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ABSTRACT 

Data from the CALIPSO satellite are analyzed for their ability to provide information 

about water depth.  The CALIPSO LIDAR operates at 532- and 1064-nm.  The 532-nm 

sensor measures both total power and the perpendicularly polarized intensity.  Transects 

are studied from three geographic areas; Kure Atoll (near Midway), the Bahamas, and 

Sequoia National Forest.  Differences in the data for two wavelengths and polarization 

for the 532-nm light were examined.  The cross-polarized return at 532-nm was found to 

be strongly related to water depth.  Results are compared with depth information 

determined by the brightness in Landsat imagery.  Shallow water areas are seen to have a 

specific LIDAR signature based upon the ratios of backscattered light. 
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I. INTRODUCTION  

Looking beneath the ocean's surface remotely offers navigational and tactical 

benefits.  Today's bathymetry methods return accurate results, but require direct access to 

coastal areas for an extended period of time.  Boats using sonar scanning and planes with 

LIDAR sensors perform bathymetry measurements, which assist in navigation for ships 

and submarines as well as help analysts, researchers, and military personnel to better 

understand the battlefield.  However, access to perform these measurements is not 

available everywhere.  The ability to see through the ocean's surface from space 

circumvents the proximity requirement and offers the advantage of being a true mode of 

remote sensing. 

LIDAR technology has undergone rapid improvement since its invention in the 

1960s and certain systems record a full waveform of data—a number of data points dense 

enough to actually graph a curve.  Some systems also record different wavelengths and 

polarizations, which interact with the environment uniquely and, therefore, return 

different information after reflecting off surfaces and objects.  This information allows 

researchers to see much more than a three dimensional map.   

Using LIDAR data from a satellite platform has several advantages that show 

promise for future research.  Satellites orbit the earth at a distance much further away 

than a plane, so the scan has a correspondingly larger scan area.  The CALIPSO satellite 

studies aerosols and clouds, but has a LIDAR sensor, which can also look into water.  

CALIPSO's receiver has a polarizing element, which attenuates surface reflections.  The 

satellite also collects data during the day and at night, so the weakest signals are received 

from deeper water at night when the electromagnetic noise is lower. 

The CALIPSO satellite utilizes two different wavelengths (1064-nm and 532-nm) 

and polarization measurements for green light.  The 532-nm light allows the possibility of 

seeing into water, and the interaction of laser light with water will also reflect light with a 

changed polarization.  Satellites cannot, at present, perform bathymetry measurements,  
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however, because of a number of problems including large distances, lower available 

power, and data acquisition from a high velocity platform.  This research explores the 

possibilities of using satellites for bathymetry. 

Satellite LIDAR data might be used to scan large areas of the planet and identify 

some features, including the presence of shallow water, using the LIDAR signatures.  

Areas containing these features could then be further examined.  Little research has been 

conducted in this direction.  The prediction is that the 532-nm wavelength beam onboard 

the CALIPSO sensor will return data from both the surface and the bottom of shallow 

water areas.  The depth of shallow water can also be determined using brightness from 

optical band imagery.   

This thesis tests the data from the CALIPSO LIDAR sensor to see whether 

LIDAR signatures are capable of finding shallow water areas in the ocean.  Kure Atoll 

and the Bahamas were used as test areas.  These places both have areas of shallow water 

surrounded by deep water. Differences in the reflections of the 532-nm wavelength light 

and the 1064-nm light and, especially, the effects of polarization, determine these 

signatures.   

The following chapters will describe background information on the evolution of 

LIDAR toward full waveform data, the details of analyzing CALIPSO LIDAR data, and 

the results of the experiment.  Chapter II provides background from early LIDAR to full 

waveform LIDAR, and then focuses on bathymetric applications.  Chapter III examines 

the research areas chosen and introduces the capabilities of CALIPSO, as well as 

describing the experimental approach and how the data was analyzed.  Chapter III also 

includes the process to guide a user through the use of CALIPSO data in conjunction 

with IDL and ENVI.  Chapter IV includes the details of analysis and how the CALIPSO 

data was characterized in each of the sites.  Chapter V breaks down the results and actual 

capabilities of CALIPSO to produce a shallow water signature from the LIDAR data.  

Chapters VI and VII lay out a summary of the research and conclusions from the 

experiments. 
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II. BACKGROUND 

A. EARLY LIDAR 

1. Beginnings 

The technology of LIDAR has been around since the 1960s following the 

invention of the laser in 1958.  Airborne Laser (or LIDAR) Bathymetry (ALB) came 

from efforts to find submarines.  Hickman and Hogg (1969) also wrote an important early 

paper entitled, Application of an airborne pulsed laser for near shore bathymetric 

measurements, that investigated the possibility of using a blue-green laser for airborne 

bathymetry.  The standard LIDAR equation is derived from the radar equation.  The 

constant speed of light enables very accurate measurements of distance.  These accurate 

distance measurements have created high quality Digital Elevation Models (DEMs) at a 

far lower cost than ground surveys.  Smaller LIDAR sensors enable the technology to 

become a tool for field measurement as well as being mounted in aircraft and spacecraft.  

Remotely mapping an area has been useful for navigation on land and in water, as well as 

for military planning. 

In September 1965, measurements were made by airborne LIDAR sensors over 

12 test sites with different terrain types (Link, 1969).  This early sensor could accurately 

record the ground measurements, but had difficulty with vegetation since it recorded 

fewer points than modern systems.  "Thus, the laser profilometer system cannot 

accurately profile the ground surface in vegetated areas or areas with other surface 

features" (p. 191).  The results showed promise since the, "laser profilometer system was 

capable of accurately measuring specific terrain features of short distances with a 

resolution of 0.3 ft in the vertical plane and 1.7 ft in the horizontal plane" (p. 191). 
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Figure 1.   Vertical profile over land in feet (From Link, 1969, p. 196) 

The first active LIDAR sensors carried by airborne or satellite platforms were 

designed at the beginning of the 1970s.  The United States, Canada, Australia, and 

Sweden all adopted airborne LIDAR systems early in their development.  These systems 

created one dimensional profiles (nadir view) made of sequences of single pulses.  

Infrared lasers became the preference for land-based LIDAR mapping whereas green 

laser light was added to sensors over water since it attenuates the least in coastal waters.  

As LIDAR systems and computers became more sophisticated, systems gained the 

capability to handle more data.   

2. Forestry Applications 

The forestry community has quickly adopted LIDAR for a variety of purposes.  

For forestry applications, researchers often assumed that the first echo belonged to the 

canopy top and the last pulse to the ground.  Full waveform LIDAR data offered many 

possibilities to distinguish tree ages and species as well as characterize the structure of 

large forested areas.  Research in forestry has helped scientists better understand the 

possibilities/capabilities of LIDAR.  In forestry, when 3D points and their attributes are 

extracted from waveforms, the process yields a much larger number of points compared 

to just using the first and last pulses. 



 5

 

Figure 2.   Tree as voxel structure (Reitberger, 2008, p. 218)  

Optical sensors reveal information about forests using spectral information; 

however, they measure pixel values that only represent the intensity that is directly 

reflected from surface elements.  Anything beneath the canopy surface goes unrecorded 

by optical sensors.  The LIDAR waveform is influenced by the transmitted pulse, 

atmosphere, and the object being measured.   

For early LIDAR returns, the first two echoes contain about 90% of the total 

reflected signal power; for real-time detection, more than five pulses of low intensity 

signals within the noise is necessary (Mallet, 2009).  A single echo is sufficient for only 

one target within the diffraction cone (Mallet, 2009).  To discriminate two objects that 

closely overlap, the number of samples must be high. The LIDAR data reveals different 

information about a scene than does classic passive imaging. 

3. Bathymetry 

Both rapid shoreline assessment for tactical military operations, and navigational 

charts of large areas, are performed well by airborne LIDAR.  To create accurate point 

clouds, LIDAR uses several tools.  Airborne LIDAR systems utilize Global Positioning 
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System (GPS) and an Inertial Momentum Unit (IMU) to record accurate spatial 

measurements.  The IMU is used to calculate supporting vector attitudes and absolute 

orientation of laser sensor (Heipke et al., 2002). 

Bathymetric LIDAR systems have been flown via airplanes and helicopters, but 

have not yet flown in space.  They have been developed to carry sensors with two 

wavelengths.  LIDAR uses both pulsed and continuous wave systems, the state-of-the-art 

in LIDAR focuses on pulsed systems as does this thesis.  White sand in shallow water 

produces strong reflections, which airborne sensors can receive over a wide area.  For 

safety purposes, the laser spreads out to an eye-safe level by the time it reaches the 

water's surface.   

The most widely used bathymetric LIDAR in recent years has been a system 

designed by Optech International.  The Scanning Hydrographic Operational Airborne 

LIDAR Survey (SHOALS) and has been widely used.  The SHOALS sensor operates at 

200-m altitude.  Using two separate lasers has let sensors effectively measure both the 

surface and bottom of shallow water areas.  The image of reflection curve is separated 

into surface, volume, and bottom.  Surface detection is normally done by the infrared 

channel (1064-nm) while the green light (532-nm) is used to measure beneath the surface.  

Water clarity and turbidity are major factors in-depth determination, especially since 

water clarity may change quickly or be seasonally influenced.  
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Figure 3.   ALH operation over water (From LaRocque, 1999) 

 

Figure 4.   Geometry of laser into water (From LaRocque, 1999) 
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Most Airborne Laser Survey (ALS) systems only provide the coordinates of 

scattered objects.  However, LIDAR reveals more than range information about 

illuminated surfaces.  Green light can reach through water, while infrared light reflects 

off of the surface.   

Bathymetric airborne LIDAR has shown promise for mapping shallow water 

areas quickly and with less cost than underwater surveys.  The SHOALS system has 

proven to be a useful tool.  Transmitted green lasers partially reflect from surface and 

bottom while the infrared lasers reflect from the surface in all but the shallowest of water.  

Therefore, distances can be calculated from the laser's time of travel through the air and 

water.  Laser energy is lost because of refraction, scattering and absorption, through the 

water column (Irish, 1999, p. 124).  Green lasers and infrared lasers are used 

simultaneously.   

Acoustic sounding methods are the preexisting primary alternative to LIDAR 

bathymetry.  While the techniques of interpreting airborne LIDAR data are not as 

developed as those for SONAR, unfamiliarity with the data from LIDAR can be 

overcome.  Much of the energy does not return effectively to the sensor and the ratio of 

illumination of the target area to bottom area must be sufficiently high for detection.  

However, areas such as the coasts of New Zealand's Sub-Antarctic Islands have isolated 

pinnacles on the sea surface and extreme weather conditions.  Conditions such as these 

make acoustic survey methods almost impossible (West, 1999). The analysis of LIDAR 

data using automation methods makes interpretation of the data easier to manage. 

Australia has been a strong proponent of airborne bathymetry for some time now.  

Before the use of airborne LIDAR, acoustic methods were used to map water depths.  

Acoustic sounders have been in use since the 1930s and “acoustic techniques remain 

unchallenged in deeper waters” (Penny, 1986, p. 2046).  Water turbidity strongly affects 

airborne bathymetry.  To mitigate this problem, “knowledge of approximate water depths 

and the seasonal variation in water turbidity could be used to maximize the likely 

efficiency of a survey operation” (Penny, 1986, p. 2048).  Remotely sensing aquatic areas 

can provide a means to plan further surveys.  The maximum depth that can be measured 
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by sensors depends on water turbidity, laser peak power, bottom reflectivity, background 

light level, optical system design, and aircraft altitude.  Methods for eliminating false 

depths have been developed. 

 

 

Figure 5.   Australian tests of ALB and angle dependence (From Penny, 1986, p. 
2053) 
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Figure 6.   Diagram of green and IR beam propagation (From Penny, 1986, p. 2053) 

4. Waveforms and Bathymetry Data 

The shape of the LIDAR waveform reveals a great deal of information beyond 

range measurements.  For example, certain underwater features have strong signatures 

after taking several derivatives of the LIDAR waveform.  The curve may have features 

that seem somewhat hidden, but are revealed by seeing the nuances of the shape by 

taking several derivatives.  There are characteristic reflectance pattern in corals.  The 

fourth derivative of the reflectance spectrum of coral are used to identify reflectance 

features since they produce sharp peaks.  Analyzing LIDAR waveforms using similar 

techniques such may help obtain a better understanding of reef ecology.  In contrast, for 

acoustical surveying methods, "Ground truth consisted of 144 underwater line transects" 

(Hochberg, 2000, p. 166).  This ground truth and other sets from acoustical sensors can 

be very coarse.   
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Figure 7.   Reflectance and fourth derivative (From Hochberg, 2000, p. 166) 

Highly sensitive LIDAR instruments, such as the Ocean Water Lidar (OWL), 

clearly show a signal for the bottom beneath the surface of shallow water.  OWL returned 

a raw LIDAR waveform.  Charles Cassidy performed research on this sensor, which had 

a primary task of testing LIDAR technology for the purpose of locating mines (Cassidy, 

1995).  The laser in OWL was tunable between 470-510 nm.  It used a scanning mirror 

and the off-nadir angle was 15 degrees.  OWL had an 18-20 nanosecond pulse length 

(full width half maximum), a beam divergence of 0.4 milliradians and a 12 meter spot 

size at 183 m flying altitude.  Figures 8 and 9 illustrate data from the OWL sensor in 

shallow water near the shore.  The sensor had three gain levels - low, medium, and high.  

The measurements are shown in two plots in Figure 8, on a linear (bottom) and 

logarithmic (top) scales.  The left hand peak is the surface return; the right hand peak is 

the bottom return.  The water depth at this point is approximately eight meters.   Figure 9 

shows a similar plot for just the low-gain channel in shallow water. Here, the water depth 

is about six meters.   Note, that as the system moved into shallower water, the two peaks 
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will merge ,which is illustrated in Figure 10.  Figure 10 still shows two distinct peaks, at 

a water depth of about four meters.  The surface return has not fallen below background 

at the point where the bottom return begins. 

 

 

 

Figure 8.   OWL waveform (From Cassidy, 1995, p. 123) 
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Figure 9.   OWL surface return and bottom return (From Cassidy, 1995, p. 123) 

 

Figure 10.   OWL waveform with surface and bottom returns close to merging (From 
Cassidy, 1995, p. 118) 
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A prime example of the direction that airborne bathymetry is moving can be 

found with the Experimental Advanced Airborne Research LIDAR (EAARL) system.  

This sensor builds upon the work on SHOALS.  EAARL uses green light for bottom 

detection since it penetrates with little attenuation, but the 1064-nm wavelength is also 

important for various reasons.  The beam spreads much more within the water, which can 

detract from depth accuracy, but could illuminate large bottom features.  Since such a 

great amount of data is received by EAARL, depth is only approximately calculated in 

real time.  Post-processing of the data then derives accurate depth measurements.  

EAARL does well in shallow water, but the range of LIDAR becomes limited quickly in 

deeper water.  Ships and boats using acoustic techniques, conversely, effectively map 

deeper water, but have difficulty accessing shallow water areas.  Airborne LIDAR can 

identify danger to surface vessels for sonar surveys.  Airborne Laser Bathymetry (ALB) 

(also known as Airborne Laser Hydrography ALH) can be complemented with surface 

sonar bathymetry and vice versa.   

EAARL uses two laser wavelengths (532-nm and 1064-nm), and the IR 

wavelength has proven to be very effective for terrestrial LIDAR measurements.  

“However, commensurate progress in bathymetry has not occurred and water remains a 

difficult medium through which to make remote measurements of topography” (McKean, 

2009, p. 9).  EAARL uses lower power, but high repetition of pulses.   

EAARL can survey depths up to about 50 m (Guenther, 200, p. 5) and the ratio of 

absorption to scattering depends upon particles in the water.  To reach beyond the 

surface, green light is used, but infrared (IR) light plays an important role in surface 

detection.  Therefore an Nd:YAG Laser with a frequency doubler is used in CALIPSO 

and many other systems.  The green light alone cannot be used for accurate surface 

detection since in shallow water a strong green bottom return can overpower the green 

surface return.  Light attenuates exponentially, so the bottom return can be six or seven 

orders of magnitude weaker than the amplitude of the surface return.  “ALH is not a 

substitute for side-scan sonar.  Its spatial resolution is not as good as for modern high-

frequency sonars, and, as noted above, some small targets may not be detected, even if 

illuminated.” (Guenther, 2000, p. 6)  Energy backscatters from particles just below the 
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surface for green light as well (Guenther, 2000, p. 8).  The IR can reflect off of “spray, 

birds, and low-lying mist,” (Guenther, 2000, p. 9) so the green return assists in 

determining the surface.  Logarithmic amplifiers are one solution for distinguishing weak 

signals. 

 

Figure 11.   Surface and bottom return from airborne LIDAR 
(From Guenther, 2000, p. 3) 

EAARL exemplifies how the hardware and software have been optimized for this 

purpose of looking at shallow water.  EAARL's features include a relatively short 1.3 ns 

pulse, a narrow FOV (1.5-2 mrad), digitized signal temporal backscatter amplitude 

waveforms, and software implementation of signal-processing.  EAARL also has ideal 

characteristics for shallow reef substrates since it has high spatial accuracy (20-cm 

surface footprint at 300-m altitude) and 1-ns digitizing interval resolution. 

Traditional hydroacoustic ship instruments cannot operate in water more shallow 

than five meters, and field surveys require substantial time and funding.  To assess and 

interpret the myriad data from EAARL, semi-automated statistical filtering methods for 

false bottom returns and outliers have been useful.  Birds, multiple atmospheric effects, 

or multiple reflections from bright targets can produce surprising results (EAARL, 2009). 

5. Complementing Technology 

The use of other technologies in conjunction with LIDAR can provide a more 

complete set of measurements.  Since LIDAR depends on water clarity and bottom 

reflectance characteristics, Hyperspectral Imaging (HSI) is another remote sensing 
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technology that can help reveal underwater environments.  LIDAR systems fly lower 

than HSI to return a higher point density, and according to Bissett, "LIDAR bathymetric 

sounding from space is also a technological hurdle, whereas high resolution HSI is a 

possibility" (Bissett, 2005, p. 343).  Advantages of LIDAR include that it is less 

dependent on atmospheric and solar illumination and is more likely to return information 

at any point in time.  It also has some of the same advantages as HSI, including constant 

swath over changing bathymetry, and 24/7 operations.  "In addition, the bathymetric 

sounding is also qualified for nautical charting, whereas, the HSI has yet to achieve the 

same level of success" (Bissett, 2005, p. 343). 

 

Figure 12.   Comparison of surface bathymetry range to airborne (From Bissett, 2005) 

B. WAVEFORM LIDAR 

1. Overview 

LIDAR creates accurate 3-Dimensional models, but LIDAR data can reveal much 

more than range measurements.  Within the diffraction cone there are further physical 

properties, since light of different wavelengths interacts distinctively with the 

environment.  The CALIPSO sensor has two wavelengths of laser—532-nm and 1064-

nm.  The polarization of the 532-nm light is also recorded. 
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Most LIDAR data undergoes processing to reduce the amount of information to a 

more manageable level; however, the raw data holds interesting features.  Saving the 

complete waveform allows it to be processed and further analyzed.  Computers can 

handle more points now, and isolating a section of a full waveform transect allows for 

easier processing.  LIDAR is improving with hardware and micro circuitry.  On land, 

LIDAR forest canopy penetration has undergone rapid improvement (Espinosa, 2007) 

and has evolved toward full waveform analysis.  The complete waveform allows more 

control in the interpretation.   

It is relatively new to actually use the full waveform.  Within the full waveform 

there are possibilities for improving the use of LIDAR systems.  Three-dimensional 

points and their attributes extracted from waveforms yield a very large number of points.  

Since work with the raw data itself is fairly new, obtaining full waveform LIDAR data is 

not especially common.   

The shape of the LIDAR waveform curve reveals much information about the 

environment that has been surveyed.  Keeping the raw waveforms allows further analysis 

following the collection.  Volume backscatter reflects off of the particles in the water, and 

allows detection of surfaces beneath the water.  That scattering also causes spreading of 

the laser beam, which illuminates a greater area, but also causes less energy to be 

returned to the sensor.  The clarity of the water acts as a major limitation for LIDAR. 

ALB is attractive as a means of defining safe operating areas, but it does have 

limits.  ALB has proven accuracy, numerous/varied capabilities, high coverage, flexible, 

mobile, efficiency, safety, and low cost (Guenther, 2007, p. 284).  However, it requires a 

high degree of water clarity, and distinguishing small objects is a challenge—it can 

resolve at most 2-meter cube objects.  Things like underwater kelp can cause false bottom 

returns as well.  The maximum depth for ALB is about 50 meters (Guenther, 2007, p. 

268).  LIDAR might be a good complement to traditional bathymetric mapping methods, 

since shallow water becomes more and more of a problem for surface ships as they 

approach the shore.    
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2. Applications 

The airborne LIDAR systems SHOALS and EAARL have proven effective for 

bathymetry of shallow water areas.  Knowing the underwater environment in shallow 

water areas applies to the military for surface navigation and submarine mapping.  

However, mapping shallow water proves problematic for surface vessels and there also 

turn out to be difficulties in distinguishing the surface and bottom returns in very shallow 

water from airborne LIDAR.  “Mapping shallow-water bathymetry with acoustic 

techniques is complicated and expensive.” (Pe’eri, 2007, p. 1217)  Less than 2% of the 

incident light is reflected as “surface return.”  Green (532-nm) laser light produces 

returns from both the surface and bottom, but it can be difficult to distinguish the two in 

shallow water.  For very shallow water (< 2m), it seems as though red channel can be 

more effective. 

Bathymetry serves many useful purposes, including the detection of surface oil 

slicks and the detection of chlorophyll alpha using fluorescence techniques.  (Exton, 

1983) Suspended solids (organic and inorganic) cause scattering and absorption.  Open 

water and coastal waters have different optimal wavelengths for maximum penetration.  

Light at 470-nm has minimum attenuation in open water, and light at 570-nm causes 

minimal attenuation in coastal waters (Exton, 1983, p. 54).  Mie scattering in the ocean 

comes mostly from particles that are relatively large as compared to the laser wavelength.  

The attenuation coefficient limits the laser wavelength that can effectively be used since 

this coefficient increases with wavelength.  Thus, proper wavelength selection can greatly 

increase effectiveness.  The tests of multiple wavelengths for bathymetry in Exton's 

research included a 532.0-nm laser from Nd:YAG, similar to the sensor onboard 

CALIPSO.  On a satellite the wavelength cannot be changed, but the 532-nm light has 

proven beneficial for several applications and thus continues to be installed on LIDAR 

sensors (Exton, 1983). 
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Figure 13.   Relative intensity vs. wavelength (From Exton, 1983, p. 58) 

Refraction at the air-sea interface can cause problems.  The interface causes both 

downwelling irradiation effects and intensified backscatter of upwelling radiance.  

Spectrally dependent sensors measuring turbid waters can lead to overestimates of water 

reflectivity.  For LIDAR, it "can lead to overestimates of the apparent diffuse attenuation 

and backscatter coefficients" (McLean, 1996, p. 3266). 

 

Figure 14.   Downwelling and upwelling effects in the ocean 
(From McLean, 1996, p. 3262) 
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Spectral imaging can also be used to resolve depth, but only qualitatively since 

results do not meet hydrographic standards.  Both multispectral and hyperspectral data 

sets can be used to estimate depths.  Satellite imagery is very promising for large-scale 

shoreline mapping.   

The NASA Ice, Cloud and land Elevation Satellite (ICESat) carried a single 

LIDAR sensor that measured the mass balance of the polar ice sheets.  The LIDAR 

sensor had 1064-nm and 532-nm laser wavelengths, similar to many of the bathymetric 

systems.  The 1064-nm light reflects from the ice surface and the 532-nm light interacts 

with the atmosphere.  In several ways, the LIDAR onboard ICESat is similar to 

CALIPSO.  More background on space missions using LIDAR altimetry can be found in 

Brian Anderson's master's thesis, 2008. 

 

Figure 15.   (Top) LIDAR ICESat data of the area; (Bottom) photograph of Saharan 
Africa (From WFF GLAS, n.d.) 
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3. CALIPSO 

This research analyzes the utility of satellite LIDAR waveform data and 

polarization for shallow water areas.  LIDAR can provide remote depth measurement for 

regions with shallow water.  Measurements in these areas assist with submarine 

navigation.  Surveying via boat and aircraft currently perform this task, but access to 

some areas is not always possible.  This research will determine if shallow water can be 

identified by spaceborne LIDAR using a comparison of reflections of two laser 

wavelengths and polarization information. 

This thesis focuses on determining the effectiveness of the spaceborne LIDAR's 

ability to look into shallow water.  The shallow water is identified by using LIDAR data 

from the CALIPSO sensor.  LIDAR signatures for water depth are developed using 

polarization information.   

The two areas analyzed for this purpose were Kure Atoll, near Midway Island, 

and the Bahamas.  Sequoia National Forest in California was used as a land based control 

area.  Using the two sensor wavelengths and taking advantage of the polarization values 

for the return on the 532-nm laser, ratios of the reflection amplitudes were the main 

characteristic analyzed. 

Ball Aerospace & Technologies Corp. provided the author with three data sets of 

areas near Midway.  They served as a starting point.  Data in raw HDF format were then 

downloaded through NASA's Web site.  That data can be read with several programs 

including MATLAB and IDL.  Full Waveform (FWF) LIDAR data offers a complete 

waveform of each backscattered pulse.  The user gains more control in the interpretation 

process with complete waveform data and computers are now better able to handle the 

increased data volume. 

Many LIDAR systems have a scanning mirror system that covers a broad 

geographic range; CALIPSO, however, does not.  In an aircraft, the scanning systems are 

generally used because they are flown for relatively short periods of time and the 

scanning mirror system can be maintained or repaired.  Maintaining the scanning mirror 

would be much more difficult on a satellite; therefore, the CALIPSO LIDAR sensor is at 
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a fixed angle.  Since the beginning of operations in June 2006, CALIPSO has been 

operating with the LIDAR pointed at 0.3 degrees off-nadir (along track in the forward 

direction) with the exception of November 7–17, 2006 and August 21 to September 7, 

2007. During these periods, CALIPSO operated with the LIDAR pointed at 3.0 degrees 

off nadir. Beginning November 28, 2007, the off-nadir angle will be permanently 

changed to 3.0 degrees. 

CALIPSO thus captures on a fixed angle close to the nadir.  Geographic range is 

sacrificed, but much higher point density is gained because all of the pulses are 

concentrated in this single line of data collection.  The data describe a two dimensional 

"slice" of full waveform data, as illustrated in Figure 16. 

 

 

Figure 16.   NASA image by Chip Trepte and Kurt Severance (From NASA 
CALIPSO, 2009) 
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C. RESEARCH AREAS 

The approach was to find large areas of shallow water from different areas in the 

world.  Large and prominent shallow water areas are visible from publicly available maps 

and images, but many of these images do not have sufficiently small pixels to see much 

detail, nor do they include geographic information. 

Therefore, the search was conducted within the NPS Remote Sensing Center's 

own data archives.  Starting with islands in the Pacific Ocean:  Midway, Bora Bora, and 

Polynesia were selected as initial sites because of prior research done within the center. 

Further possibilities included: Midway, Marshall Islands, Northern Mariana 

Islands, American Samoa, Guam, Tuvalu, Palau, Vanuatu, Micronesia, Kiribati, Nauru, 

Solomon Islands, Puka Puka, Jarvis Islands, and the Johnston Atoll.  Seventy-seven data 

sets were narrowed down to 65, based upon the extent of shallow water areas.  These 65 

data sets fell into 22 locations.  Ball Aerospace provided CALIPSO data from Bora Bora 

via Matlab files derived from CALIPSO HDF files.  Subsequent data came from the 

NASA Web site for CALIPSO data (Data tool located at 

http://eosweb.larc.nasa.gov/HORDERBIN/HTML_Start.cgi). 

LIDAR gives the ability to look through surfaces—through canopies on land and 

into water, whereas photogrammetry can only see the surface.  Photogrammetry does 

return a wealth of information about different bands of light, so LIDAR will not simply 

replace photogrammetry.  Instead, the two technologies complement one another and 

give a broader spread of information about topography, bathymetry, etc.  Imagery from 

Landsat has been used alongside the CALIPSO data in this thesis. 

D. CALIPSO SENSOR 

1. Sensor Overview 

The automation of data from CALIPSO helps considerably with the analysis of 

clouds and aerosols.  The backscatter is spectrally dependent, so the two wavelengths 

onboard the sensor return different information.  A Boolean (true/false logic) 

classification approach with several variables has been taken by Mark Vaughan (2004, p. 

18). 
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The LIDAR sensor onboard CALIPSO is the Cloud-Aerosol LIDAR with 

Orthogonal Polarization (CALIOP).  The 532-nm and 1064-nm lasers are capable of 400 

mJ per pulse; however, the power has been reduced to 110 mJ for each wavelength.  This 

decrease in power will increase the sensor's lifetime.  CALIPSO flies at an altitude of 705 

km and the laser spreads to a 70 m beam diameter at the Earth’s surface.  

 

Figure 17.   Schematic diagram of CALIPSO system  (From Winker, 2004) 

 

Figure 18.   Satellite system and scan (From NASA CALIPSO, 2009) 
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CALIPSO was a joint mission with NASA and the French space agency, CNES, 

launched April 29, 2006.  The CALIOP sensor onboard the satellite is a two-wavelength 

(532-nm and 1064-nm) polarization-sensitive Rayleigh-Mie LIDAR.  The CALIPSO 

LIDAR data can be freely downloaded upon registration at NASA’s Web site.  On the 

site, users may enter in coordinates and data type specifications.    

The CALIPSO sensor is equipped with a fixed angle sensor that allows full 

waveform data to be collected.  There are two wavelengths onboard—532-nm, which has 

polarization, and 1064-nm.  CALIPSO was designed to look at clouds and aerosols, 

therefore cloudy transects do not allow water measurements, because all of the LIDAR 

energy is reflected from the clouds and aerosols back to the sensor. 

The data points are approximately 330 m apart at sea level and each data point 

returns a waveform of reflectance information.  Since data from CALIPSO does not have 

the proximity of airborne LIDAR and has power limitations, it does not provide a 

resolution useful for bathymetry.  However, the reflectance, especially of polarized green 

light, gives a clear indication of shallow water. 

Ball Aerospace with help from Fibertek built the CALIPSO sensor.  The 

engineering unit demonstrated a full mission lifetime (2 billion shots).  Ball designed 

Beam Expander Optics set.  Table 1 lists some statistics on CALIPSO.  Not included—

the pulse length, which is about 20 ns, equivalent to a length of ~6 meters.  (Hu et al., 

2007).  This is very similar to the values for the OWL sensor, with illustrations above. 
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Table 1.   Statistics for CALIPSO sensor (From NASA CALIPSO, 2009) 

2. Advantages of Satellite Remote Sensing 

A broad scan can identify areas of interest and places where a user might then 

investigate further.  Spaceborne platforms deliver a much wider swath than aircraft or 

surface vessels.  Planes also work better for LIDAR scans when flying at relatively low 

altitudes.  Boats with sonar scans can provide much greater accuracy (image), but are not 

always practical because of access requirements.  Satellites, therefore, have the advantage 

of being a true mode of remote sensing. 

3. Drawbacks of CALIPSO for Water Measurements 

CALIPSO was designed to look at clouds and aerosols.  Therefore, these particles 

in the atmosphere interfere with measurements of water.  In addition, the power available 

on CALIPSO does not scale up to compensate for the flying altitude.  The characteristics 

that seem to clearly indicate shallow water using CALIPSO might also be caused by 

several other factors.  It could be an artifact of the cross-talk between the 532-nm cross-

polarized and co-polarized channels or possibly a transient response of the Photo 
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Multiplier Tube (PMT).  "PMT afterpulsing (ionization of residual gas) is the likely cause 

of the non-ideal transient recovery. This effect is well documented in the literature for 

photon counting applications. The time scale of the effect is dependent on PMT voltage, 

gas species, and PMT internal geometry" (NASA CALIPSO, 2009).  In Figures 19 and 

20, however, the y-axis is on a logarithmic scale.   

Strong backscattering targets are often associated with the non-ideal transient 

recoveries.  The magnitude of the surface reflection for both wavelengths also depends on 

the wind speeds at the surface (Hu, 2008).  However, the research performed for this 

thesis seems to validate the approach described as a technique for looking into the 

possibilities of satellites for LIDAR bathymetry. 

 

 

Figure 19.   CALIPSO 532-nm transient response (From NASA CALIPSO, 2006) 
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Figure 20.   Red pulse transient recovery in a laboratory measurement (From NASA 
CALIPSO, 2006) 

Hu et al., (2007) have looked at ground returns and the impact of the impulse 

response on altimetry.  This work explores the utility of detailed analysis of the 

waveform return, in order to obtain finer vertical resolution for ground height 

measurements. 
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Figure 21.   “CALIPSO’s transient response (thick blue curve) derived from surface 
tail/peak ratios of all land surface data, scaled to the peak value. The red, green 
and black curves are CALIPSO surface returns at 30-meter vertical resolution, 

while the surface is at different locations within the 30-meter surface bin” (From 
Hu et al., 2007, p. 14509). 

E. THEORY 

The CALIPSO 1064-nm wavelength laser light will reflect off of the water's 

surface, whereas some of the 532-nm light will reach the bottom of the water and be 

reflected- thus returning information about water depth.  Both co-polarized and cross-

polarized green light will travel beneath the waters surface and reflect back in shallow 

water.  The cross-polarized light gives an indication of volumetric scatter and the 

presence of shallow water in airborne LIDAR.  A similar waveform pattern to airborne 

bathymetry ought to be seen in the CALIPSO data.  The topic of laser interaction with 

water from space has not been thoroughly investigated.  Since lasers traveling from 

satellites attenuate more than lasers from aircraft, the interaction of the CALIPSO sensor 

with shallow water will be the focus of this thesis.   
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The ENVI spectral analysis tools provide several automated processes for 

imagery.  Mostly it is optimized for optical bands so that it can be compared to the 

LIDAR analysis. 
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III. EXPERIMENTAL APPROACH 

A. DATA AND IMAGERY 

1. Data 

NPS has acquired a rather large archive of commercial imagery.  Research has 

been conducted near Midway Island, Hawaii, various atolls, and a number of other areas 

with shallow water.  CALIPSO data was available for only some of these areas.  Kure 

Atoll seemed to best serve the purpose of looking into shallow water over a mostly cloud-

free area. 

Overlaying the CALIPSO data over optical imagery allows for visual comparison 

of the LIDAR data to satellite imagery.  Quickbird, IKONOS and Landsat images were 

used as backgrounds to overlay the CALIPSO data analysis.  The optical imagery also 

contains brightness information, and allowed for depth analysis based upon the 

brightness.  Mapping the analysis over an optical image allows for faster visual 

comparison of the LIDAR data to the visual scene. 

The NASA Web site provides jpeg images of entire scans from CALIPSO 

transects.  The transects cover the world and are broken up into four segments each.  The 

data acquisition tool from NASA allows registered users to download these transects.  A 

quick visual scan can identify heavy cloud cover which disrupts the laser transmission 

down to the ocean, as shown in Figure 22. 
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Figure 22.   CALIPSO scene from NASA with red line representing surface and clouds 
seen in the air (From NASA CALIPSO, 2009) 

Both wavelengths of laser light help with observation of water.  The 532-nm 

beam goes through the air-water interface and propagates toward the sea bottom with 

lesser attenuation than the 1064-nm beam.  The 532-nm data is transmitted at one 

polarization and then after interacting with the water, the reflection includes both the 

original polarization and cross polarized light.  The infrared 1064-nm beam reflects off 

the water surface, thus returning the range from satellite or plane to sea surface.  It should 

be noted that the night and day transects travel in opposite directions. 

The CALIPSO data has been saved as Hierarchical Data Format (HDF) files.  The 

altitude ranges between 9.0 km above sea level and 1.0 km below sea level.  This range 

of 10 km has been divided into 583 "bins."  The 583 vertical steps in waveform means 

each bin is about 17.15 m in vertical distance.   

Several levels of data processing are available for the CALIPSO data and can be 

selected for download from the NASA site.  This research used level 1 data (the most 

unprocessed).  To access the CALIPSO data, registration at the Web site is the first step; 

then, a user may log in and select data to download.   

• Select CALIPSO under Projects 

• LIDAR specific data under Parameters and click "refine" 

• Next a user can select the data level, in this case Level 1 
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• After that the user enters geographic information and time range as well as 

specifying Day/Night transects 

• Then HDF files that match the given characteristics will be presented with 

file size, start/end time, and geographic information.  The user has the 

option of downloading HDF files, metafiles, and reader files if necessary. 

The cloud cover over transects can be initially analyzed using the preview images 

on the NASA Web site since the clouds are clearly visible in these images.  The clouds 

block laser energy before it reaches the water.  Screening the data before analysis can 

save time in the process. 

NASA provided several sets of tools to analyze the CALIPSO data, including a 

tool set for IDL.  These programming routines can be customized for specific tasks.   

2. Interaction With Water 

The extent to which the laser light from the satellites will penetrate the water was 

unknown.  From viewing the images of the CALIPSO transect segments, it seemed as 

though the light was reaching below the water surface.  Looking into this possibility 

became the focus of this research. 

The first geographic area to be examined was Kure Atoll near Midway Island in 

the Pacific Ocean.  The environment there displays a high degree of homogeneity.  The 

water depth remains fairly consistent and only a small area of land rises above the 

surface.  When the IR (1064-nm) light hits the water, it mostly reflects off of the surface 

which provides a good measurement for the surface level.  The green light (532-nm) will 

partially reflect off the surface, but more of this light will actually go beneath the surface.  

If the water is shallow enough, the green light will hit the bottom and then return to the 

sensor.  The light that travels beneath the surface interacts with the water and particles 

within the water, thus the light that returns to the sensor changes its polarization.  The 

polarization of the returning light therefore gives a clear signal that allows detection of 

shallow water. 
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B. PROGRAMMING 

Using modified versions of the IDL programs acting upon HDF Level 1 data, the 

Kure Atoll data was first checked visually, looking for differences in the waveforms for 

the 532-nm co-polarized and cross-polarized light and the 1064-nm light.   

C. SITE DESCRIPTIONS 

1. Kure Atoll 

 

Figure 23.   Global map with CALIPSO scan segment (From NASA CALIPSO, 2009) 
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Figure 24.   Kure Atoll IKONOS image (From NOAA, 2009) 

 

Figure 25.   Kure Atoll Quickbird and Landsat background mosaic with depth analysis 

Kure Atoll is located 89 km beyond Midway and is the northern-most coral atoll 

in the world. It consists of a 10-km wide barrier reef with a small area of land called 

Green Island.  For this research, Kure Atoll acted as the most consistent environment 
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with a fairly homogeneous depth profile.  Approximately 22 data points from the 

CALIPSO transect lie within the shallow water region of the atoll, as shown in Figure 26.  

Results from Kure Atoll prove to be promising for using LIDAR to identify shallow 

water from space. 

2. The Bahamas 

The Bahamas are located in the Atlantic Ocean north of Cuba and southeast of the 

United States.  There are areas of shallow water, deep water, and land.  The shallow 

water is clear and approximately 10 m deep.  Compared to Kure Atoll, the Bahamas are a 

much larger area with greater variety in water depth and more land masses. 

 

Figure 26.   Global map with Bahamas transect segment 
(From NASA CALIPSO, 2009) 

3. Sequoias 

Data over land was selected to compare against the ocean and islands.  Seeing 

LIDAR data over land confirms the unique signature for shallow water using the set of 
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thresholds designated to identify shallow water.  The Sequoias adjacent to Sequoia 

National Park are located in the southern Sierra Nevada Mountains of California.  There 

are 38 groves of Sequoia trees within the boundaries of the forest.  

The trees include: 

Jeffrey Pine (Pinus jeffreyi) 

Red Fir (Abies magnifica) 

Coast Douglas-fir (Pseudotsuga menziesii var. menziesii) 

Ponderosa Pine (Pinus ponderosa) 

White Fir (Abies concolor) 

Lodgepole Pine (Pinus contorta) (Warbington, 2002). 
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IV. SITE ANALYSES 

A. IDL APPROACH 

NASA provided “A set of callable routines that has been written to provide basic 

read access to CALIPSO science data files" (readme file).  These files were modified 

within IDL.   

The main variables that could be modified within the IDL procedures were the 

transect and the thresholds for the different categorization.  The modified programs from 

NASA showed promise.  Various procedures from within the original programs could be 

used for more complicated programming.   

B. LIDAR WATER CHARACTERIZATION 

1. Water Depth 

By comparing the ratios of 532-nm parallel and perpendicular returns to the total 

backscatter, shallow water could be easily distinguished.  Cross polarization indicates 

volumetric scattering as a result of water penetration.  Deeper water does not reflect the 

light that has entered the water and therefore has no cross-polarization component. 

2. Cloud Cover 

The CALIPSO sensor was designed to study clouds and aerosols, so clouds 

prevent clear observation of the water.  The relatively unclouded transects allow the 

measurements of the water.  Thresholds were defined to mark areas covered by cloud, 

allowing the measurements of the water to be immediately identified.   

C. KURE ATOLL 

The transect progresses in time steps and the patterns of reflection can be visually 

scanned.  Over deep water, the 532-nm light and 1064-nm light have similar levels, but 

different shapes, while the 532-nm cross-polarized return stays at a low level.  Over 



 40

shallow water the return from the green light (532-nm) increases while the IR (1064-nm) 

does not change a great deal.  The green light displayed a tail on falling edge, indicating 

that the light was traveling into the water.  More noticeably, the cross-polarized green 

light increases a great deal over shallow water. 

It seemed as if the curve would separate into two distinct returns when the green 

light hit the bottom of the ocean in shallow areas.  That pattern has been observed in 

airborne bathymetry. 

After discarding nearby transects and scenes with too much cloud cover, six 

transects for Kure Atoll were analyzed.  The applicable Kure Atoll HDF transects all 

come from night flights.  In the initial analysis, three different reflections are compared: 

532-nm co-polarized, 532-nm cross-polarized, and 1064-nm.   

Theoretically, it seemed as though the 532-nm light would penetrate shallow 

water, but the extent to which it would do so was not clear.  It was predicted that the 

1064-nm light would reflect off the water surface and thus provide a good comparison.  

In the case of deep water, both the reflected light from both wavelengths was expected to 

be that coming off the surface.   
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Figure 27.   Figure of deep water near Kure Atoll 

The modified IDL programs showed initial promise for identifying shallow water, 

especially with the presence of spikes in cross-polarized reflection of the green light.  The 

file examined here is CAL_LID_L1-Prov-V2-01.2008-01-04T13-33-34ZN.hdf 

(Downloaded using the NASA tool on the CALIPSO Web site).  Perpendicular 

backscatter of the 532-nm light (black in Figures 27 and 28) is the main variable of 

interest.  The HDF transect has 56,070 elements, the deep water figure is one element 

(#25,598) and the shallow water is another nearby element (#25,582). 
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Figure 28.   Kure Atoll shallow water 

 

Figure 29.   Ratios of Perpendicular 532-nm scatter to total backscatter for shallow 
water and deep water—Kure Atoll 
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Since the CALIPSO HDF files had fairly low point density, automation of the 

analysis using IDL would allow more points to be compared simultaneously thus better 

revealing any patterns.  Figure 30 clearly shows a signature for shallow water that is of a 

higher intensity than the noise. 

 

Figure 30.   Kure Atoll averaged returned power compared vs. range bin 

Figure 31 illustrates the perpendicular backscatter of the 532-nm light.  The 

increase in the perpendicular backscatter seems to indicate shallow water.  However, 

using the ratios of the perpendicular to the total backscatter seemed more likely to give a 

defining characteristic for shallow water.  Figure 32 shows that this ratio is much higher 

over shallow water. 
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Figure 31.   Kure Atoll perpendicular backscatter 

 

Figure 32.   Ratio of perpendicular backscatter to the total backscatter for Kure Atoll 
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Figure 33 uses averaged data from a Kure Atoll HDF transect and seems to 

indicate a LIDAR signature that is more clear and less likely to be an instrument artifact.  

Figure 34 shows that both the perpendicular 532-nm power and the total power both rise 

over shallow water.  Figure 35 then maps out which points over Kure Atoll are classified 

as shallow or deep. 

 
 

 

Figure 33.   Kure Atoll summed ratio of perpendicular 532-nm light to total 
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Figure 34.   Kure Atoll summed powers of perpendicular 532-nm and total 

 

 

Figure 35.   Kure Atoll Quickbird and Landsat background mosaic with depth analysis, 
red corresponding to shallow water and white with deep water. 
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After analyzing Kure Atoll, another area was needed to confirm the results.  

Possibilities included Bora Bora, the Polynesian atolls, Midway, and the Bahamas.  A large 

area with shallow ocean water and possibly more environmental variation would be ideal. 

D. THE BAHAMAS 

The Bahamas site was chosen as a second area to analyze – the islands are larger 

and have variable environments.  The CALIPSO transects cross over shallow water, deep 

water, and land.  The Bahamas area was much larger than Kure Atoll and therefore 

required six Landsat scenes to be connected using the mosaic feature in ENVI.  Upon 

creation of the mosaic, the attributes needed modification to match the data from 

CALIPSO so Lat/lon projection was selected.  Starting with the whole mosaic and then 

creating subsets with IDL code made this scene more manageable.  A peak from the 

bottom in the 532-nm light return could be seen more clearly in the Bahamas data at 

certain points.  The ratios of reflection data changed a bit more in Bahamas because of 

increased variation in depth.    

 

Figure 36.   Another Bahamas transect, with color-coded (green/red = clouds, blue =s 
hallow water, white = deep water) regions identified 
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Analyzing a smaller area made the processing within IDL take less time and, 

more importantly, avoided crashing the program.  The presence of clouds tended to block 

the light from reaching water, or at least diminishing the effects greatly, so parameters 

were also set to identify cloud-covered regions. 

Beyond identifying cloud cover, thresholds were set for shallow and deep water.  

After reaching the water, the reflected cross polarized green light (532-nm) is the energy 

that has penetrated the water.  The co-polarized light reflects off the surface of the water 

and therefore the polarization remains mostly unchanged.  It is the cross polarized light 

that has gone beneath the surface, interacted underwater, and therefore changed 

polarization. 

 

 

Figure 37.   Ratio of perpendicular backscatter to the total backscatter in the Bahamas 

To better see the data above the noise, the log scale was used on the vertical axis. 
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Figure 38.   Bahamas “bridge” or “tail” indicating shallow water 

After seeing the initial results, it seemed useful to overlay the data from the 

CALIPSO HDF files on top of visual images to quickly match data with geographic 

location and visually correlate.  For Kure Atoll, data from QuickBird was combined with 

a Landsat image within ENVI. 

A classification scheme of dividing the data by depth and cloud cover was 

designed.  A cloud threshold (greater than .02 sum) identified cloudy areas and a depth 

threshold identified shallow or deep water.  Within IDL, these data types have been 

designated with a color code: 

• Blue—not cloudy, shallow 

• Green—cloudy, shallow 

• Red—cloudy, deep 

• Black/white—not cloudy, deep 

E. SEQUOIAS 

A comparison of the Kure Atoll and Bahamas analysis with CALIPSO transects 

over land areas shows that the water thresholds defined are characteristic to shallow 
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water.  Comparing the ocean areas to both desert and forest clearly showed that the high 

cross-polarized green light returns corresponded to shallow water. Several transects over 

the Sequoias contained both desert and forest areas and were thus used as a control 

measure.  The shallow water signature was not present in the Sequoias. 

In Figure 39, a characteristic point over the desert in the Sequoias is displayed.  

There is a sharp spike where the light hits the ground.  The return rapidly declines almost 

immediately after this point. 

 

Figure 39.   Sequoia backscatter figure over Sequoia desert 

In Figure 40, a characteristic point over the forest in the Sequoias is shown.  

Again, there is a sharp spike where the light hits the forest.  Then the light's backscatter 

drops off, similar to the behavior over the desert. 
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Figure 40.   Sequoia backscatter figure over Sequoia forest 

Figure 41 shows the ratios of 532-nm cross-polarized light to the total backscatter 

over both forest and desert in the Sequoias.  There is no clear “shallow water” signal for 

either region in the Sequoias.  Figure 42 also shows a lack of the shallow water pattern in 

the ratios over the Sequoias. 

 

Figure 41.   Sequoia backscatter ratios for both desert and forest 
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Figure 42.   Sequoia spectrogram 
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F. COMPARISON TO SPECTRAL BRIGHTNESS 

The ENVI software contains a tool that can measure brightness and this attribute 

correlates qualitatively with water depth.  By reading the brightness information from 

Landsat data, a “pseudo-depth” value can be calculated.  The pseudo depths obtained by 

taking the log10 of the Landsat Band 1 data.  This method follows a variety of similar 

approaches at NPS and elsewhere (Camacho, 2006).  This measurement can then be 

compared to the CALIPSO backscattered light and polarization information.  Ideally, the 

CALIPSO data would be compared to airborne LIDAR data, as well as ground truth.  

Since that data has not been used for this research, the pseudo depth has been included 

for a qualitative comparison of the LIDAR reflectance to depth.  In Figure 43, the 

unclouded region is shown with dense blue points. 

 

Figure 43.   Pseudo depth in black using brightness information from Landsat (over the 
Bahamas) compared to CALIPSO LIDAR reflectance ratios (in color). 
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Figure 44.   Pseudo depth from Landsat over the Bahamas compared to CALIPSO data 

from another transect over a more limited area (black from Landsat, and colored 
points from NASA CALIPSO). 

G. COMPARISON TO BATHYMETRIC NATIONAL OCEAN SURVEY 

The CALIPSO data also qualitatively matches to shallow water measurements 

compiled by the National Ocean Service hydrographic sources.  The corresponding area 

from Figure 36 is placed on Figure 45, and corresponds with the area between the two 

orange lines.  The shallow water above the lines has listed depth measurements of two 

and four meters, although with coarse contour lines. 
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Figure 45.   National Ocean Services bathymetric map with section of Figure 36 
placed on top (from NOAA NGDC Web site) 
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V. RESULTS 

A. CLASSIFICATION METHODOLOGY AND THRESHOLDS 

The earliest analysis looked at single waveforms that corresponded to individual 

points along the transect.  These waveforms displayed characteristics and patterns that 

seemed unique to shallow water.  However, the CALIPSO waveforms did not have an 

especially high number of points.   

To validate the patterns that seemed present, a number of waveforms were plotted 

together.  The trend of this group more reliably shows the LIDAR signature for shallow 

water.  The ratio of the cross-polarization return from the 532-nm divided by the total 

backscatter most clearly identifies shallow water. 

B. CALIPSO'S CAPABILITIES 

CALIPSO can identify shallow water reliably for cloud-free areas at depths of 

approximately 20 meters.  This range is less, but comparable to the distance that airborne 

LIDAR can see into shallow water.  The accuracy of CALIPSO compared to airborne 

LIDAR systems such as SHOALS, is substantially less. 

CALIPSO and other spaceborne LIDAR sensors can serve as useful tools for 

surveying broad areas of water.  Surveying large areas via surface ships and even 

airborne LIDAR can take prohibitive amounts of time and funding.  Spaceborne LIDAR 

narrow down areas to survey, and help plan airborne LIDAR and surface surveying in a 

more optimized fashion.  The spaceborne LIDAR identifies areas and features that can 

then be further investigated by airborne and surface sensors.   

 



 58

THIS PAGE INTENTIONALLY LEFT BLANK 



 59

VI. SUMMARY 

A. THESIS RESULTS 

The accuracy of identifying shallow oceanic water with CALIPSO data has been 

high for cloud-free areas.  Spaceborne LIDAR sensing will not replace current airborne 

or surface sensors, but it can identify some features and help determine where other 

sensors should survey.  LIDAR waveforms offer valuable information because of the 

different wavelengths being used and polarization features.   

B. LIDAR SIGNATURE OF SHALLOW WATER 

The ratio of the cross-polarized reflection of green light from the CALIPSO 

sensor to the total backscatter provides a useful measurement to determine shallow water 

in the ocean. 

C. UNANSWERED QUESTIONS 

After completing the research, several unanswered questions remain.  The degree 

to which CALIPSO is close to returning actual depth measurements is unclear.  Increases 

in power could bring spaceborne LIDAR closer to being able to measure depth.  The 

Sequoia Forest was used as a control, but the extent to which CALIPSO can distinguish 

forest and bare earth, and possibly different types of vegetation, is also unknown. 
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VII. CONCLUSIONS AND FUTURE WORK 

Using the ratio of the cross-polarized reflection of green light from the CALIPSO 

sensor to the total backscatter provides a clear indication of the presence of shallow 

oceanic water.  It does not provide accurate bathymetry but, as a wide-area scan, it could 

be useful to narrow down areas for further surveying.  The measurements from CALIPSO 

can distinguish some features in the ocean, and also serve as a starting point to further 

investigate others. 
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