar with velocity ¢~ = %’ [12]. When it reaches

the specimen, after a time t = (L being the length of the bar)

Q-
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the wave suffers dispersion and the form of the pulse is dis-
torted as it travels along the bar,

3) A third assumption implicit in the method is that the
pressure in the pulse is uniformly distributed over the cross-
section of the. bar, even when the force acting on the end is
concentrated over a small area surrounding the center,

However, this method of investigation presents the followe
ing advantages in comparison with the method using the Davies-
Hopkinson Bar:

1) While in the Davies method it is possible to record
only the first part of the stress=-strain curve, i.e,, the part
when the specimen is compressed but not when it recoils, with

this method the complete stress=strain curve can be investigated.

2) The determination of the stress-strain curves from the
experimental data is much simpler, and there is less possibility
of making mistakes in the numerical computation. In fact,
while in the Davies’ method a numerical differentiation has to
be performed, in this method the stress-strain curves are ob-
tained through numerical integration of the experimental data,

a method of computation with many inherent advantages.

B. Theory of the method

When the hammer hits the first bar a direct compressive
wave dp (Figure 8) is transmitted undistorted along the first
2 .
long steel bar with velocity ¢” = -% [12]. When it reaches

the specimen, after a time t =.% (L being the length of the bar)




# the wave suffers dispersion and the form of the pulse is dis=-

torted as it travels along the bar.

3) A third assumption implicit in the method is that the
pressure in the pulse is uniformly distributed over the cross-
section of the-.bar, even when the force acting on the end is
concentrated over a small area surrounding the center.

However, this method of investigation presents the followe

ing advantages in comparison with the method using the Davies-

Hopkinson Bar:
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of minciny misiakes 1n tine numericas computation., In fact,

{ while in the Davies’ method a numerical differentiation has to
; be performed, in this method the stress-strain curves are ob-

i tained through numerical integration of the experimental data,

a method of computation with many inherent advantages.,

: B. Theory of the method

When the hammer hits the first bar a direct compressive

i wave 0Op (Figure 8) is transmitted undistorted along the first

2 E

é long steel bar with velocity ¢ = 5 [12]. When it reaches
) the specimen, after a time t =t% (L being the length of the bar)
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only Op, a part of the original pulse, is transmitted through the
specimen and ipto the second bar. A tension pulse % is reflected
back along the first bar.,

The theory of impact developed here can be made more realistic
by considering a cylindrical specimen of a material held between
the plane ends of two steel bars (Figure 8). A stress wave of
known properties is propagated along the first steel bar, and
the problem is to determine the characteristic stress waves in-
duced in the specimens which follow various stress-strain relation-
ships.,

A minimum number of simplifying assumptions will be made for
both a relatively realistic analysis, and later, for a more appro-
ximate theory.

These initial assumptions for the first analysis are:

(1) The stress in the specimen is distributed uniformly
across each cross section.

(2) There are no reflections in the specimen.

(3) UR(t) = cD(t) - go{o, t) for x = O and all values of t;

mr(t) = goW, t) for x = 4 and all values of t, where the
specimen is of length f and cross-sectional area Aza the steel
bar has area Al and g = AZIAl is the ratio of the areas, oD(t)
is the wave transmitted initially along the bar on the left;
op (t) is the wave reflected from the interface of the left bar
and the specimen; and aT(t) is the wave transmitted to the steel

bar on the right.
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(Hooke) (Voigt) (Bqltzmann)
Figure 9

Schematic Diagram of Material Models

The third assumption is, essentially, a consequence of the
first two assumptions and the equilibrium of the specimen. The
second of our assumptions allows us to consider the specimen
infinitely extended to the right.

The stress~strain relationships for the specimen materials
considered are

(1) Elastic (Hookean Model)

(2) Elasto-Viscous (Voigt Model) [14]

(3) Hereditary (Boltzmann Model) [15], [16]

‘and the models which are characterized by each of these relation-

ships are shown in Figure 9. In all cases the equation of motion




is

2 :
-3%; a(x, t) =P, %Egu(x,, 1) (3.1)

where P is the mass density of the specimen.

Boundary and Initial Conditions

The basic boundary and wave front conditions are the same

for all three of the stress-strain relations considered, namely,
For t€0; 0€x€c® o0=0 (3.2)
For t 2 O the particle velocities of the specimen and the steel

rod are the same, that is for t 20, x = 0

du _ -1
3% = v = 6 Cop(t) + op(t)] (3.3)

where u(x, t) is the displacement of the specimen; p 4 and ¢
are the density and wave velocity of the steel rods, respectively,

The known initial wave is assumed to have the form

0 for t€0
oD(t) ={b sinht for Ot €T (3.4)

Lo for TSt

where

7“____1'171:

5

n is an integer and T is the time length of the pulse. The
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linearity of our equations permits superposition of solutions for

different n.

Case I - Elastic Specimen

o(x, t) = Ey o= ulx, t) (3.5)

where EZ is the static Young’s modulus for the specimen material.

Elimination of u(x, t) between (3.,1), (3.5) yields

o0 . . 2 3% )
2 % et |
E
2 _ 5g

The first assumption together with conditions (3,2), (3.3) and
equation (3.5) yield the boundary conditions,

Our system becomes

2 A

0% _ , 2 3%
3t 2 gxe
- X
t zggtécn .
g = ,
0€x <y } (3.7)
t#0 e
0(0, t) ='a’ OD(t)
x=0 P22
2%) S
1°1
e = 5
1+ o202




In view of our assumption of no reflections in the specimen, the
solution of (3,7) is
o(x, t) =0 fort--é’-soso,, 0<x €}
2

) ,
o(x, t) =aoD(t —6’52-) for t 20, 0 €x €}

(3.8)

Since the transmitted stress op is given by OT(t) = go(d, t)
we have the transmitted wave as an immediate consequence of (3.8).

For the initial wave given in (3.4) we have

.
_ .4 s
op(t) = 0 for t ?:% 0
op(t) = Ebsin)(t - L) for 0Ft#r \ (3.9)
2
oT(t)=O for T €t

Case II: Elasto-Viscous Specimen

duix, t) dzu(xg t)
ofx, t) =Dy Tox  * Y—wE (3.10)

where Y is the coefficient of viscosity. The initial conditions

are:
du _ Qu -
t =0: ulx, o) = 3§4x0 o) = ET%X, o) =0
_ dolx, o) _ (3.11)
o(x, o) = —7— =0

The boundary conditions are:

x = 0: = ulo, t) = -5 [20p(t) = qolo, £)] (3.12)

171
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where GD(t) is given by (3.4)

X—=ppp: ulx, tF>0

(3.12)
o{x, t}=>0 cont,

We attack this problem by means of the Laplace Transform [17],

[18]. We denote the transform of a sufficiently regular function

f(x, t) by T(x, z), i.e.,

Tix, z2) = SCf(x, t) ¢ 2% at )
O

or * (3.13)
£f(x, t)<eFlx, 2) |
By Section 4, [17] (3.1), (8,10), (3.11), (3.12), imply
3 — a
G(x, z) = (Dy +7Yz)g ulx, z) (a)
£ Gix, 2) = 2% ,lx, 2) (b)
1 _ _ >(3.14)
x =0: 2z ulo, z) = - FIE?{%D - golo, 2)] (c)
x»00: ulx, z=»0 (d)
o(x, z}9»0 (e)]
where, by (3.4)
-zt
op (z) = ML= (1) e -1 (3.15)
AT+ oz
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The solution of (3.14) is

_ 2p223ie%°ox )
o(x, z) = = T
. oP1¢1 * P 92a k
ulx, 2z) = - Gt
o"1”1 229 )
Paz
where(oO is the branch of 'ﬁgyfé which has positive real part.
If
Dz,zemmox

F(x, t) ——3p

. (3.17)
. gpoz 2 2y
Ycz[:l - tw ] (N4 + 29)

then, by section 10, [17],

F(x, t) for 0Ot €T

_ _2b\
olx, ) = 5TeTe, (3.18)
F(x, £) = (-1)™P(x, t-T) for t £ T
where
[Pz
02 - 3’5 (3-19)

by Chapter VI, [17],

D c+i00 ”&ox th
- 2 ze e Z 3,20

. 2 2
c-im [plcl +“’o]0\ + z“)
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Let
T=P;;2-t, C=€2-Z' gzpz;’zx
CLPLH 5 2 (3.21)
T TR Y T T
then
F(x, t) = ooy S 2eXR(CT - wE)dS - (3.22)"

T (E e me + e

where Tﬂl is the Bromwich contour (see Figure 10) and the branch

2
of IET_C = o which has positive (or zero) real part is chosen.

This implies that the only real root of hy + w = O for h > O
is § = 0,

Case I1I: Hereditary Specimen

2
o(x, t) = Eg g%-+ H'fi e e (t=7) Q—Eéﬁg#zl dt (3.23)

o]

®*: method similar to the above was followed by I. N. Zverev [19].
His solution is given in the form of a double integral which must,
in general, be evaluated numerically. For the purpose of this re-
port, numerical evaluation of the single integral (3.22) is much

more convenient,



Figure 10

Bromwich Contour - Viscous

(g z = 1N

@

Figure 11

Bromwich Contour = Hereditary



- 43

where E2 + H is the dynamic Young’s modulus and o, A are

Boltzmann constants for the material. The initial conditions

are:
t =0: u(x, o) =-g-l;- (x, o) =%—% (x, o) =0
(3.24)
e o) = 82, o) = 0

on(t) + == gl(o, tﬂ
D plcl

where OD(t) is given by (3.4)
{3.25)
X OO 2 ul(x, t}—->»0

U(XU t)——)—O

J

We take the Laplace transform of (3.1), and (3.23). By sections 4,
[17] and by (3.24), (3.25) we have:

S(x, z) = (E, + 22 Julx, t) (a)
£ 5(x, z) = pyzElx, 2) (b)
x = 0: zilo, 2) = = 91101 [Fop(a) - oo, 2] | e
(c) ’
x-—»o : ulx, z)=0 (d)
5(x, =0 (e |




and Eb(z) is given by (3.15).
The solution for (38.1) and (3.24) is

X
- 2p 580pe ~ OF 3
0(x, z) = 22D
P1C1%, * quBZ
; o“}g(" r (3
W_one
2 (plclmc + quﬁz) |
where
0 2.2z @), g2 _F2tH 5 Epe
o z + 05 " Py ° ES+H (3

and the branch of 030 which has positive real part is taken,
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.27)

.28)

If
ze-gmo
F(x, t)—m—
(e + 2%) @ + zd) (3.29)
Then, by section 10, [17]
‘ O£t €T

2D, F(x, t) for
og(x, t) = e (3.30)

P1%1

F(x, t) - (-1)"F(x, t-t) for t ® 7T

where §=% and d = » By the inversion theorem

P1%



i

t’.

»

exp{zt -¥w ]z dz
F(x, t) = o [ o
Zni r% (kz + zz)(ub + zd)

(3.31)’

where 7"2 is the Bromwich contour. We note, that, for d>0 the

only root of zd + @ =0 is z = O, (See Figure 11),.

Approximate Theory

In the following subsections we make various physically-

plausible assumptions which lead to solutions more amenable to

numerical computation,

Aporoximate Assumptions

l. The stress in the specimen is uniformly distributed

across each cross-section.,

2. There are no reflections in the specimen.

3. The strain in the specimen is uniform.

4, The stress in the specimen is independent of x, the

longitudinal position in the specimen.

In a recent paper [20], H. Charles presented a solution to the
problem of one-dimensional hereditary wave transmission which in-
volves the evaluation of a fourfold iterated integral. For the
purpose of this report, numerical evaluation of the single in-

tegral (3.81) is much more convenient.



S UR(t) = GD(t) - g o(t)

op(t) = g o(t)

Case IV: Elastic-Specimen - Aosproximate

! EZ
o(t) = EyE T (uy = ul)

by assumption 3.
The particle velocity is given by

1

Vzp—c—

0

(3.32)

(3.33)

(see equation 6, [12]). Now the particle velocity of the left

bar is

v, = = L
1 Py1Cy

(oD + GR)

while the particle velocity of the right bar is

Thus

(3.34)

(3.35)

(3.36)

(3.37)




Differentiating (3.32) and using (3.37) we obtain

2E2q 2E

do , 2
1r1% I %D (3,38)
Let
2E2q
I =w (3.39)
1%
then t > 0 implies
w _~ot t wt
o=7e S e op(v)dr (3.40)
O
Now
S t eOtsinnrdr = ~7nl-gﬁnemtsinkiwxewtcosxt+%3 (3.41)
(o} w- +N
Thus (
0O for t<O0
o (t) =1 (;’"b o [ sint = Acost rne®ty forogt e
w *AN°)
K (3.42)
G [1 - (D" et for 3T
Lglw® +N°)
where
2E
_ 22 ] (3,43)
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The transmitted stress is, thus
Op = qo (3.44)

Case V: Elasto~Viscous Specimen - Approximate

\ DZ '
a(t) =-Ef (uy - ul) +~% (v2 - vl)

(3.45)

by assumption 3, Differentiate (3.45) and use (3.37) obtaining

dg , 2029 = Paov__, 2y D (3.46)
dat Lp1°1 * AT Lpycy * 2y g Lpyey * 2yg at :
Let
2D.g
= 2 . = 2Yq 3.47
© Ip16 * 4vya ! F Lo 1¢1 * 4va (3.47)
Thus
-0t t wT
qo(t) =pop + (1 -uke "~ J e op(v)dv (3.48)

o

Hence, using (3.41)

(O for £t €0

. t
g-ﬂlsinli + i%ji%ﬁﬁ051n1¢ AcosM +Ne=%)] (3.49)

U(t)zJ forO£'t'$T

.9 wz-rkﬁ [




Case Vl: Hereditary Specimen - Approximate
E
2 o>
o(t) = ]r:(uz - uy) 4+ E-‘ft a(t T)(v = vy)dv

(3.50)

by assumption 3,
Eliminate the integral between (3,50) and its derivative with

respect to time. Then use (3.37) obtaining

9 2q(E, + H) 2gaE 2(E, + H) do
d 04 o+ 2 ]do + 2 D
at2 TP ey -at Thc “191 1 dt
2B,a (3.51)
+ D
AT
Let
2g(E H)
ARl )
1°1
=3 (a+0)
" 7 (e \ (3.52)
n ) u2 ) 2E.Hq
Toicy
o
then

0O for t€0

2 2 [
d”o do + 2 -1 2 = E{ u2 =N “)sinAt + N[ cosht
:;7 *2“'af (u )o ﬂ g ( ]

for 0 €t KT (3.53)

>
0 for t 27T




o= g% =0 for t=20 3

(3,54)
o, g% continuous for t = T

Thus

0 fort €0
-b[g coshnt + = (ug + Ah)sinhntle ™t

+bgoosht + h sinnt] for O € +< T (3.55)
pe Wt 1ﬁ51¥t4ih [ (=1) ne“'t51nhn( t-T) =-sinhnt]
+g[ (1) e“Tcosh(t =T) -coshntj} for t 7 T

2
AG (1 ‘n2°7\o) =2g7»u - %)

g =
m? = n? = 29)°% + ()2
. (3.56)
h = (92 ”‘nz)(u“ - nz - 22) + 2K%LC
? - 1% - 4% + () *

C. Mathematical analysis of the longitudinal impact of a round

head short bar on an infinitely long bar.,

This discussion follows that of W. A. Prowse [1l] (see Figure 12),
Let the round-head anvil strike the plane surface with velocity
v. Let B(t) be the total indentation of the anvil and surface com-

bined. Then, for steady pressure p, the Hertz law [13] gives

P = kof (3.57)
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where

= 2E 1/2
k9 ST +v)(I ~-vy [T ! (3.58)

E and v are the Young’s modulus and Poisson ratio of the anvil
and surface while r is the radius of the anvil head,

Prowse coﬁsiders a section of the anvil of length Ax,
traversed by the wave with velocity ¢ in time At. The resul-
tant force acting on the face AB of this section is equal to
the time rate of change of momentum of the section.

The resultant force is
d
-F ot (3.59)
while Prowse considers the time rate of change of momentum as

a%g
(ApA -2 pcAAt—-ﬁ- (3.60)

where A is the cross~sectional area of the anvil.,

Thus, equaling (3.59) and (3,60)
oo+ ipR g = O
Using (3.57? this yields
k.82 + 200 AE = C; (3.61)

We may use either initial or final conditions for the

determination of the constant of integration. First we follow
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Prowse and designate the maximum indentation by Bl. ‘Thus when

%@--o

(3.62)
B = Bl
and it follows from (3,61)that
i !
Loca B =k, 05,32 - 582 (3.63)

Since the initial indentation is zero, the solution is

'I—-—§§Tz (3.64)

Prowse left the result in this form and evaluated the integral
numerically. For our purposes it is better to evaluate the

integral analytically before starting numerical computations.

Define

0 = \’B/Bl

(3.65)

Y
"
12
+

where v is the initial velocity. Then we have from (3.64)

2 - .
128+ 8 1. o7 tent (B2

5 (3.66)

- = 1
“E N o

From the Prowse condition

,125% = v for g =0
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we obtain an expression for the limiting indentation Bl in terms

of the initial velocity, from (8.57)

3/2
8, %% - fgas (3.67)

Note that the limiting stress oy is

3/2
koBy
a) = ——g— (3.68)

Consequently, by (3.67) and (3.68)

o, = pcv (3.69)

which is the stress-velocity relation of the theory of impact due
to St. Venant [12], [13].
It is possible to construct stress-time curves based on

equation (3.66) and Table 2, This has been done in Figures 13

through 28 for steel hammers with hemispherical ends. The critical

values for these figures are given in Table 3.

Leoooosthe hammer length

hoooosothe height of drop

ty....cbase time = %% (time-length of correspending
St. Venant pulse)

Toaooecotime-length of pulse

cToooooliner pulse-length

om,nooumaximum stress attained
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The velocity of the hammer at time of contact and the theoretical
limiting stress;are independent of the length of the hammer and
are given as a function of the height of drop in Table 3.

For these computations the following values were assumed:

E = 2.073 x 1012 dynes/cm2
vV = 3x 107!

o 3

p = 7.7 gm/cm

Hammer diameter = 2.5 cm

D
.
il
S
N
AN LA N NN

Figure 12

Round-Head Hammer Impact




Height of Drop versus Velocity and

TABLE 2

Limiting Stress

h (cm) v(cm/sec) ol(ng/cmz)
S 99.0454 408,94
10 140.071 578,33
15 171,552 708,30
20 198,091 817.88
25 221,472 914.41
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_ TABLE 3
Critical Values for Figures 13 through 28

L h t T cT °

Fig. (cm) (cm) (micro) (micro  (cm) (KgF/gmz)
sec) sec)
10 25 S 96.5 140 72.5 348
11 25 10 96,5 136 70.5 514
12 29 15 96.95 134 69.2 644
13 25 25 96.5 130 67.5 850
14 S0 S 193 239 124 405
15 50 10 193 233 121 S75
16 S0 15 193 231 120 708
17 50 25 193 228 118 914
18 75 ) 290 336 174 409
19 75 10 290 331 171 578
20 75 15 290 328 170 708
21 75 25 290 3295 168 914
22 100 S 386 432 224 409
23 100 10 386 427 221 578
24 100 15 386 424 220 708
2% 100 25 385 421 218 914
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SECTION IV
SAMPLE COMPUTATION AND DISCUSSION OF TEST RESULTS
FOR NATURAL RUBBER (HEVEA)




SECTION IV

Sample Computation and Discussion of Test Results

for Natural Rubber (Hevea)

We consider the case of normal (approximate) velocity of

50 cm/sec, The material is natural rubber.

The raw data obtained by averaging readings from film strips
for ten separate runs are as follows
Calibration: (initial length) 185.3
Average drum speed: 121,17 rpm

Readings:
-3 d
 Lengthwise (10 “in.) Transverse (Calibration)- (Width)
0 185.3 0
100 176.3 6.0
200 172.9 12.4
300 167.0 18.3
400 160.9 24,4
500 154.8 30.95
600 149.6 35.7
700 144.1 41.2
800 139.2 46.1
200 134.9 50.4
1000 131.2 54,1
1100 127.8 97495
1200 125,3 60.
1300 123.4 61.9
1400 122.4 62.9
1500 123.1 62.2
1600 124.0 61.3
1700 125.7 59.6
1800 128.9 56,4
1900 132.7 52.6
2000 137.0 48,3
2100 142.0 43.3
2200 148.0 37.3
2300 154.0 31.3
5400 160.7 24.6
2500 167.9 17.4
2600 175.2 10.1
5700 182.6 2.7
5745 185.3 0
5800 190.0 -4.7
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These results are then plotted and a smooth curve drawn through
the points (Figure 29, 30, 31),

The scale of the curve is changed into the physically-
meaningful pafameters, time and displacement, through the following
computations,

The inside diameter of the drum is 15,06 inches, its average
rotational speed is 121.17 rpm. Hence the time corresponding to

a given horizontal distance h in inches on the film is

¢ = 60 h
T2T.17 x 15.06%

hence the total time of contact is

T = m- 2.87244 x 10" 2sec

The length of the specimen is 1.27 cm., The calibration measure-
ment yields 185.3. Thus our change of scale on the displacement
is given by

5 = 1.27 4

We divide the abcissa of the graph into 10 divisions of
length 2,87244 x 10-3sec and take the values of

s(k) = s& =5

from the graph. We have




Displacement (cm)

S(cm)
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. 20

.18

.16

.14

\

) 20 3w 4w Sw 6w 7w 8w % 10w

Time (sec)
Figure 29
Displacement~Time Curves

Nominal velocity 25 cm/sec; w = 3.088x10—ssec
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Displacement _(cm)

© 20 3w 4 Sw 6w
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Figure 30

T

8w 9% 10w

Displacement-Time Curves

Nominal velocity 50 cm/sec; w =

2.872x10 °sec
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Displacement (cm)

S(cm)
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Figure 31
Displacement-Time Curves

Nominal velocity 75 cm/sec; w = 2.64Sx10-3sec




Matiaac

w

®x
0.0
0.1330
0.2563
0.3530
0.4147
0.4297
0.3934
0.3228
0.2262
0.1179
0.0

W 00 3 O U W = O

-
O

We wish to fit this data to a function of the form
s(t) = cre™ + L mlp * 1at K -(p - ialty

where

2, 2 _ 2
k=-1+i40°* g - p)

29p

This form was chosen to insure that the displacement and accelera-
tion are zero fot t = O,

We use the procedure outlined by Whittaker (see the guotation
following this discussion), with the ordinary method of least
squares to find the values of the constants Dz, Dl' DO which

most nearly satisfy the set of equations
sg * D2$2 + Dlsl + DOSO = 0
s4 * DzsQ + Dlsz + Dosl = 0

.G..lﬂﬂlﬂ.l.l‘lﬂlDUBB.BI.II.

s10 * Dgsg * Dysg + Dgsg = O



This procedure leads to the system of equations

7.338,1605 D, + 8.181,983,5 D, + 8.235,692,7 Dy = -5.816,025,7
8.448,673,3 D, + 8.747,357,1 D; + 8,181,983,5 D; = -7.338,160,5

8.709,471,2 DO + 8,448,673,3 Dl_--c 7.338,160,5 Dl = -8,107,794,3

which has the solution

D, = - 2.068,220,275
D, = 1.350,660,495
D, = -0.205, 225,635,7

We now solve the equation
x3 ¥ szz + Dlx + DO = Q
for its roots

- . ~(p* idlw (n - i)
X, =e , Xo = @ x = o (P ig)w

and find, after obvious calculations, that

o = 5.337,880 x 102, p = &,771,98, q = 1.107,459 x 102

Now that we have n, p, and g, we can: write

2 2 _ 2y
in” * g p) e ptsin agt]

29p

s(t) = C[e”n‘t - e Ploos gt

and determine the value of C which best satisfies the equations




2 2 2
- . + = -
51 = Cle W . ¢ Pgsg dw *+ (n %qp p”) e P sin qm]
- - 2 2 _ 2y _
s9 = Cle 2 | o"2p0 2gw + (n ;qg p-) o 2P5in 2qw]
) ,lgm L J mlioln:’ﬂnﬂﬂabﬂﬂlﬂﬂ(;izﬂ;.lqlzl :I.p.zﬂ)I'lDBODII.ﬂ
S10 © Cle - e coslOgw + TS

e”lOpw sin 10qw]

We again use the method of least squares, finding this time that
c = 0,002,915,748

The hereditary constants a, HO and H are obtained directly with
the use of the secant modulus for this material and maximum de-

formation E,= 2.81 x 107 dynes/cmz. Hence we have

2
@ =1+ 2p = 5,513,320 x 102
mLo 2 7 2
H = (p® + ¢“)n - E,= 1.626,555 x 10" dynes/cm
o EKO 2

_ Mo 2 2\ _ - -
H= K;f (2pn + p° + g°) H0 Ez 3,662,901

X 107 dynes/cm2

We have two checks on the accuracy of our computations. The
first is a comparison of the initial velocity obtained from the

graph: Vg = 47,5 cmfsec with the value obtained from the com-

putation

n2 + q2'° p2
S%Jt=0 = C[p-n + 3 ] = 47.849 cm/sec
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The second check is a straight comparison of the experimental
values Sy with the values s(kypy) obtained from the eguation.

The latter check yields an error of less than 4 percent over the
entire range of time. Further, all values were rounded off only
after the computation was completed rather than at any inter-
mediate stages.

Whittaker’s summary (Reference 8) of the Prony method of
approximating a function with a finite number of exponentials is
guoted below. The notation has been altered to agree with that
of this report as much as possible.

* Although Prony’s method is more than a century old,

it does not appear to be widely known or to have found

its way into any text-book; and, as his original paper

is perhaps not accessible to many readers, I may be

justified in giving here a brief notice of it.”

» Suppose that s(t) is given numerically for a cer-
tain range of values of t. Take any set of values of

t equally spaced within this range, say t = 0, o , 20 ,

% , 4w, ..., and let the corresponding values of s(t)

be sg, 514 Sg, Sgs eees Now if s(t) could be represented

exactly in the form of a sum of k exponentials, say,
Pept + Qeqt + Rert t oeee t Vth,

then s(t) would satisfy a linear difference-equation of

the form




Asn+k + Bsn+k-l YOS ypeg Y oeeed * Ms =0

where the roots of the algebraic equation
A+ 5Ly otk 2, a =0
would be

r v
. eq,e ¢ ov0ae® n"

" Prony’s method, which is based on this fact, is

to write down a set of linear equations,

Ask + Bsk-l + Csk_2 t oiseee t MsO = Q0

Asp,y ¥ Bsp + Csp g+ cenne Ms, = 0

il
O

Ask+2 + Bsk+l + Csk t Leces t Ms2

Ask+3 + Bsk+2 + Csk+l t qeses T Ms3 = 0

where the quantities Sqs 51+ S9, Sgy eec., are known,
since s(t) is a known tabulated function, and by the
ordinary method of Least Squares to find the values
of A, B, C, ..., M, which most nearly satisfy the
equations; then with these values of A, B, C, ..., M,

to form the algebraic equation

AsK + B L+ gsK"% 4 ..+ M =0,

and find its roots; these roots will be eP , &9, of

oocev ’ and thus P, 9, L, veey V, are determined.

’
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Knowing p, ¢, r, ..., v, we have a set of linear equations
to determine the coefficients P, Q, R, ,;n, V, and these

also are to be solved by the method of Least Squares. ™

Discussion of Test Results for Natural Rubber (Hevea)

The data obtained from a series of tests on a natural rubber
27-30 durometer hardness were analyzed, by use of the procedure
outlined above, for three initial speeds of the striking bar.
It was found, as might be expected, that the phenomena were
essentially viscous for nominal speeds of approximately 25, 50,
and 75 centimeters per second. Indeed, in the case of the highest
initial speed (and, correspondingly, the greatest distortion),
the hereditary effect was so small as to be obscured by inaccuracies
of the data.

The pertinent results of the investigation are given in

Tables 4 and 5, which follow. For the analysis which was made under

the assumption of a viscous stress=strain law:

de
o = De +
at (4.1)

s(t) = Ce-ptsinqt

We list in Table 4 the parameters, p, g, C, D, and y; as well as

the time of contact T, the actual initial velocity Voo and the

maximum strain, €

m
The slight hereditary effect displayed by the hevea indicated

that it would be pointless to carry the analysis further than
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heredity of the first degree with residual; which is characterized

by

t

o = Ee + fo [H, + He 0 (£-7) g% dr (4.2)

The parameters E, H, H, ¢, C, n, p, q, of (4.2), are listed in
Table 5. Note that E is the static secant modulus for natural
rubber.,

We finally remark upon an interesting connection between
these two analyses. Comparison of Tables 4 and 5 reveals that,

for a given initial velocity, we have approximately
D=E+Hj
Thus, it can be concluded that

de t
v— == [ He
0

oy (=
af{t-T) di -
dt

for the hevea specimen.

Since we know that

lim t _ - d d
a—> 00 a‘g e alt T)~a% dv 5'3%

we expect that the approximate relation
H= a0

will hold,




TABLE 4

Results - Viscous Case

Nominal

~ BB

v
Velocity ° € P q C D dxnexsec
cm/sec sec cm/sec n cm dynes/em2 cm4
25  3.09x10"2 23,7 0.172 5.15 102 0.233 3.86x107  4.02x10%
50  2.87x10"2 47,8 0.338 5.05 110 0.453 4.47x107  3.75x10%
75 2.85x10"2 77,3 0.481 6.08 119 0.650 5.27x107  4.52x10%
TABLE §
Results - Hereditary Case
Nominal H H a
Velocity n P d 9 o 9 9 -1 C
cm/ sec dynes/cm” dynes/cm® dynes/cm” sec cn
25 612 5.36 102 2.44x107 1.36x107 2.62x107 658 6.02x10°*
50 543 8.77 111 2.81x107 1.63x107  8,62x107 551 9.92x10"°

These results are shown graphically in Figs, 32 through 39.
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Hereditary Function ¥(t)

¥(t)
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Figure 33

Hereditary Function
Nominal velocity 25 cm/sec; w = 3.088 x 10 °sec
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Figure 31
Hereditary Function

Nominal velocity 50 cm/sec; w = 9.872x10 ‘sec
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Figure 35
Stress versus Strain - Viscous Analysis

Nominal velocity 25 om/sec
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Figure 36

Stress versus Strain - Viscous Rnalysis

Nominal velocity 50 cm/sec
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Figure 87
Stress versus Strain - Viscous Analysis

Nominal Velocity 7% cm/sec
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Figure 38

Stress versus Strain - Hereditary Analysis
Nominal velocity 25 cm/sec
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Figure 39
Stress versus Strain - Hereditary Analysis

Nominal velocity S50 cm/sec
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At present; a series of tests has been completsd on the
Butyl-25 and Neoprene GNA., The computation of the results is
now underway. These tests will be followed by a series on

1, Nylon
2, Polytherne
3. GRS artic,

The results of these tests will appear in a final report in
June 1953,




APPENDIX A

MATHEMATICAL ANALYSIS OF THE LONGITUDINAL IMPACT
OF A BALL ON AN INFINITELY LONG BAR



APPENDIX A
Mathematical Analysis of the Longitudinal Impact

of a Ball on an Infinitely Long Bar

A steel bar of mass m, radius r, and velocity A strikes
the end of an infinitely long bar. We wish to find the pressure
at the end of the bar as a function of time.

We take the stresses positive in compression and the dis-
placement positive directed into the bar.

For an arbitrary force F(t) applied uniformly over the

end of the bar:
l o X
olx, t) = ¢ Flt = 3)
where

E

c =q/=

P

Since u = u(t ~-§) we have
o(x, t) = -E%§-= pc%%

The complete displacement due to the impact is
d=p +u

where B is the total indentation and u is the elastic deformation

due to the force F(t). The velocity is
_dd _ d du
"-af'a%*ﬁ

- Q7 =
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By the law of impulse and momentum, we have at x = O
1
V=, - E-.g F(t) 4t
thus
v --l-ftF(t)dt=§£-+ L F(t)
o WY, pcK
Assume the Hertz- law [13], i.e.,
- 3/2
F = koB

_ 9E 1/2
kg = ST (T- 9T ©

thus

2 k k
d 2 d (a3/2 2 43/2
EEg M9 3 (63/2) il /220

This differential equation is not easily integrated. Numerical
solutions for boundary conditions of the type

p = O
for t =0

=
v vo

are available, however, for specific values of A/ and the con-
stants of the equation,

Assune

12 dynes
k = 1,73 x 1C '-ZEFTZ m = 365.1 gms
2 cm

oc = 4,05 x 106 B K = 5,07 om?

cm




then for
2
d d ,3/2 3/2
+bere (B °) + 4 = 0
at?  CdE 5
where
k k
. _f2, _ B
b= g 4 = F
we have

b = 8,44 x 104(cm]‘/2sec).l

d = 4.75 x 10% (cn!/2sec?) "L
Initial conditions:

t = 0 B = O -%% = Y%

For m = 365.1 gms, five cases were considered:

TABLE VI
Ball Impact Values
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Yo T Pnax gmax %nax 9
(cm/sec) (u sec) (mm) (x 10°dynes) (Kg F/cm®)
45 245 0.0224 5.80 1166
90 192 0.0367 1.22 2453
135 176 0.0484 1.84 3704
180 164 00,0598 2,53 5088

220 157 0.0699 3,20

6435

The graphical solutions are given in Figures 40 through 44.
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APPENDIX B

Rubber Specimen Recipes

The 1/2-inch by 1/2-inch rubber cylinders were fabricated in
the Rubber Laboratories, Armour Research Foundation of Illinois
Institute of Technology., They were made in an eight cavity mold
of the following rubber compounds:

l. Hevea

2+ Hycar OR-15

3« Neoprene GNA

4, GRS Artic (85 Butadiene/1l5 Styrene)
S5e Butyl-25

The compounds were prepared on a two-roll 6 x 10=-inch
laboratory rubber mill with a front roll speed of 30 fpm and a
speed ratio of back roll to front roll of 1.4 to 1. Cold water
was circulated through both rolls during the mixing of the GRS,
Butyl, Neoprane, and Hycar OR-15 compounds. No water was cir-
culated during the mixing of the Hevea.

The formulas for the compounds are given in Table 7 and a

summary of their physical properties is given in Table 8.
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TABLE 7
RUBBER SPECIMEN FORMULAS

GRS (Artic)

GRS (artic)
Reogen

P-33

Zinc Oxide XX78
3tearic Acid
Agerite Stalite

H Teads
D.P.G.
Neoprene
Neoprene GNA
L.C. MgO
P-33

Circo Lt. Process 0il
Neozone D

Stearic Acid

7Zinc Oxide XX78

100

25
15

Hycar OR~-15

Hycar OR-15
P-33

Dioctyl Adipate
Zinc Oxide XX78
Stearic Acid
Agerite Stalite

H Teads
. DUPCG.
Butyl 25
Butyl 25
P-33

Zinc Oxide XX78
Mineral 0il (White)
Lime (CaOH)

Sulfur

Thiomex

Polyac

Akroflex C

Natural Rubber

Smoked Sheets
Reogen

Zinc

Oxide

Stearic Acid
Agerite Stalite

pP=-33

Methyl Teads
D.PIGI
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TABLE 8
SUMMARY OF PHYSICAL PROPERTIES OF
RUBBER COMPOUNDS GIVEN IN TABLE 7

Stock 320°F M500 T E 8  Shore "A” Hardness
Hevea 10 600 2300 850 15 38
20 710 2880 710 10 38
30 725 2550 670 8 38
GRS (Artic) 30 215 270 565 10 38
Hycar OR-15 30 195 1280 945 13 31
Neoprene 30 965 2620 840 15 44
Butyl 25 30 - 365 285 O 43
MSOO = Modulus at 500 per cent Elongation

3
]

Tensile Strength (psi)

Elongation (per cent)

S - Permanent Set at Break
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