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1. Background  

Currently, there are no reliable means for accurate “real-time” detection and identification of 
poisonous chemical and/or biological substances that are airborne, either in gaseous or aerosol 
form.  As a result, early-warning systems that are capable of instantaneous detection of such 
materials are badly needed.  Because rapid detection and identification is desired, an optically 
based technique should be considered.   

To this end, we propose a new approach based on the detection of the optical absorption 
measured in situ for various organophosphorus-based nerve agent simulants.  The novelty of the 
proposed study is to modify a traditional ultra-sensitive spectroscopic technique, i.e., gaseous 
and aerosol photoacoustics, by incorporating multiple laser-line sources.  Photoacoustic 
techniques that utilize laser sources routinely measure absorption characteristics of trace gases in 
the ppb, and are considered among one of the most sensitive spectroscopy methods available  
(1, 2).  Unfortunately, conventional photoacoustic techniques have been greatly limited by the 
availability of particular laser sources (3).  This has been particularly true for infrared (IR) 
photoacoustic spectroscopy, in which the researcher typically had only a hand full of 
wavelengths available that were usually produced by cumbersome carbon dioxide (CO2) and lead 
salt (PbS/PbSe) lasers.  However, with the advent of the newly developed Quantum Cascade IR 
laser diode substrates being developed at the U.S. Army Research Laboratory (ARL) and 
elsewhere, practically any wavelength within 3–14 μm is now readily available.   

Our approach is simply to incorporate multiple Quantum Cascade (QC) laser sources in an ultra-
sensitive spectroscopic method that has traditionally only used one laser source at a time.  By 
doing so, we intend to measure multiple (three or more) absorption coefficients simultaneously 
of a given nerve agent simulant in vapor form.  We intend to show that a reliable metric will 
result based on the relationships between the measured absorption parameters that can be used to 
detect and identify trace species of a given chemically based toxin.   

2. Method 

Detection of optical absorption using a photoacoustic method is fairly simple.  For gaseous 
photoacoustic spectroscopy, a small-diameter laser beam is modulated at some convenient 
acoustic frequency, 1 kHz, for example, and is passed through a sealed cylindrical gas cell, often 
via two or more transmitting windows.  The absorbed IR energy raises the absorbing molecules 
from the ground vibrational state to an excited vibrational-rotational state.  Collisional processes 
then redistribute the energy into translation and rotation, with a resulting increase in the pressure 
of the gas.  The time required for vibrational relaxation to occur at standard temperature and 
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pressure (STP) is on the order of 1 µs.  The resultant rapid change in pressure at the modulation 
frequency of the laser results in an acoustic signal that is detected by an electret microphone 
usually with the aid of a lock-in amplifier.  The measured acoustic, or pressure, signal is found to 
be proportional to the average power of the optical source, the absorption cross-section of the 
species, and the sensitivity of the electret.  The last two parameters are usually known, and one is 
then interested in measuring the absorption response of the gas at the laser-line.   

We have developed a modified flow-through photoacoustic cavity designed specifically to 
overcome the limited sensitivity inherent in closed-cell designs that use windows to transmit the 
laser radiation into a photoacoustic cell, as shown in figure 1* (4, 5). 

 

Figure 1.  Flow-through photoacoustic cell.  

Not seen in the photograph is a series of acoustic dampeners mounted inside the cell at both ends 
of the tube that serve to suppress any ambient noise.  Situated in the center of the cell is a small 
field-effect transistor (FET) based electret microphone.  The faint acoustic signal resulting from 
the absorbing gas is amplified and fed into a 24-Bit dynamic signal acquisition device that 
digitizes the analog signal.  By accurately digitizing and processing the acoustic signal using a 
PC, we avoid having to use multiple lock-ins that are usually needed to deconvolve each signal.  
Instead we conduct a fast Fourier transform (FFT) on the signal and filter only frequency 
components that correspond to the modulation frequencies of our lasers.  Using this approach, 
we are able to deconvolve up to eight separate laser-induced signals simultaneously with  
just a single PC.   

Initially, we had hoped to use only QC IR laser diode sources that were to be provided by our 
corporate partner, Maxion Lasers Inc., College Park, MD, but due to production difficulties, we 
were only provided one QC  source (operating at 8.72 µm with CW power 60 mW at 14 °C) at 

                                                 
*Often such system are noise limited as a result of residual absorption from the transmission windows that if often greater that 

the faint acoustic signal resulting from the absorbing species. 
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the time of this report.  In order to move forward with our proof of concept, we procured two 
other conventional CO2 laser sources operating at 10.54 and 9.27 µm.  The three sources were 
made coincident and propagated axially through the cell.  Each source was modulated at a 
different acoustic frequency, e.g., 10.35 µm at 1700 Hz, 9.27 µm at 1900 Hz, and the  
8.72 µm QC at 1300 Hz.   

Examples of the organophosphorus nerve agent simulants considered include diethyl 
phosphonate (DEMP), dimethyl methylphosphonate (DMMP), and diisopropyl phosphonate 
(DIMP).  Simulant vapor was generated by heating the liquid (low vapor pressure materials), 
where residual particles were removed by passing the vapor through a condenser that was cooled 
with liquid nitrogen (LN2).  Simulant concentrations were varied by mixing with dry air that was 
pumped through the system at differing flow-rates.    

Complete IR absorption spectral for each simulant was simultaneously measured from 3–13 µm 
by passing the gas sample through a Fourier Transform IR (FTIR) spectrometer monitored 
transmission cell.  This allowed for direct comparison with the three measured absorption 
coefficients that result from the photoacoustic portion of the study.  A simplified schematic of 
the experiment can be seen in figure 2.   

 
Figure 2.  Multi-wavelength photoacoustic test bed. 
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3. Preliminary Result/Conclusions 

At the time of this report we had just begun testing the specified nerve agent simulants, e.g., 
DMMP, DEMP, DIMP, etc., and results from those runs must still be analyzed.  However, we 
will show data based on our “practice” vapor, i.e., isopropyl alcohol, in which optimum 
operating procedures were established.  The following figures show the evolution of the raw 
photoacoustic signal for 8.72 µm, 9.27 µm, and 10.35 µm laser lines, as varying concentrations 
of isopropyl alcohol are released into the cavity.  Figure 3 shows the magnitude of alternating 
current (AC) component of the acoustic signal for the lock-in synced at 2.5 kHz, i.e., the 
modulation frequency of the QC laser operating at 8.72 µm.  Region 1 highlighted in the figure 
shows the period just prior to the release of the vapor, and the subsequent signal increase as the 
simulant enters the active region of the photoacoustic cell.  During this portion of the 
measurement, simulant is heated to about 80 °C (dependent on the vapor pressure), and a 
pressure of about 2–3 psi is allowed to build in the system.  This high concentration of vapor is 
then leaked at a rate of about 100 ml/min into the FTIR transmission cell and continues to flow 
into the photoacoustic sample region.  A maximum saturation is reached in region 2, at which 
point we begin to mix the simulant flow with varying concentrations of dry air which reduces the 
overall concentration, as shown in region 3.  The large signal spike seen in region 2 corresponds 
to opening of valves for the fresh air mixture.  We intentionally chose this particular curve to 
highlight the obvious appearance of acoustic noise seen in the trailing end of the signal in region 
3.  This noise is apparent in much of the acoustic frequency spectrum above 2 kHz and results 
from the fluid flowing in the lines.  We merely had to adjust our modulation frequencies to avoid 
the high frequency noise region.  Figure 4 shows the corresponding raw acoustic signal for the 
10.35 µm CO2 laser line modulated at 2.1 kHz, where the noise is still present.  Figure 5 shows 
the 9.27 µm signal modulated at 1.7 kHz and a much better noise profile as we move down in 
frequency.   
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Figure 3.  AC component of the electret signal sampled at 2.5 kHz while isopropyl vapor is drawn  
through the photoacoustic cavity. 
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Figure 4.  AC component of the electret signal sampled at 2.1 kHz while isopropyl vapor is drawn  
through the photoacoustic cavity 
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9.27 um mod freq. 1.7kHz
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Figure 5.  AC component of the electret signal sampled at 1.7 kHz while isopropyl vapor is drawn  
through the photoacoustic cavity  

It is only in region 3 (see figure 3), in which uniform concentrations are acquired, where 
absorption information is most reliable.   

At first glance we were somewhat surprised to see that the relative magnitude for the three 
signals was about the same (after normalizing for the differing laser powers), i.e., peaking around 
1.2 µV.  However, after reviewing the absorptance spectra measured by the FTIR, the relative 
relationships between the three photoacoustics signals appear to be justified, (figure 6).   

Currently, by using the muti-wavelength photoacoustic method as described previously, we are 
accurately measuring the absorption response for a variety of nerve agent simulants.  We are 
investigating several new photoacoustic cell designs to improve optical energy density in the 
cavity by inducing multiple reflections of the laser beams (figure 7).  Similarly, these new 
approaches will boost signal by reducing unwanted attenuation of the lasers by keeping the laser-
gas interaction region small and in close proximity to the electret.  

It is our intent to replace the two CO2 lasers with QC laser diodes chosen to operate at 10.10 µm 
and 9.62 µm during the winter of 2009.   

Additional work is needed to better quantify simulant concentrations to establish ultimate 
detectability.  Similarly, we need to establish the best metric to use in the detection/identification 
of a given agent.  
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A possible “concentration invariant” metric would involve ratios of the integral of the electret 
signal for a predescribed period of time for each wavelength.  For example, during the sampling 
of a suspect species, we measure three different acoustic signals (one for each of the three 
wavelengths chosen), and the integral over a time period ∆t results in the three independent 
quantities, S(λ1), S(λ2), and S(λ3).  A three-number metric associated with the species would 
then be {S(λ1)/ S(λ2),  S(λ2)/ S(λ3), S(λ1)/ S(λ3)}.  

It is our hope to expend testing to incorporate particulate matter and aerosols, and attempt to 
distinguish various biological particles based on documented absorption spectra in the mid- and 
long-wave IR (LWIR) (6, 7). 
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Figure 6.  Resultant isopropyl vapor absorptance spectra measured simultaneous with the photoacoustic portion 
of the study (path length 10 cm). Note that for the laser wavelength chosen that the absorptance are 
very similar in magnitude, i.e., 8.72 µm=2.39, 9.27 µm=2.29, 10.35 µm=2.30. 
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Figure 7.  New photoacoustic cell design(s).  Design a is based on the multiple reflections inherent in integrating 

spheres.  Design b maintains a cylindrical column of vapor (into the page) but now the lasers are brought 
into the cell perpendicular to the flow in order to limit unwanted laser attenuation.  In addition, the right cell 
shows possible enhancement of the signal by incorporating resonate effects by spacing opposing mirrors at 
distances on the order of quarter-multiples of the wavelength of sound associated with each modulation 
frequency.    
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