Accession Number : ADA602346


Title :   Biotic-Abiotic Nanoscale Interactions in Biological Fuel Cells


Descriptive Note : Final rept. 15 Apr 2010-31 Dec 2013


Corporate Author : UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES


Personal Author(s) : El-Naggar, Mohamed Y


Full Text : http://www.dtic.mil/dtic/tr/fulltext/u2/a602346.pdf


Report Date : 28 Mar 2014


Pagination or Media Count : 24


Abstract : In contrast to metals and semiconductors, where the mechanisms of charge transfer are well understood, with immense technological consequences ranging from computers to solar cells, comparatively little is known about the physics of biological charge transfer, especially over long distances and at microbe-surface interfaces. Understanding this complex process will allow us to direct electronic signals from and to cells, potentially leading to new bioelectronics that combine the replication, self-repair, and precise biochemical control of nature with the vast toolbox of nanotechnology. This understanding will improve the flexibility and performance of future multifunctional DoD-relevant devices (energy harvesters, sensors, and bioelectronic circuits) that combine natural and synthetic components. In addition, the unique cell-to-surface conduits evolved by microbes are being exploited in diverse technologies ranging from bioremediation and biocorrosion control to microbial fuel cells. This AFOSR project has experimentally demonstrated micrometer scale electron transport along extracellular filaments known as bacterial nanowires, uncovered the underlying electron transport mechanisms, and developed in vivo techniques to study and harness this interfacial electron transport.


Descriptors :   *ELECTRON TRANSPORT , BACTERIA , FUEL CELLS , NANOWIRES


Subject Categories : Biochemistry
      Microbiology
      Electrochemical Energy Storage


Distribution Statement : APPROVED FOR PUBLIC RELEASE