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SECTION I

Introduction

The object of this technical report is to inform the Office

of Naval Research on the present status of their Project

NR 064 369, Contract No. N7onr-32911, 'The Dynamic Properties

of Plastics and Rubber-like Materials", which is being con-

ducted by the Department of Mechanics at Illinois Institute of

Technology.

Two apparatuses are being used to study the effects of

dynamic loading on materials:

The first uses mechanical and optical devices to determine

directly the stress-strain curves of plastic and rubber-like

materials subjected to impact loads, the durations of which are

of the order of milliseconds.

The second apparatus, which is only partially built, will

use mechanical and electronic devices to determine the stress-

strain curves of elastic materials subjected to impact loads,

the durations of which will be of the order of microseconds.

In this report a general description of the apparatuses is

presented and the theories of both methods are outlined briefly.

The mechanical and optical parts of the apparatus for testing

materials at low rates of compressive straining are described0

the theory of the experimental method is outlined, and the

influence of the principal causes of mechanical and optical
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error associated with the method are evaluated. It is shown how

the dynamic stress-strain curves for a given specimen under im-

pact loading can be calculated directly, when the hereditary

characteristics of the material are known. By comparing the

experimental and calculated curves it is possible then to

determine the accuracy of this experimental method of in-

vestigating the dynamic properties of materials. Some results

are given for a natural rubber of 30=durometer hardness.

The component mechanical devices and electronic equipment

for testing materials at higher rates of compressive straining

are described and the theory of the method is given.

A mathematical analysis of the longitudinal impact of a

round-headed0 short bar on an infinitely long bar is presented.

This study follows that given by W. A. Prowse []o [2], [3], [4],

but the analysis is extended so as to give final results in an

explicit form more suitable for numerical computation.

The propagation of a stress wave of known characteristics

through a cylindrical specimen held between the flat ends of two

elastic bars is analyzed. Three specimens are considered, namely,

one made of a purely elastic material, and a second ind third

made of materials which display elasto-viscous and hereditary

characteristics, respectively An approximate solution of the

problem is given in the report for each of these specimens.

Further0 a more elaborate and complete theory of the same problems

is indicated. In Appendix A a mathematical analysis of the
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longitudinal impact of a ball on an infinitely-long cylindrical

bar is given. The final results of this analysis are presented

in tabular form for given initial velocities of the impinging

balls.
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SECTION II

Description and Use of the Apparatus for Testing Materials

at Low Rates of Straining

A. General description of the apparatus

The apparatus employed in these experiments is shown in

Figures 1 and 2 and in the schematic diagram of Figures 3 and 4.

It consists essentially of:

1) two 3-foot, steel bars of equal mass suspended as

ballistic pendulums;

2) a rotating-drum camera, the drum of which rotates at

a known speed, and the shutter of which is synchronized to

operate with the motion of the steel bars;

3) an optical system which focuses the image of a very

thin slit on the knife edges machined on the adjoining ends

of the steel bars (a cylindrical specimen to be tested is

mounted between the two bar ends on which the knife ends are

machined);

4) an electromagnetic device which can release one or

both of the bars at the same time.

The cylindrical specimens of the rubber or rubber-like

materials are 12-inch in diameter and 1(2-inch long. The

first group of specimens has been fabricated from the following

materials:

-6
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Figure 4. Schematic diagram of optical system.

P..ooProjection Lamp, GE 750T12P

Go .. Ground-Glass Plate, 2 in. x 3 in.

S....Slite 0o001 in. x 7/8 in.

Ko.o.Knife Edges on bars

M.°°Mirror0 first-surface set at 450

to axis of lens arrangement

F..oFilmo Kodak Linagraph Panchromatic LP421

L1 oo°Condensing Lens, 6 in. f/i0 4-7/16 in. diamo

L2 00 0Projection Lens0 75mm f/1 49mm diam coated

achromat

L3 000Plano Convex Field Lens, 17 in. f/i0 3-1/2 in.

diam.

L4 ...Plano Convex Field Lens, 21 in ffl, 3-1/2 in.

diam°

Ls5 ooCamera Lens, Color Skopar f/3.5, 105 mm f/i
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am Natural rubber (27-30 Durometer hardness)
b. Butyl-25 (35-40 Durometer hardness)
c. Neoprene GN (35-40 Durometer hardness)
d. Hycar OR -15 (35-40 Durometer hardness)
e. Buna-N (35-40 Durometer hardness)
f: GRS-1585 (35-40 Durometer hardness)

The recipes for the rubber specimens are given in Appendix 0.

The second group will be fabricated from the same materials,

but in about 70 Durometer hardness.

The specimens are placed on the plane end of one of the

steel bars such that the longitudinal axis of the bar and the

specimen coincide. The other steel bar is released from a

predetermined height and made to impinge upon the free end of

the specimen. During the impact, a photograph is taken of the

interval between the knife edges which lie in the plane of the

ends of the steel bars. The film is calibrated by taking a

still photograph of the interval when both bars are barely in

contact with the specimen.

The deformation of the specimen at succeeding instants of

time is measured directly on the film by means of a traveling

microscope. This instrument is fitted with two orthogonal,

independent motions, each calibrated to read a total excursion

of 4.5 inches in increments of 0.001 inch, From these measure-

ments it is possible to deduce the dynamic stress-strain

relationship of the specimen.

With certain modifications, the same apparatus will be

used to test specimens at ambient temperatures other than room
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temperature. A small chamber will be constructed which will

completely enclose the specimen and yet not interfere with

any of the moving parts necessary to conduct the tests. Pre-

liminary designs of the chamber have been considered and it

will be constructed when the testing program at room tem -

perature has been completed. With acetone and dry ice (or

possibly another solvent) it should be possible to conduct

tests at ambient temperatures of -68F, and, with hot water,

at +158F. These devices are not described in this report but

will be discussed more completely in a later technical report.

A static testing device has been built and is shown in

Figure 5. Static loads up to 200 pounds can be applied to the

specimen and a maximum deformation of 1-inch can be measured

to within 0.00025 inch. The same size specimens (1/2-inch x

1/2-inch cylinders) are used for the static tests. Compression

set tests of each rubber stock are being conducted concurrently

by the staff of the Rubber Laboratory, Armour Research Founda-

tionV an affiliate of IIT.

B. Theory of the Method

In Figure 6 let F(t) represent the compressive force acting

on the specimen at the instant t measured from the instant

t = 0, at which time the impinging bar first contacts the speci-

men. Let x1 (t) and x2 (t) be the horizontal displacements of

the two extremities of the bars measured from their position at
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the instant t - 0 and m be the mass of each of the two equal

steel bars.

The following relationship will be verified [5], [6], [7],

d2 (x 2 " 1l ) d 2 sFt M= = - m I = (2.1)

Call 1,(t) the actual length of the specimen at the instant t

(4 is deduced directly from the readings of the film).

Then

(t) = - s(t)0

where C is the initial length of the specimen.
0

By differentiating the experimental ( s, t) curves twice it

is possible to find the corresponding ( F, t) curves by the use

of equation (2.1). If we suppose that during deformation the

volume of the specimen remains constant and call A and A0

the cross-section areas of the specimen at the instants t and

t = 0, respectively, and V initial volume, we get

Vo = A0 Z0 = AZ

The actual true stress will then be

F(t) F(t) Z(t)

0

as compared to the engineering stress

a(t) = F(t)
0
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The actual true strain is defined as

e(t) = in 0T[

as compared to the engineering strain

= s(t)
F~t) = S

From the readings of the photographs it is possible to

determine the curves: e (t), F(t), a(t), e(t) and finally the

dynamic stress-strain curves (a, ).

C. Degree of aQcuracy of the mechanical and optical methods

employed

Two causes of possible error in the described experimental

method have to be taken into account. The first, of a mechanical

natureV is due to the elastic deformation of the steel bars

during impact. The second, of an optical nature, is due to the

finite dimensions of the slit.

The effect of these causes of error are negligible in the

case of plastics and rubber-like materials due to the fact 
that

during impact the forces acting on the metallic bars and 
the

induced deformations of the bars are very small, while 
the total

duration of impact is comparatively large. An evaluation of their

effects is given below.

1) Let the following notation be used;

p1 ~the density of steel

EI ... o.oon. Young's modulus of steel
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c1  .......... velocity of sound in steel

p .......... pressure of the longitudinal wave produced

in bars by the force F(t) caused by the

impact

d ......... the particle velocity of the same wave

a(t) .,,..... acceleration of the bar at the instant of

initial impact with the specimen

v 0  .......... velocity of the bar at the instant of

initial impact with the specimen

A1  .......... cross-section area of the bars

L1  .length of the bars

The following relationships hold:

p = Pcld (2.2)

where

c2 1 -- and

p(t) = F(t) = a(t)

From equations (2.2) and (2.3), it follows that

t
(t) = - a M dt

(2.4)

(t) = I v ° - v(t)]
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Let v0 be the velocity (negative) of the bar after impact. Then
from equation (2.4) the maximum elastic deformation in the bar

is given by:

=ma Li E,+V 2Lvo (2.5)

1 ,[max c I 0V 0 vO  1 <2L

which yields an approximate value for max of 0.01-inch for

the bars used.

2) The finite thickness of the slit image of the film

gives rise to an error in determining the instants of time for

the experimental s(t) curves. The error is of the same order of
magnitude as the time taken by the film on the rotating drum to

move a distance equal to the thickness of the slit image on the

film and can be determined as follows:

Call 8 the thickness of the image of the slit on the film,

L, the total length of the film, n the number of revolutions per

second of the rotating drum. It follows that a l' length of

film corresponds to n seconds and the thickness of the slitn

image corresponds to seconds. If T is the total duration of
impact, the percentage error in the evaluation of time in our

measurements will be given by =-r, which indicates a possible

error in the indicated time of approximately 0.2 percent.

D. Direct computation of the dynamic stress-strain curves for a

given material, with known hereditary characteristics, under

impact loading.

When the hereditary characteristics for a given material are
known, as a function of time, it is possible to calculate directly
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the dynamic stress-strain curve under impact. In order to

simplify the calculations we shall assume that under static

load conditions the material obeys Hooke's law, while under

dynamic conditions the stress-strain relationship for the

material is

t
=e + f0  a(t -- = dT (2.6)

Suppose that such a material is subjected to an impact

test. Calla 0 its initial length, Ao its initial cross-sectional

area, V(t) =Z o - s(t), its length at time t , and m the mass

of the impinging bar.

The following integro-differential equation will characterize

the motion during impact in the case of the assumed linear stress-

strain relationship:
2 A A t d r

d 2 s (t) + E 0 S + 0  ' (t ds(-0 d' = 0

dt o o
(2.7)

The solutions of equation (2.7) will be given for different types

of heredity. It is evident that if the equation is solved, i.e.,

the function s(t) is determined , then the stress-strain curves

can be calculated by the use of the formulas given in Section II B.

i. Heredity of the first degre: * (t) = He-at

By a simple differentiation with respect to t equation (2.7)

can be transformed into the following differential equation:
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M d 3 s(t) + a m d 2 s(t) + E + H) _& ds + Apc s(t) 0
dt- m U--to

(2.8)

The solution of equation (2.8) is of the form

s(t) = C.Ie nt + C2ep'Ptcosqt + CGe-Ptsinqt (2.9)

where -n; -p+ iq; -p-iq, are the roots of the algebraic equation:

x 3 + ax 2 + (E + A .= 0 (2.10)to m  om

From the initial conditions:

S= o, ds = Vo0  0 for t Oo it follows that

C1 =Y1 Voo C2  Y 1Vo C3 =Y2o (2.11)

where:

=l 2t =

q2 + (p-n) (2.12)

2 +n2 -2
Y2 A7 721

q = q + (p-'n)

2. Heredity of the first degree with residual:

-atHt) = HeH

The solution of equation (2.8) is given by equations (2.10),

(2.11), and (2.12) where, in this case -n p~iq, -p -iq are the

roots of the algebraic equation:
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3 + (E + H + Ho)A o  Ao(E Ho)a (213)x3 ~ ~ +m xt + , m (o

3. Heredity of the second e(: (t) = Hie-alt + H e 2t

By a double differentiation with respect'to t equation

(2.8) can be transformed, in this case, into the following

differential equation:

dst)3  d2s t

d4 s(t) + 2 ) d s(t) o (E + H + H) + la2j ds(t)

A ds EA 0
mA [E(a I + a2 ) + alH 2 + a 2HI] % + ai 2 r = 0 (2.14)

The solution of equation (2.14) is:

s) = Cie- 'rt + C2 e t + C3e-Ptcosqt + C4e Ptsinqt

(2015)

where -- , p + iq, -p - iq are the roots of the algebraic

equation:

4 + (a1 + a 2 )x 3 + Ao a x2
om (E + H1 + H12) 1l 2]x

Ao0 E Ao 0
+ A0  [E( !  + + H2 + a2Hi]x + ia 02 O (2.16)

0

The initial conditions for determining the four constants CI, C2v

C3 and C4 are:
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ds d2 s d3s (E + HI + H2 )A °  ds M 0. o 0 Vo d-t O S 1 2noo

for t - 0

The following four equations for determining the constants Ci

(i = 10 2, 3, 4) are derived;

Cl + C2 + C3 = 0

° C1 -C C2 - pC3 + qC4  vo

?2Cl + C 2C2 + (p2 q2 )C3  2pCP4 = 0 (2.17)

(,n3 +rB)C1 - 3 + CB)C 2 + p(3q 2 _ p2 B)C 3 + q(3p 2 -q 2+B)C 4  0

where:

(E + H1 + H2)A o

B -
om

4. Heredity of the second degree with residualg

* (t) Hleal t  + H2e- a2t  Ho

The solution of equation (2.8) is given by equation (2.15)

and (2.17) where: p , =P +iq, -p -iq are the roots of the

algebraic equation gS

+ (a1 + a2 )x3 +[ A (E + H1 + H2 + Ho ) -+ al a2]x 2

(2.18)

+ A0  (E + Ho ) (a, + a2 ) +.aHH 2 +a 2 Hl]X+ - (E+H)A 0T O M 2 ) , a H 2 a 2 l ~ x + ( -, a 2o m
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and B of equation (2.17) is given by:

B (E + H + H2 + Ho)Ao

0

E. Determination of the hereditary characteristics of a material

from the experimental dynamic stress-strain curves

We shall demonstrate the method of analysis by considering

the case of heredity of the first degree with residual.

By equation (2.9) we note that s(t) can be written in

the form

s(t) = C1.e n t + Ce- Pt + ae-t (2.19)

where C1 and n are real, C and P are complex, and

C =- (-CI + iC3 ) V p + iq (2.20)
2

We assume an expression for s(t) of the form of Equation (2.19)

and fit it to our experimental data by the method of least squares,

following the procedure of Prony (See reference [8], page 373).

Since -n, -P, and -W are the roots of the equation

x3 + (n + 2p)x 2 + (2pn + p2 + q2)x + n(p2 + q2) - 0 (2.21)

We have by comparison of (2.13) and (2.21) the following three

equations for determination of a , Ho and H:

a n+ 2p

mEo p +q2 )
E + H0 + H X o 2pn +p+q
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o+ E) o (p2 + q2)n
=0

where E is the static secant modulus of the material.

Since

ds (- )
f]t'o = vo = qC 3 - (n1p)C I

we have a check on the accuracy of our calculations, as we

can obtain the initial velocity directly from the experimental

data.

With obvious modificati-ons this method can also be used

to analyze viscous damping.

However, it should be noted that, in the relationship

a = De + Yd

D is a lumped parameter which is obtained directly from the

dynamic test data; it may have no relationship to the static

secant modulus E. A close approximation of its value is

D E + Ho ft
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SECTION III

Description and Use of Apparatus for Testing Materials

At High Rates of Compressive Straining

A. General description of the mechanical apparatus.

The mechanical apparatus is shown in Figure 7. It

consists of:

1) two steel bars, 1" diameter, 6 feet long, and

2), a short impinging bar (hammer) with a round head.

-This mechanical apparatus is equipped with a system of strain

gages, amplifier, radio frequency oscillator, oscilloscope and

photographic camera to record the longitudinal pulses which are

propagated along the two steel bars when the short bar strikes

the end of one of the long bars. The details of the electronic

equipment are given in the next section.

The specimens to be tested, in the form of circular discs

of uniform thickness, with diameters slightly smaller than those

of the adjoining bars are placed between the carefully-lapped

plane ends of the two bars. For reducing friction between speci-

men and bars both surfaces of each specimen are lubricated be-

fore being placed in the apparatus.

The hammer is released from a known height. When it strikes

the first steel bar an open ground circuit is completed which

triggers one sweep of the dual-beam oscilloscope. A compression

wave is propagated in the bar and its passage is recorded from

an amplified strain gage signal by the camera attached to the

- 26 -
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oscilloscope. When the compression wave reaches the other end

of the steel bar, a certain portion of the wave is reflected

back along the -bar as a tension wave and the remainder is

transmitted through the specimen on to the second steel bar.

On the first steel bar, about 12 inches from the mounted

specimen, a strain gage is fastened. It is connected electri-

cally to a second trigger circuit which sets the second sweep

of the dual-beam oscilloscope, Thus, when the compressive wave,

which is being propagated in the second steel bar, reaches a

set of strain gages about 12 inches beyond the specimen a second

compressive trace is recorded by the oscilloscope camera.

From this photographic record then it is possible to cal-

culate directly the dynamic stress-strain curve of the specimen,

as will be shown later0

In this method, auxiliary electronic equipment is used to

amplify a signal from a set of strain gages, to superpose a

timing pulse on this signal, and finally, to indicate the mag-

nitude and length of the impact pulses on the screen of an

oscilloscope.

Essentially, there are three circuits of importance,

1) the strain gage circuit, which amplifies the original

signal and mixes it with the timing pulse before it is fed into

the signal circuit of one beam of the dual-beam oscilloscope;

2) the time pulse circuit, which superposes 20 microsecond

pips on the strain gage signal- and
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3) the trigger circuits which set the sweep of one beam of

the oscilloscope to fire when they receive an external voltage

pulse.

The strain gages are arranged in sets of four at equi-

distant points around the periphery of the steel bars (Figure 7).

There are two sets, each about 12 inches from the head end of

the two steel bars. Since each set is connected in series, the

net effect of any bending modes will be zero and the voltage

change generated will be due entirely to the compressional pulse

being propagated along the steel bars.

The voltage pulse is amplified first by a four-stage triode

amplifier with a wide frequency response. A timing pip at in-

tervals of 20 microseconds is added to the output of the ampli-

fier.

The time interval of the pip is controlled by a Hewlett-

Packard audio-oscillator and can be varied if it is desired.

The pulse (pip) generator consists of an 884 gas triode and a

differentiating circuit. The output of the latter is formed by

a clipper circuit and then fed into a wide range amplifier in

order to obtain the proper phase relationship between the original

pulse and the timing pip0 This corrected pulse is superposed0

in turn, on the amplified strain gage signal just before the

latter is fed into one of the signal circuits of the oscillo-

scope.

The phenomenon is transient rather than steady state and as

a consequence it is necessary to trigger the sweep of the oscillo-
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scope just before the oompressional pulse reaches the strain

gages. This is accomplished by making use of the circuits within

the oscilloscope and additional external circuits.

The sweep oscillator for each beam of the oscilloscope is

set for a pre-determined sweep time, and then the other controls

are so a.djusted that neither oscillator will fire until an

additional external voltage pulse is impressed upon them. Two

external trigger circuits are used to insure that the oscillators

will fire at the proper time.

The circuit for the first bar is energized when the hammer

completes a ground circuit at the instant of initial impact; for

the second, when the compressional wave passes a strain gage about

20 inches in front of the second set of recording strain gages.

In either case, a voltage pulse is amplified and then applied to

a sweep oscillator of the oscilloscope in order to produce a

single sweep at the instant the compressional wave passesthe

reaording strain gages. Thus, only one pulse from each set of

strain gages is recorded by the camera.

This method of testing will allow determination of the

stress-strain curves for rates of straining of the order of micro-

seoamds. The length of the direct pulse in the first long bar

is governed by the length of the striking bar (hammer) and the

relati.e sagnitude .of the pulse by the velocity at the time of

initial impact.
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In the following table we give some of the computed character-°

istics of the pulses.

TABLE I

Theoretical time of contact in microseconds as

a function of height of drop and hammer length

Drop height CDo cm 10 cm 15 cm 25 cm

Hammer length

25 cm 140 136 134 130

50 cm 239 233 231 228

75 cm 336 331 328 325

100 cm 432 427 424 421

This experimental method of determining dynamic stress-strain

curves for very high rates of straining is subject to certain

restrictionsV as is the method based on the use of the Davies-

Hopkinson pressure bar [101, [11], namely,

1) The waves propagated in the bar axe a-sumed to be elastic

waves, i.e., the stress at every point in the bar must always be

within the region where the stress-strain curve is linear and

reversible.

2) It is assumed that the pressure wave is propagated

without distortion. This assumption is only true when the wave

lengths of the elastic waves are large compared with the lateral

dimensions of the bars. When this condition is not fulfilled,
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the wave suffers dispersion and the form of the pulse is dis-

torted as it travels along the bar.

3) A third assumption implicit in the method is that the

pressure in the pulse is uniformly distributed over the cross-

section of the-bar0 even when the force acting on the end is

concentrated over a small area surrounding the center.

However0 this method of investigation presents the follow-

ing advantages in comparison with the method using the Davies-

Hopkinson Bar:

1) While in the Davies method it is possible to record

only the first part of the stress-strain curve0 ioe.0 the part

when the specimen is compressed but not when it recoils, with

this method the complete stress-strain curve can be investigated.

2) The determination of the stress-strain curves from the

experimental data is much simpler 0 and there is less possibility

of making mistakes in the numerical computation. In fact,

while in the Davies' method a numerical differentiation has to

be performed, in this method the stress-strain curves are ob-

tained through numerical integration of the experimental data,

a method of computation with many inherent advantages.

B. Theory of the method

When the hammer hits the first bar a direct compressive

wave aD (Figure 8) is transmitted undistorted along the first

long steel bar with velocity c = [12]. When it reaches
L

the specimen, after a time t (L being the length of the bar)
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the wave suffers dispersion and the form of the pulse is dis-

torted as it travels along the bar.

3) A third assumption implicit in the method is that the

pressure in the pulse is uniformly distributed over the cross-

section of the-bar0 even when the force acting on the end is

concentrated over a small area surrounding the center.

However, this method of investigation presents the follow-

ing advantages in comparison with the method using the Davies-

Hopkinson Bar:

1) While in the Davies method it is possible to record

only the first part of the stress-strain curve, ie., the part

when the specimen is compressed but not when it recoils, with

this method the complete stress-strain curve can be investigated.

2) The determination of the stress-strain curves from the

experimental data is much simpler, and there is less possibility

of making mistakes in the numerical computation. In fact,

while in the Davies' method a numerical differentiation has to

be performed0 in this method the stress-strain curves are ob-

tained through numerical integration of the experimental data,

a method of computation with many inherent advantages.

B. Theory of the method

When the hammer hits the first bar a direct compressive

wave aD (Figure 8) is transmitted undistorted along the first

long steel bar with velocity c2  7 [12]. When it reaches
p

the pecien0 ftera tie t L (L being the length of the bar)
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the wave suffers dispersion and the form of the pulse is dis-

torted as it travels along the bar.

3) A third assumption implicit in the method is that the

pressure in the pulse is uniformly distributed over the cross-

section of the-bar, even when the force acting on the end is

concentrated over a small area surrounding the center.

However0 this method of investigation presents the follow-

ing advantages in comparison with the method using the Davies-

Hopkinson Bar:
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while in the Davies' method a numerical differentiation has to

be performed0 in this method the stress-strain curves are ob-

!! tained through numerical integration of the experimental data,

a method of computation with many inherent advantages.

I B. Theory of the method

When the hammer hits the first bar a direct compressive

wave aD (Figure 8) is transmitted undistorted along the first

long steel bar with velocity C2  E[12]. When it reachesI' p
P the specimen, after a time t a L (L being the length of the bar)
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only GT, a part of the original pulse, is transmitted through the

specimen and into the second bar. A tension pulse aR is reflected

back albng the first bar.

The theory of impact developed here can be made more realistic

by considering a cylindrical specimen of a material held between

the plane ends of two steel bars (Figure 8). A stress wave of

known properties is propagated along the first steel bar, and

the problem is to determine the characteristic stress waves in-

duced in the specimens which follow various stress-strain relation-

ships.

A minimum number of simplifying assumptions will be made for

both a relatively realistic analysis, and later, for a more appro-

ximate theory.

These initial assumptions for the first analysis are-

(1) The stress in the specimen is distributed uniformly

across each cross section.

(2) There are no reflections in the specimen.

(3) oR(t) = aD(t) - qa(o, t) for x = 0 and all values of t;

aT(t) = qu(j. t) for x = I and all values of t0 where the

specimen is of length . and cross-sectional area A2, the steel

bar has area A1 and q = A2/ 1 is the ratio of the areas. aD(t)

is the wave transmitted initially along the bar on the left;

cYR(t) is the wave reflected from the interface of the left bar

and the specimen; and oT(t) is the wave transmitted to the steel

bar on the right.
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(2 a) (2b) (2c)

(Hooke) (Voigt) (Boltzmann)

Figure 9

Schematic Diagram of Material Models

The third assumption is, essentially, a consequence of the

first two assumptions and the equilibrium of the specimen. The

second of our assumptions allows us to consider the specimen

infinitely extended to the right.

The stress-strain relationships for the specimen materials

considered are

(1) Elastic (Hookean Model)

(2) Elasto-Viscous (Voigt Model) [14]

(3) Hereditary (Boltzmann Model) [15], [16]

and the models which are characterized by each of these relation-

ships are shown in Figure 9. In all cases the equation of motion
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is

d t)= 2

=6 y(x 2 = u(x, t) (3.1)

where P2 is the mass density of the specimen.

BoundarZ and Initial Conditions

The basic boundary and wave front conditions are the same

for all three of the stress-strain relations considered, namely,

For t' !O; 0 < x4 - a = 0 (3.2)

For t > 0 the particle velocities of the specimen and the steel

rod are the same, that is for t > 0& x = 0

Hu = [i [o(t) + GR(t)] (3.3)

where u(x, t) is the displacement of the specimen; p1 and c1

are the density and wave velocity of the steel rods, respectively.

The known initial wave is assumed to have the form

O for t < 0

aD(t) = b sint for 0 < t !T (3.4)

1 0 for T t

where

n is an integer and T is the time length of 4he pulse. The
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linearity of our equations permits superposition of solutions for

different n.

Case I - Elastic Specimen

a
0(x, t) = E2 7- u(x, t) (3.5)

where E2 is the static Young's modulus for the specimen material.

Elimination of u(x, t) between (3.1), (3.5) yields

d2a 2 d 2a
77 C 2  T
dt dx(3.6

2 E2C2 (56

The first assumption together with conditions (3.2), (3.3) and

equation (3.5) yield the boundary conditions.

Our system becomes

d 2a 26d2 a

= =2 =

t - '

O~x. j

a 0o (3.7)t

(o t) q D
X 0 aD 2 P2c2

e= +P 2c 2

1°
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In view of our assumption of no reflections in the specimen, the

solution of (3.7) is

x !- 0O<x
a(x, t) 0 0 for t - - 0 < x1

c 
2

a (x) for t>,O, O x5 (3.8)
q aD(t c2

Since the transmitted stress aT  is given by aT(t) = qa(t, t)

we have the transmitted wave as an immediate consequence of (3.8).

For the initial wave given in (3.4) we have

aT(t) = 0 for t - 0-  - 0c2

aT(t) = Ebsin%(t - .- ) for 0 t ' T (3.9)
c2

aT(t) = 0 for T t

Case II: Elasto-Viscous Specimen
du(xol t) d 2u(xO, t)

a(x, t) = D 2  dx " I dtdx (3.10)

where Y is the coefficient of viscosity. The initial conditions

are:

0: u(xo o) 0 U d(Xo o) - 0

da(x o) a a o) 0) (3.11)~(x0 o) aa-~-x - o) =

The boundary conditions are:

S=0: u(o t) = 1 [2oD(t) - qa(o, t)] (3.12)x ~ ~ ~ P = O1 o"PC--
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where aD(t) is given by (3.4)

x-- *C: u(x, '
(3.12)

O(x' t)--* 0 cont.

We attack this problem by means of the Laplace Transform [17],

[18]. We denote the transform of a sufficiently regular function

f(x, t) by T(x, z), i.e.,

T(x. z) - Jcf(x 0 t) e - z t dt
0

or (3.13)

f (x, t) -00-(Xo Z)

By Section 4. [17] (3.1), (3.o0), (3.11), (3.12), imply

f(x, z) = (D2 + Y Z) (xG z) (a)

a '(x, z) = z p2 W(x0 z) (b)

1 r(3.14)
x = 0: z 9(o, z) = - 9-qco z)] (c)

X-- U : (x, z -' 0 (d)

F(x, z)-- 0 (e)

where, by (3.4)

(-1)n e-zt]  (3.15)
?D + z2
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The solution of (3.14) is

2P 2 Za1e o0
T~~ ~ (X, X)=W-'(x, z) = oll +p2 z

(ilc + P 2Z(4

---z ) - F0 e "W o x 
( 3 .1 6 )

(Cl7W 1C 1 + p 2 zq

is which has positive real part.

if

F(x, t)--m D 2 Z W 0 (3.17)
Yc2[qP2 z +o () 2 + 7 2 )

then, by section 100 [17],

F(x, t) for 0 = t - T

c(x, t) 2by (3.18)

F(x, t) ("l)nF(xo t-T) for t - T

where

c 2  --1 (3.19)

by Chapter VI, [17]0

D c+io 40o x zt
2 ze e dz (3.20)F(x, t) = -iy2p + z2)

Pil
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Let

D2Z P2C2 x
7 t; Y z

- (3.21)

qp2c2  2 2

2 Pll 1

then

1 exp(Cr - idC (3."22)*
F(x, t) = 1+ CZ MhC+ w)d

where is the Bromwich contour (see Figure 10) and the branch

c2
of I C + C which has positive (or zero) real part is chosen.

This implies that the only real root of hC + w = 0 for h > 0

is C = 0.

Case III: Hereditary Specimen

u It- a(t--) d2 u(x T)o(x, t) = E2 -x-+ H jt e Ox tr dT (3.23)
0

*A method similar to the above was followed by I. N. Zverev [19].

His solution is given in the form of a double integral which must,

in general, be evaluated numerically. For the purpose of this re-

port, numerical evaluation of the single integral (3.22) is much

more convenient.
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Figure 11

Bromwich Contour - Hereditary
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where E2 + H is the dynamic Young's modulus and a. A are

Boltzmann constants for the material. The initial conditions

are:
du du

0: U (x 0) - (x, 0) - (x, o) -0

a(xa o) _) (3.24)a (X 0 ) -(,0 0

The boundary conditions are:

x = 0: a u(o 0 t) a UD(t) + a(0, t

where aD(t) is given by (3.4)

3.25)

X-*0o : u (xa t}--0O

a(x0 t)-- 0

We take the Laplace transform of (3.1), and (3.23). By sections 4,

[17] and by (3.24) (3.25) we have:

o(xO z) = (E2  + H -at (a

7 -(X p2 z (x, z) (b)

_ i[aD() oq ozz)

0: z(o z) - =(z) c (o z):P c (c) (3.26)

x--*oo . (xa z) (d)

W (xo 0,z- 'O(e
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and aD(z) is given by (3.15).

The solution for (3.1) and (3.24) is

x 2 De OTF (x, z) -
PiCloo + qp2z

(3.27)
2wo-Fe OT-U(x, Z) - - - --- =
z (Plclo + qp 2 Pz)

where

02 2 (z + a) 2 E2 + H E2  H
0 z + 8 P2 77'-1 (3.28)

and the branch of W0 which has positive real part is taken.0

If
- WoOF~x, ze

F(x, t)--P- 2 + (3.29) + d)

Then, by section lO [17]

2b7'p 2  F(x, t) for 0 : t 1T
t) --? tP (3.30)

( t) l lF(x, t) - (=l)nF(x , t -) for t atT

where and d =  P By the inversion theorem
Pill
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1 exp[ zt - ]o]z dz

F(x, t) = M7zf (3. 31

where r2 is the Bromwich contour. We note, that, for d>O the

only root of Ad + wo = 0 is z = 0. (See Figure 11).

Approximate Theory

In the following subsections we make various physically-

plausible assumptions which lead to solutions more amenable to

numerical computation.

Approximate Assumptions

1. The stress in the specimen is uniformly distributed

across each cross-section.

2. There are no reflections in the specimen.

3. The strain in the specimen is uniform.

u 2 - u I
E =-2-

4. The stress in the specimen is independent of x, the

longitudinal position in the specimen.

In a recent paper [20], H. Charles presented a solution to the

problem of one-dimensional hereditary wave transmission which in-

volves the evaluation of a fourfold iterated integral. For the

purpose of this report, numerical evaluation of the single in-

tegral (3.31) is much more convenient.
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5. UR(t) = aD(t) - q a(t)

aT(t) = q a(t)

Case IV: Elastic-Specimen Approximate

E2E E2
a(t) = 2 = - (u 2  - 1)  (332)

by assumption 3.

The particle velocity is given by

V = 1 a (3.33)
pc

(see equation 6, [12])o Now the particle velocity of the left

bar is

i 1  (CJo + CR) (3.34)

while the particle velocity of the right bar is

1 (3.35)

Thus

v 2  V1 - (u2  Ul) =Ui_= (GD+ CR - CT) (3.36)

By assumption (5) we have

v 2  Vi  2 -(aD - qa) (3.37)
Pill
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Differentiating (3.32) and using (3.37) we obtain

da 2E2q 2E2daa+ P C a, lC a D  (3 38)

Let

2E 2q ( 3

.p ic

then t > 0 implies

t

a a e t eWt aD (v)dT (3.40)q 0

Now

t Wot 1 W~t Wotf e sinTd-- = -_T-_.-tce sint-%e co*t+vj (3.41)
0 (0 +%

Thus

0 for t--'0

2)= -2b [sinxt cost + for 0 t ( T
q (CO + 

(3.42)

b __)n e t] e fort T

where

2E 2 q
2 

3.4

1

3

W I
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The transmitted stress is, thus

aT = qa (3.44)

Case V: Elasto-Viscous Specimen - A proximate

a(t) = (u2 - ul) + Z (v 2 - v)(345)

by assumption 3. Differentiate (3.45) and use (3.37) obtaining

da 2D 2qa 2D 2aCD 2 y daYD
+p ici + 2yq - picl + 2y jpl + d (3.46)

Let

2D2 q . (3.47)

=Pll + 2-yq p 1cl + 7yq

Thus

qa(t) caD + (1 -J.L )e Cl eaD(-)dt (3.48)
0

Hence, using (3.41)

0 for ti 0

b [P sinxt + (i1). (wsin.t -%cost +%e - wt)] (3.49)

a(t) = for 0 6 t T

b (19)w% e w .t - otb 1=Lh,. [i -( I)n e ] e for t ?>T
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Case Vl: Hereditary Specimen - Approximate

a(t) = ( 2 - ul ) + t e a(tT) (v2  Vl)d0

(3.50)

by assumption 3.

Eliminate the integral between (3.50) and its derivative with

respect to time. Then use (3.37) obtaining

d2a 2q(E 2 + H) do + 2qaE 2  2(E2 + H) daD

2E2c' D (3.51)

+ 2Ec aD~

Let

2q(E 2 + H)

P iCl

i(a +
(3.52)

=. 2 2E2Hq

then

0 for t< 0

dca +2t ci + (g2 T) 2)a - qt1L 2 )sint + %C cost]
cit q

for 0 4 t ' T (3.53)

0 for t )IT
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CTdoUr 0 for t = 0

do (3.54)
continuous for t - T

Thus

0 f or t -- 0

-b[g coshti + 1 (g + i

T +b[gcos t + h sin%.t] for 0 t 4. T (3.55)

be-"t . )[(_l) ne %sinh (A-T) -sinhnt]

+g[ (l)neLT osh(t°T) -coshnt]j for t A T

g 2 n2 2) 2%62 _ n 2

(3,,56)
h =  4 2 2 ) 42 2 - %2) +2

(P,2 -2 - 2 (

C. Mathematical analysis of the longitudinal impact of a round

head short bar on an infinitely in bar.

This discussion follows that of W. A. Prowse [1] (see Figure 12).

Let the round-head anvil strike the plane surface with velocity

v. Let D(t) be the total indentation of the anvil and surface com-

bined, Then, for steady pressure p0 the Hertz law [13] gives

= (3.57)
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where

k22E rl12
I2  3(1 v )(I -v)- (3.58)

E and v are the Young's modulus and Poisson ratio of the anvil

and surface while r is the radius of the anvil head.

Prowse considers a section of the anvil of length Ax,

traversed by the wave with velocity c in time At. The resul-

tant force acting on the face AB of this section is equal to

the time rate of change of momentum of the section.

The resultant force is

N At (3.59)

while Prowse considers the time rate of change of momentum as

d 1 d~3 1 d2  (360
_H (APAX t - pcAAt .(3.60)

dt

where A is the cross-sectional area of the anvil.

Thus, equaling (3.59) and (3.60)

d-f (p + 7pcA) 0

Using (3.57) this yields

k 3 / 2 + 1 c Ad (3.61)

We may use either initial or final conditions for the

determination of the constant of integration. First we follow
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Prowse and designate the maximum indentation by Pi. Thus when

(3.62)

= 6

and it follows from (3.61)that

1 d(131,2 /2)
ZpcA ft k 2 ( 3 1  "3 3 2 (3.63)

Since the initial indentation is zero, the solution is

t2 JT ° P' dy (3.64)2k2p 1 2r 1 - 2

Prowse left the result in this form and evaluated the integral

numerically. For our purposes it is better to evaluate the

integral analytically before starting numerical computations.

Define

6v t 
(3.65)

where v is the initial velocity. Then we have from (3.64)

itln[ +8+ 82 2 -2 tan I (28 + 1)

,(1 ) 21 [ (3.66)

From the Prowse condition

1 dD v for 0
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we obtain an expression for the limiting indentation in terms

of the initial velocity, from (3.57)

0l3 / 2 = (3.67)

Note that the limiting stress a1 is

k 2i 3/2 
(3.68)

Consequently, by 13.67) and (3.68)

1= Pcv (3.69)

which is the stress-velocity relation of the theory of impact due

to St. Venant [12], [13].

It is possible to construct stress-time curves based on

equation (3.66) and Table 2. This has been done in Figures 13

through 28 for steel hammers with hemispherical ends. The critical

values for these figures are given in Table 3.

L ...... the hammer length

h.....the height of drop

tlo..base time = 2L (time-length of corresponding

St. Venant pulse)

Tooo...time-length of pulse

S..... liner pulse-length

Gm.... maximum stress attained
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The velocity of the hammer at time of contact and the theoretical

limiting stress-,are independent of the length of the hammer and

are given as a function of the height of drop in Table 3.

For these computations the following values were assumed:

E = 2.073 x 10 1 2 dynes/cm 2

= 3 x 10-

p = 7. 7 gm/cm3

Hammer diameter = 2°5 cm

B A

-0Ax

Figure 12

Round-Head Hammer Impact
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TABLE 2

Height of Drop versus Velocity and

Limiting Stress

h (cm) v(cm/sec) a 1 (kgF/cm2)

5 99.0454 408.94

10 140.071 578.33

15 171.552 708.30

20 198.091 817.88

25 221.472 914.41
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TABLE 3

Critical Values for Figures 13 through 28

L h tj T cT Yn
Fig. (cm) (cm) (micro) (micro (cm) (KgFfcm")

sec) sec)

10 25 5 96.5 140 72.5 348

11 25 10 96.5 136 70.5 514

12 25 15 96.5 134 69.2 644

13 25 25 96.5 130 67.5 850

14 50 5 193 239 124 405

15 50 10 193 233 121 575

16 50 15 193 231 120 708

17 50 25 193 228 118 914

18 75 5 290 336 174 409

19 75 10 290 331 171 578

20 75 15 290 328 170 708

21 75 25 290 325 168 914

22 100 5 386 432 224 409

23 100 10 386 427 221 578

24 100 15 386 424 220 708

25 100 25 385 421 218 914
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SECTION IV

SAMPLE COMPUTATION AND DISCUSSION OF TEST RESULTS

FOR NATURAL RUBBER (HEVEA)



SECTION IV

Sample Computation and Discussion of Test Results

for Natural Rubber (Hevea)

We consider the case of normal (approximate) velocity of

50 cm/sec. The material is natural rubber.

The raw data obtained by averaging readings from film strips

for ten separate runs are as follows

Calibration: (initial length) 185.3

Average drum speed: 121.17 rpm

Readings:

d

Lengthwise (10 3in.) Transverse (Calibration)- (Width)

0 185.3 0

100 179.3 6.0
200 172.9 12.4

300 167.0 18.3

400 160.9 24.4

500 154.8 30.5

600 149.6 35.7

700 144.1 41.2

800 139.2 46.1

900 134.9 50.4

1000 131.2 54.1

1100 127.8 57.5

1200 125.3 60.0

1300 123.4 61.9

1400 122.4 62.9

1500 123.1 62.2

1600 124.0 61.3

1700 125.7 59.6

1800 128.9 56.4

1900 132.7 52.6

2000 137.0 48.3

2100 142.0 43.3

2200 148.0 37.3

2300 154.0 31.3

2400 160.7 24.6

2500 167.9 17.4
2600 175.2 10.1
2700 182.6 2.7
2745 185.3 0
2800 190.0 -4.7
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These results are then plotted and a smooth curve drawn through

the points (Figure 29, 30, 31).

The scale of the curve is changed into the physically-

meaningful parameters, time and displacement, through the following

computations.

The inside diameter of the drum is 15.06 inches, its average

rotational speed is 121.17 rpm. Hence the time corresponding to

a given horizontal distance h in inches on the film is

60 h
t - 121.17 x 15.06n

hence the total time of contact is

60 x 2.745 -2
121.17 x 15.067r 2.87244 x 10'sec

The length of the specimen is 1.27 cm. The calibration measure-

ment yields 185.3. Thus our change of scale on the displacement

is given by

1.27 d

We divide the abcissa of the graph into 10 divisions of

length 2.87244 x 10 3sec and take the values of

s(k ) = s(S) = Sk

from the graph. We have
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S (cm)

.22

.20

.18

.16__ __ _

U!

.14I

.10

.08 _ _ _ _ _ _ _ __ _

.02/

0 
t-

0Ow 2w 3w 4w 5w 6w 7wo 8w 9w low

Time (sec)

Figure 29

Displacement-Time Curves

Nominal velocity 25 cm/sec; w = 3.088xlO-3sec
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S (cm)

,-

4.J

0

---

0 2o 3w 4w 5w 6o 7o 8w3 90ow

Time (sec)

Figure 30

Displacement-Time Curves

Nominal velocity 50 cm/sec; w = 2.872xlO-3sec
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S (cm)

.6 __ _ -4

4

e 3

.2

35 -- ___

tot

o 1 2w, 3w 4u) 5w 6wo 7w 8w 9w 1C~j

Time (sec)

Figure 31

Di splacement-Time Curves

Nominal velocity 75 cm/sec; w = 2.645xlO 3 sec
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k Sk

0 0.0

1 0.1330
2 0.2563

3 0.3530
4 0.4147
5 0.4297
6 0.3934

7 0.3228
8 0.2262

9 0.1179

10 0.0

We wish to fit this data to a function of the form

s(t) =C~et k -(p + iq)t _ (p - iq)t
s~) Ce~ t + T e + e-

where

k = -1 + i ( n 2 + p 2

This form was chosen to insure that the displacement and accelera-

tion are zero fot t = 0.

We use the procedure outlined by Whittaker (see the quotation

following this discussion), with the ordinary method of least

squares to find the values of the constants D2, Dl, Do which

most nearly satisfy the set of equations

s3 + D2 s2 + DlI  Dos 01 0

s4 + D2 3 + D1 S2 + 0oSI  0

* 0 +0Om. ' a 0 0.~~ 0 0~

10 2 s 9 + D 1 s 8 + 1)Q57 0
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This procedure leads to the system of equations

7.338,1605 D 2 + 8.181,983,5 D1 + 8.235,692,7 Do = -5.816,025,7

8.448,673,3 D2 + 8.747,357,1 DL-4 8.181,983,5 D1  -7.3380160,5

8.709,471,2 D0 + 8.448,673,3 DL - 7.338,160,5 D1  -8.107,794,3

which has the solution

D2 = - 2.068,220,275

D1 = 1.350,660,495

D0 = -0.205,225,635,7

We now solve the equation

x3 + D2 x2 + Dix + Do  0

for its roots

X 1. e - n O , x 2  e ( p + iCV)W e x - iq)w

and find, after obvious calculations, -that

n - 5.337,880 x 102, p = 8 .771,98, q = 1.107,459 x 102

Now that we have r1, p, and q, we caL -write

s(t) -Ce-
n - e-Ptcos qt * ( n _2+  2" ) e.si n qt]

and determine the value of C which b)et 
satisfies the equations
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s I = C[ e - r " e-P(Dcos q0j + + 2 2 ) e - p  sin qo ]

= C[e "21w - e 2 Pucos 2qo+ (n q2 .2 2) e.2PUsin 2w]

s Ce'1 0 r - e' 0 opwcoslOq~j+ (n q 2!
10 2qp

sin iOcp]

We again use the method of least squares, finding this time that

C = O.OO2,915,748

The hereditary constants a, Ho and H are obtained directly with

the use of the secant modulus for this material and maximum de-

formation E2= 2.81 x 10 dynes/cm. Hence we have

a n + 2p = 5,513,320 x i0
2

H° = o (p2 + q2)n E2 = 626,555 x 107 dynes/cm 2

0

H o (2pn + + - H° - E2 = 3.662,901
0

x 107 dynes/cm2

We have two checks on the accuracy of our computations. The

first is a comparison of the initial velocity obtained from 
the

graph: vo = 47.5 cm/sec with the value obtained from 
the com-

putation

n2 +2- 2
ds - C p n 2 47.849 cm/sec

- ~=2p
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The second check is a straight comparison of the experimental

values sk with the values s(ka) obtained from the equation.

The latter check yields an error of less than 4 percent over the

entire range of time. Further, all values were rounded off only

after the computation was completed rather than at any inter-

mediate stages.

Whittaker's summary (Reference 8) of the Prony method of

approximating a function with a finite number of exponentials is

quoted below. The notation has been altered to agree with that

of this report as much as possible.

"Although Prony's method is more than a century old,

it does not appear to be widely known or to have found

its way into any text-book; and, as his original paper

is perhaps not accessible to many readers, I may be

justified in giving here a brief notice of it.'

"Suppose that s(t) is given numerically for a cer-

tain range of values of t. Take any set of values of

t equally spaced within this range, say t = 0, w , 20)

w , 4 w, ..., and let the corresponding values of s(t)

be so, S1 , s2 , s3, .... Now if s(t) could be represented

exactly in the form of a sum of k exponentials, say,

Pep t + Qeqt + Re
r t + ... + Vevt

then s(t) would satisfy a linear difference-equation of

the form
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A n+k + B k- + C n+k-2 + s* + Ms n 0

where the roots of the algebraic equation

Aik + Bik-l + Ctk-2 +. + M = 0

would be

ep  q r V ,e e , .... e 

"Prony's method, which is based on this fact, is

to write down a set of linear equations,

Ask + Bskl * Csk_ 2 + ss.. + MsO  = 0

Ask+l + Bsk + Cskl + ..... + Ms1  = 0

Ask+2 + Bsk+l + Csk + ..... + Ms2  0

Ask+3 + Bsk+2 + Csk+1 + among + Ms3 = 0

where the quantities so, Sl' s2, s3,...., are known,

since s(t) is a known tabulated function, and by the

ordinary method of Least Squares to find the values

of A, B, C, ... , M, which most nearly satisfy the

equations; theh with these values of A, B, C, ... , ME

to form the algebraic equation

Ask + Bsk l + Csk -2 + ... 4 M = 0,

and find its roots; these roots will be e
p , eq , er

.. ,e v I and thus p, q. r, ..., v, are determined.
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Knowing p, q, r,, ... , v, we, have a set of linear equations

to determine the coefficients P, Q, R0 , V, and these

also axe to be solved by the method of Least Squares. "

Discussion of.Test Results for Natural Rubber (Hevea)

The data obtained from a series of tests on a natural rubber

27-30 durometer hardness were analyzed, by use of the procedure

outlined above, for three initial speeds of the striking bar.

It was found. as might be expected, that the phenomena were

essentially viscous for nominal speeds of approximately 25, 50,

and 75 centimeters per second. Indeed, in the case of the highest

initial speed (and, correspondingly, the greatest distortion),

the hereditary effect was so small as to be obscured by inaccuracies

of the data.,

The pertinent results of the investigation are given in

Tables 4 and 5. which follow. For the analysis which was made under

the assumption of a viscous stress-strain law:

De + ds
Ur *(4.1)

s(t) = Ce'Ptsinqt

We list in Table 4 the parameters, p, q, C, D, and y; as well as

the time of contact T, the actual initial velocity vo, and the

maximum strain, emo

The slight hereditary effect displayed by the hevea indicated

that it would be pointless to carry the analysis further than
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heredity of the first degree with residual; which is characterized

by

Ee + P [H° + He-a(t -) de d- (4.2)
0

The parameters E, Hof H, a, C, n, p, q, of (4.2), are listed in

Table 5. Note that E is the static secant modulus for natural

rubber.

We finally remark upon an interesting connection between

these two analyses. Comparison of Tables 4 and 5 reveals that,

for a given initial velocity, we have approximately

D = E + Ho

Thus, it can be concluded that

de t (t-w) dey- JP He - dT

dt o

for the hevea specimen.

Since we know that

lim .t a(t-w) de de
a-+ 00 af XeVd CT

0

we expect that the approximate relation

H a

will hold.
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TABLE 4

Results - Viscous Case

Nominal v 0
Velocity cm/sec C p q C D 2 dyne-se-c
cm/sec sec m cm dynes/em cm2

25 3.09x10 2 23.7 0.172 5.15 102 0.233 3.86xl0 7  4.02xi04

50 2.87x10- 2 47.8 0.338 5.05 110 0.453 4.47x10 7  3.75x104

75 2.65x10 2  77.3 0.481 6.08 119 0.650 5.27x10 7  4.52x104

TABLE 5

Results - Hereditary Case

N ominal H H a
Velocity n p q E 2 H 2 C
cm/sec dynes/cm dynes/cm2  dynes/cm sec cm

25 642 5.36 102 2.44xO 7  1.36x O 7  2.62x lO 7  653 6.02xlO 4 =

50 543 8.77 111 2.81xlo 7  i63x O 7  3.62x lO 7  551 2.92xi0 "

These results are shown graphically in Figs. 32 through 39.
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Figure 33

Hereditary Function

Nominal velocity 25 cm/sec; w - 3.088 x 10 3sec
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Figure 34

Hereditary Function

Nominal velocity 50 cmfsec; w = 2.872xl0 'sec
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Figure 35

Stress versus Strain - Viscous Analysis

Nominal velocity 25 cm! ec
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Figure 36

Stress versus Strain - Viscous Analysis

Nominal velocity 50 cm/sec
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Figure 37

Stress versus Strain - Viscous Analysis

Nominal Velocity 75 cm/sec
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Figure 38

Stress versus Strain - Hereditary Analysis
Nominal velocity 25 cmfsec
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Figure 39

Stress versus Strain - Hereditary Analysis

Nominal velocity 50 cm/sec
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At present, a series of tests has been completed on the

Butyl-25 and Neoprene GNA. The computation of the results is

now underway. These tests will be followed by a series on

1. Nylon

2. Polytherne

3. GRS artic.

The results of these tests will appear in a final report in

June 1953.
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OF A BALL ON AN INFINITELY LONG BAR



APPENDIX A

Mathematical Analysis of the Longitudinal Impact

of a Ball on an Infinitely Long Bar

A steel bar of mass m0 radius r, and velocity v0 strikes

the end of an infinitely long bar. We wish to find the pressure

at the end of the bar as a function of time.

We take the stresses positive in compression and the dis-

placement positive directed into the bar.

For an arbitrary force F(t) applied uniformly over the

end of the bar:

a(x, t) = ,. Ft) C

where

Since u - u(t - we have
C

a~x t)~ au du

The complete displacement due to the impact is

where D is the total indentation and u is the elastic deformation

due to the force F(t). The velocity is

- 97 -
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By the law of impulse and momentum, we have at x - 0

vO -X ft F(t) dt
0

thus

Vo J F(t)dt - + F(t)
0

Assume the Hertz law [13], i.e.,

F -k2p
3 /2

3( 2E v) /k2 " 3(1 + -V7. i- V)

thus

_2 d (3/2) k2 3 1 2d +  =- 3(0-

dt PCA N n

This differential equation is not easily integrated. Numerical

solutions for boundary conditions of the type

-. for t = 0
V VoJ

are available, however, for specific values of vo and the con-

stants of the equation.

Assume

k2  1.73 x iO12 d ,e m 365.1 gs
cm

pc - 4.05 x 10-6 sec A 5.07 cm2
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then for

d 2+] d032,+ d 5 3 / 2  0

dt

where

b k 2  d k 2b=pc-9  d= m

we have

b 8.44 x 104 (cml/ 2 sec) - 1

d 4.75 x 10 9 (cm 12sec 2 )

Initial conditions:

t 0; 0 dB

For m = 365.1 gins 0 five cases were considered:

TABLE VI
Ball Impact Values

vo  T Omax Fmax max 2

(cm/sec) (ii sec) (mm) (x i09 dynes) (Kg F/cm )

45 245 0.0224 5.80 1166

90 192 0.0367 1.22 2453

135 176 0.0484 1.84 3704

180 164 0.0598 2.53 5088

220 157 0.0699 3.20 6435

The graphical solutions are given in Figures 40 through 44,,
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APPENDIX B

Rubber Specimen Recipes

The 1/2-inch by 12-'inch rubber cylinders were fabricated in

the Rubber Laboratories, Armour Research Foundation of Illinois

Institute of Technology. They were made in an eight cavity mold

of the following rubber compounds:

1. Hevea

2. Hycar OR-15

3. Neoprene GNA

4. GMS Artic (85 Butadienef 15 Styrene)

5. Butyl-25

The compounds were prepared on a two-roll 6 x 10-inch

laboratory rubber mill with a front roll speed of 30 fpm and a

speed ratio of back roll to front roll of 1o4 to 1. Cold water

was circulated through both rolls during the mixing of the GRSv

Butyl, Neoprene, and Hycar OR-15 compounds. No water was cir-

culated during the mixing of the Hevea.

The formulas for the compounds are given in Table 7 and a

summary of their physical properties is given in Table 8.

- l06 -
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TABLE 7

R[BBER SPECIMEN FORMULAS

GRS (Artic) Hycar OR-15

GRS (artic) 100 Hycar OR-15 100
Reogen 10 P-33 25
P-33 25 Dioctyl Adipate so
Zinc Oxide XX78 5 Zinc Oxide XX78 5
Stearic Acid 2 Stearic Acid 1
Agerite Stalite 1 Agerite Stalite 1
H Teads 3 H Teads 3
D.P.G. 1 D.P.G. 1

Neoprene Butyl 25

Neoprene GNA 100 Butyl 25 100
L.C. MgO 3 P-33 25
P-33 25 Zinc Oxide XX78 5
Circo Lt. Process Oil 15 Mineral Oil (White) 1
Neozone D 1 Lime (CaOH) 5
Stearic Acid 1 Sulfur 2
Zinc Oxide XX78 5 Thiomex 1

Polyac 0.5
Akroflex C 2

Natural Rubber

Smoked Sheets 100
Reogen 10
Zinc Oxide 5
Stearic Acid 2
Agerite Stalite 1
P-33 25
Methyl Teads 3
D.P.G. 1
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TABLE 8

SUMMARY OF PHYSICAL PROPERTIES OF

RUBBER COMPOUNDS GIVEN IN TABLE 7

Stock 320'F MSOO T E S Shore "A" Hardness

Hevea 10 600 2300 850 15 38

20 710 2880 710 10 38

30 725 2550 670 8 38

GRS (Artic) 30 215 270 565 10 38

Hycar OR-IS 30 195 1280 945 13 31

Neoprene 30 965 2620 840 15 44

Butyl 25 30 - 365 285 0 43

M500 - Modulus at 500 per cent Elongation

T - Tensile Strength (psi)

E - Elongation (per cent)

S - Permanent Set at Break
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