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ABSTRACT 
 

Moored current meters were used to describe currents over the continental slope 

off Monterey Bay, California, from March 1998 to March 2003.  The water depth at this 

location was 1800 m and current observations included depths of 16-88 m, 210-290 m, 

305 m and 1200 m although measurements at 16-88 m were not continuous.  Poleward 

currents dominated the flow between 24 and 305 m.  At 305 m the mean flow was 3.9 

cm/s toward 334°.  Surprisingly, at 1200 m the mean flow reversed and was 0.8 cm/s 

toward 169°.  The principal axis for the flow at 305 m (1200 m) was 349° (350°), the 

semi-major axis was 9.4 cm/s (5.8 cm/s) and the semi-minor axis 3.4 (2.0 cm/s).  The 

direction of the principal axis and the mean flow at 1200 m was aligned with the 

bathymetry to the east of the mooring site.   

The seasonal cycle at 305 m was dominated by an acceleration of the poleward 

flow from a minimum near zero on April 15 to maximum, 25 cm/s on July 15.  This flow 

resulted in an increase of temperature at 305 m of 1.2°C due to geostrophic adjustment 

and a corresponding 10 cm increase in sea level due to steric effects.  The acceleration of 

alongshore flow was out of phase with the alongshore pressure gradient which was 

greatest in mid-April.  At 1200 m, the temperature increase (0.2°C) only lasted from 

April 15 to June 1 after which equatorward flow increased and temperature decreased. 

Mesoscale variability dominated the velocity measurements with maximum 

variance at about 60-day periods.  At 305 m, the eddy kinetic energy was greatest 

(smallest) in October (December), 40 cm2/s2 (4 cm2/s2) while at 1200 m the maximum 

(minimum) occurred in July (February), 5 cm2/s2 (0.5 cm2/s2).  Poleward events were 

stronger at 305 m while equatorward events were stronger at 1200 m.   

The three first empirical orthogonal functions explained 90% of the temporal 

variability of the horizontal currents.  The first, second, and third Z-scores represented 

flow along the principal axis, undercurrent vs. Davidson current, and upwelling modes, 

respectively.  While the seasonal patterns for the first two modes agreed with seasonal 

variability described above, the seasonal variability of the upwelling mode (6% of the 

variance) indicated that the waters between 16 and 88 m flowed onshore during the 

spring and summer upwelling period. 
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I. INTRODUCTION  

The purpose of this study is to analyze and describe the seasonal and mesoscale 

circulations over the upper slope to the west of Monterey Bay, California, using a 5-year 

time series of currents at moorings S2 and M2 (Fig. I-1).  Current variability is compared 

to the variability of sea level and winds for the same period as a possible cause of 

seasonal and mesoscale circulations.  Since this study focuses on the region below the 

main thermocline over the continental slope, and therefore poleward flow is expected to 

influence the data set more than any other large scale feature of the California Current 

(CC) System.  

 

A. LITERATURE REVIEW 

1. Large Scale Circulation 

The large-scale sub-tropical oceanic circulation in the North Pacific Ocean is 

dominated by a clockwise ocean-wide gyre driven by the anticyclonic atmospheric flow 

of the North Pacific High, the Aleutian low, and in summer the thermal low over the 

western United States.  When the eastward flowing North Pacific Current impacts the 

North American continental shelf in the vicinity of southern Canada, it bifurcates and one  

branch flows northward into the Gulf of Alaska to form the counterclockwise flowing 

Alaskan current.  The second branch flows southward and forms the CC (Duxbury et al. 

1999). 

A number of manifestations of counter- flow are observed to the east of the CC:  

Inshore Countercurrent (IC), Davidson Current (DC), Southern California Countercurrent 

(SCC), Southern California Eddy (SCE), and California Undercurrent (CU).  These 

flows, with the CC, form the CC System (CCS). 

The CCS is a classical eastern boundary current system extending approximately 

from the Strait of Juan de Fuca southward to the tip of the Baja California Peninsula.  

Seasonal variations in alongshore wind stress, coastline irregularities, bottom topography, 

and temperature and salinity variations, have been shown to be the mechanisms 

responsible for the observed large-scale structure within the CCS (Hickey, 1998). 
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The CC is an offshore (850-900 km), near-surface (0-300 m), and equatorward 

flow characterized by low salinities, low temperatures, and high dissolved oxygen, with 

average speeds of ~10 cm s-1.  South of Point Conception and near the coast, a seasonal 

change occurs in direction of a narrow zone of coastal portion of the CC.  Throughout the 

fall and winter and within approximately 150 km of the coast, the direction of the CC 

reverses forming the California Countercurrent (CCC).  This current has also been called 

the IC (Lynn and Simpson, 1987).  In regions north of Point Conception the IC is often 

referred to as the DC. 

There are other IC currents.  South of Point Conception, a portion of the CC turns 

southeastward, then shoreward and then poleward.  This current is known as the SCC. 

When the CC recirculates within the southern California Bight, the flow is referred to as 

the SCE (Hickey, 1998). 

The CC, CU, and the SCE all have seasonal maxima in summer to early fall.  The 

IC has seasonal maxima in winter, coincident with the seasonal development of the 

Davidson Current in regions north of Point Conception (Hickey, 1998). 

The water properties that make up this system are determined by four water 

masses that can be defined by their temperature, salinity, dissolved oxygen, and nutrients 

(Lynn and Simpson, 1987).  Pacific Subarctic waters, formed by the Kuroshio extension 

(cooler, fresher waters), and characterized by relatively low temperatures, low salinity, 

high dissolved oxygen, and high nutrients, enter the CCS near 48° N and leave it near 25° 

N.  Equatorial Pacific waters, from the eastern tropical Pacific, characterized by relatively 

high temperature, high salinity, low dissolved oxygen, and high nutrients, enter the CCS 

from the south and are carried northward by the CU.  Eastern North Pacific Central 

waters enter the CCS from the west and are characterized by relatively high temperature, 

high salinity, low dissolved oxygen, and high nutrients.  Upwelled waters are found 

within 50 km of the coast and are identified by relatively cold temperature, high salinity, 

high nutrients, and low dissolved oxygen. 

Satellite imagery, field studies using Lagragian drifter results, and recent 

numerical modeling efforts suggest the existence of numerous large-scale (50-300 km), 

and long- lived (20-40 day) jets and meanders in the region offshore of the northern 
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California shelf (Hickey, 1998).  Filaments are the result of separation from the shelf of 

the coastal jet formed over the shelf during upwelling events.  Batteen (1997) 

demonstrated that the upwelling jet that forms over the Oregon shelf separates from the 

shelf near Cape Blanco and meanders equatorward through the CCS during spring and 

summer.  The flow then undergoes alternating cyclonic (offshore) and anticyclonic 

(onshore) excursions, and sheds westward propagating eddies. 

2. The California Undercurrent 

The CU is a relatively narrow (10-40 km width), subsurface poleward flow that 

flows over the continental slope from Baja California to at least Vancouver Island 

(Hickey, 1998).  The CU has been the subject of numerous studies which include 

calculations of geostrophic velocity derived from hydrographic  data to direct current 

measurements.  It has a high velocity core (100-300 m depth), with an average speed of 

30-50 cm s-1, and its flow can be interrupted by eddy- like features (Ramp et al. 1997). 

Hickey (1979) reviewed the available observations of the CU and concluded that 

west of the North American coast, over the continental slope, northward subsurface flow 

is generally present and shows considerable seasonal variability in position, strength, and 

core depth. North of Point Conception, the flow at 200 dbars is stronger during winter 

than during summer and fall. 

Chelton (1984) used 23 years of California Cooperative Oceanic Fisheries 

Investigation (CalCOFI) hydrographic measurements collected between 1950 and 1978 

to describe the seasonal geostrophic ve locity along two sections, one off Point Sur and 

the other off Point Conception.  Chelton found that the geostrophic flow in the upper 100 

m, referenced to 500 dbar, for both locations reversed annually with equatorial flow from 

February to September and poleward flow from October to January. Below 100 m, the 

flow at Point Conception was poleward through the year with two maximum flows  

occurring in June and December.  The nearshore deep flow off Point Sur, however, 

reversed annually with maximum poleward flow in December and weak equatorward 

flow from March to May. 

Lynn and Simpson (1987) also studied the seasonal variability of the CCS.  

Strong semiannual variability was prevalent for the CU off Central California, Point 
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Conception and within the Southern California Bight.  The CU became weaker from 

January through March as its core was found at increasingly greater depths.  The CU 

remained weak or vanishes from March through May.  The maximum poleward flow 

velocity (~13 cm s-1) was found in late fall to early winter.  Tisch et al. (1992) selected 

seven cruises along the Point Sur Transect (POST) in order to determine seasonal 

variations of alongshore geostrophic velocities and water mass characteristics of the CCS. 

The core of the CU occupied a position 12 to 42 km from shore with speeds between 10 

and 35 cm s-1 at depths of 70 to 460 m over the continental slope.  The alongshore 

variability of the CU appeared to be related to both local and remote wind forcing. 

Collins et al. (1996), analyzed currents measured at 350 m over the continental 

slope off Point Sur, from 1989 through February 1995.  The pattern of monthly flow 

reveals that the spring transition begins in mid-April when temperature reaches its 

minimum.  Subsequently the poleward flow triples its speed, persisting until mid-July 

with a steady warming.  By mid-December temperatures start to decrease and the flow 

decelerates.  Ramp et al. (1997) analyzed current meter data from seven moorings on the 

continental slope along the central California coast, from Point Piedras Blancas to Point 

Reyes.  The poleward flowing CU was the most prominent feature observed, with flows 

over the slope occurring in 3 to 4 month bursts, with vector speeds exceeding 40 cm s-1, 

and interaction with at least three eddy-meanders. 

The continuity of the CU along California and Oregon coasts was established by 

measurements with isobaric RAFOS floats (Garfield et al., 1999); these float 

measurements yielded a mean alongshore velocity of 10.8 cm/s.  Pierce et al. (2000), 

using ADCP data collected during July-August 1995, between Cape Blanco, Oregon, and 

Cape Mendocino,  

California, found that the undercurrent was present over the 440 km mid- latitude eastern 

boundary of the North Pacific, with a mean maximum velocity of 0.18 m s-1, core depth 

200-275 m, overall mean of 0.10 m s-1, and mean location 20-25 km off the shelf break.   

Collins et al. (2000) measured velocity along 36.3° N to the west of Point Sur, California, 

and found mean poleward flow in the upper 1000 dbars within 100 km of the coast with 

maximum velocities, 6 cm/s, at a depth of 100 m next to the coast.    
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Noble and Ramp (2000) analyzed current meter data collected from two arrays 

parallel to each other consisting of six current meters moored for one year (March 1991-

March 1992) across the central California outer shelf and slope.  The alongshore mode 

empirical orthogonal function showed that coherent, surface intensified, alongshore 

fluctuations exist across the entire outer shelf and slope.  Both the mean and first mode 

currents showed that the CU in this region is energetic, surface intensified and extended 

to depths of 800 m, and width of 40 km offshore of the shelf break.  The CU in this 

region may be occasionally forced offshore through interactions with a seasonal offshore 

jet that probably originated at Point Reyes, hence this region may be important as a 

generation site for meanders and eddies in the CU.  These fluctuations in the undercurrent 

were not correlated with the local wind stress or sea surface pressure gradients. 

Collins et al. (2003) analyzed hydrographic data collected along CalCOFI line 67 

for the period 1988-2002 perpendicular to the central California coast.  Geostrophic 

adjustment of the pycnocline caused by seasonal variation of the CCS and the cycle of 

upwelling favorable winds, resulted in strongly seasonal inshore circulation.  One of the 

important consequences to follow from these dynamics was that the offshore location of 

the CC jet (a surface-enhanced southward, coastal upwelling jet, with maximum 

velocities during late winter and spring which marked the inshore edge of the CC) was 

determined by the width and strength of the CU and Inshore Current.  The CC was closer 

to shore when both the CU and Inshore Current were weak. 

3. Shelf Circulation 

The currents between the surf zone, also called the nearshore, and the shelf break 

are referred to as “shelf circulation”.  Here depth is shallow (200 m and less) as compared  

to the deep ocean.  Shelf circulation is dominated by low frequencies, compared to tidal 

and inertial oscillations, in regions where the shelf is relatively long and straight with 

fairly simple geometry.  

A comprehensive summary of the present knowledge of the circulation of currents 

over the shelf region in the west coast of United States is given by Huyer (1990).  The 

time scale of currents over the shelf region vary over periods ranging from a few days to 

a few weeks, and in some regions they vary also seasonally, and are different from those 
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currents in the open ocean (Figure 1, Huyer 1990).  In eastern boundary currents the 

influence of the open ocean is relatively weak and current circulation responds to 

seasonal variations in the local winds, i.e. in the Northern Hemisphere the North Pacific 

high is displaced northward (southward) in summer (winter) and the equatorward winds 

along the coast associated with the high pressure system migrate and intensify seasonally, 

causing offshore Ekman transport and upwelling along the coast.  Conversely, winds 

blowing along the coast in the opposite direction cause onshore Ekman transport and 

downwelling near the coast.  The flow pattern along the western shelf of United States is 

similar: there is a shallow equatorward surface current (CC) with average velocities of 10 

cm s-1, and a subsurface undercurrent with a core depth between 100-300 m and average 

velocity of 30-50 cm s-1. 

Strub et al. (1987) analyzed the seasonal cycles of currents, temperatures, winds, 

and sea level over the continental shelf from 35° N to 48°N for the period 1981-1983, and 

characterized the fall-winter and spring-summer seasons. For fall-winter, north of 35° N 

monthly mean winds were northward for 3-6 months, and south of 35° N, were near zero 

or weakly southward.  Over midshelf and shelf, monthly mean alongshore currents were 

northward from 35° N to 48° N at depths of 35 m and deeper and were associated with 

high coastal sea levels and relatively warm temperatures.  For spring-summer, monthly 

wind stress was southward for all latitudes for 3-6 months, sea levels were low, water 

temperature was relatively cool, and monthly mean currents at 35 m depth over the shelf 

were southward 1-6 months while the deeper currents were less southward or northward.  

At 35° N annual mean currents at 35 m depth over midshelf and shelf break opposed to 

the annual mean wind, and from 35° N to 43° N both summer and winter regimes were 

dominated by strongly fluctuating currents. 

4. Monterey Bay Circulation 

The available information on currents offshore Monterey Bay indicates a complex 

and occasionally contradictory picture of the circulation in this region.  There exists, 

superimposed on the large scale flow, mesoscale meanders, eddies, filaments and jet- like 

surface currents.  Previous studies (Ramp et al. 1997; Collins et al. 1996) have shown that 

currents over the slope of Central California are dominated by long-period fluctuations.  
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These fluctuations have generally been associated with the offshore eddy and meander 

field. 

Skogsberg (1936) conducted an extensive oceanographic study of Monterey Bay 

between 1929 and 1933, and described three distinct seasonal phases in his study of the 

hydrography of Monterey Bay.  The “upwelling period” was caused by upwelling and 

extended from mid-February through August or September.  Along the central California 

coast, winds from the northwest associated with the Subtropical High Pressure cell 

produce coastal upwelling, which in turn influences strongly the coastal circulation and 

thermal structure.  The start of the upwelling season is marked by the so-called spring 

transition (Hickey, 1998), a rapid progression to sustained northwesterly winds along the 

west coast.  At the latitude of Monterey area, coastal upwelling usually occurs between 

March and October (Breaker and Broenkow, 1994).  Upwelling centers in the Monterey 

area are located north and south, near Point Año Nuevo and Point Sur, respectively 

(Paduan and Rosenfeld, 1996). 

Pennington et al. (2000) used time series of temperature, salinity, nitrate, primary 

production and chlorophyll for the period 1989-1996 at station H3/M1 in central 

Monterey Bay and found that the upwelling period developed at about the same time as 

that described by Skogsberg (1936), but reached its maximum 1-2 months later.  

Pennington divide Skogsberg’s upwelling period into two seasons, early and late 

upwelling.  During the early upwelling (February-April), isolines shoal in February, but 

the minimum surface temperatures occurred intermittently in March-June, and the 

upwelling reached its maximum in June with shallow isotherms but higher salinity and 

nitrate.  During late upwelling (July-August), the upwelling decays with surface salinities 

remaining high but temperatures increase and subsurface isotherms and isohalines 

deepened. 

The “oceanic period” extends from late summer to early fall.  Skogsberg (1936) 

attributed this period to the onshore movement of oceanic waters associated with the CC. 

During this period the North Pacific high weakens and drifts southward, and the Aleutian 

low reforms.  With the slackening of wind stress, the cool, upwelled water begins to sink 

and is replaced by warmer surface water from offshore, coastal sea surface temperatures 
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rise to their highest seasonal values and strong vertical temperature gradients form 

(Breaker et al. 1994).  Rosenfeld et al. (1994), named this period as a “relaxation state” in 

which Monterey area is characterized by rapid onshore advection of warm oceanic water 

combined with surface warming. 

The “Davidson current period” is from December through early-February, 

coincident with the local occurrence of the northward DC.  In late fall and early winter of 

most years, northerly winds are weak and variable, and a northward flowing 

countercurrent  usually forms at the surface, the DC.  Periodically, strong southerly winds 

interrupt the anticyclonic atmospheric circulation pattern of the weakened North Pacific 

high, stimulating and reinforcing the northward DC.  The southerly winds also generate 

onshore Ekman transport, resulting in general rise in the sea level due to water pile-up at 

the coastal boundary.  The elevated sea level, in turn, causes downwelling and offshore 

cross shelf flow below the Ekman layer. 

It is noteworthy that the description used above may be useful to describe the 

changing hydrographic conditions, but in reality these periods overlap extensively and do 

not recur with clockwork punctuality.  The irregular timing of changes in the wind field 

and associated oceanographic effects, and aperiodic phenomena such as El Niño and La 

Niña, makes establishment of a regular timing for these periods difficult. 

Rosenfeld et al. (1994) focused on Monterey Bay, observed the development of a 

warm, fresh anticyclonic eddy at the mouth of Monterey Bay, or just to the south of it, 

upon return of upwelling that immediately followed a relaxation event.  Satellite 

observations suggest that a meander or warm-core eddy, 50 to 100 km in diameter, may 

be present upon occasion just west of Monterey Bay (Breaker, et al. 1994). 

 

B. THESIS ORGANIZATION 

Five years of ocean current observations at moorings S2 and M2, provide an 

opportunity to resolve the pattern of flow over the continental slope at the entrance to 

Monterey Bay.  Observational methods will be discussed in Chapter II.  Mean flow, 

seasonal and mesoscale variability, and forcing mechanisms are described in Chapter III.  

Chapter IV contains a summary of conclusions and recommendations for future work.  
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For purposes of clarity, each chapter has been organized as followed: first the body of the 

text, next tables and finally figures. 
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Figure I-1. Position of the Mooring S2 and M2.  The location of sea level gauges at 

Monterey and Port San Luis is also shown. 
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II. DATA COLLECTION 

Data collection and processing at both 305 and 1200 m, Aanderaa current meters, 

and acoustic Doppler current profiler (ADCP) at 300 m at mooring S2 are described in 

this chapter.  Data collected by a downward looking ADCP and an anemometer at 

mooring M2 and maintained by Monterey Bay Aquarium Research Institute (MBARI), 

along with sea level data from two tide observa tion stations at Port San Luis and 

Monterey, and provided by the Hawaii’s Sea Level Data Center, are also described. 

 

A. MOORING S2 

The Naval Postgraduate School (NPS) and the Monterey Bay Aquarium Research 

Institute (MBARI) have maintained a mooring of the intermediate type, designated S2, 

offshore Monterey Bay, and located in 1800 m of water at 36° 40´ N and 122° 25´ W. 

The mooring included an upward looking ADCP at 300 m depth, two current meters at 

305 m and 1200 m depth, and IRSC and Honjo sediment traps below each meter, 

respectively (Fig. II-1, Table II-1).  The mooring was buoyed with 13 Benthos glass 

flotation spheres with a total positive buoyancy of 299 kg as well as a subsurface sphere 

that contained the ADCP, which had a positive buoyancy of 455 kg. Photocell activated 

flashing lights, radio direction finders, and Argos transmitters were mounted on the upper 

flotation unit to facilitate recovery. 

Deployments ranged in duration from five to six months, limited by the six-month 

sediment trap sampling capacity.  Thus, 10 data collection deployments occurred over the 

continuous measurement period from March 1998 to March 2003 (Table II-2). 

The current meters used at mooring S2 were Aanderaa recording current meter 

Model 8 (RCM8).  The meters are self-contained instruments for recording vector 

averaged speed and direction.  The raw data for each sensor was stored in the current 

meter’s data storage unit (DSU) as a bit number ranging from 0 to 1023.  Prior to 

deployment, all current meters sensors were calibrated or tested at NPS facilities.  

Current speed was measured by rotations of a shrouded paddle-type rotor magnetically 

linked to an electronic counter; the counter is tested for accuracy and proper operation in 
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the laboratory by using a modified rotor with known rotation rate.  Current direction was 

measured by a magnetic compass.  For the compass calibration, a table of bit numbers 

versus degrees was prepared by use of a compass stand surveyed to true north.  The 

instruments also include pressure and temperature sensors. 

Upon recovery, the raw Aanderaa recording current meter data files were 

converted to standard scientific units using the sensor calibration equations and stored as 

formatted ASCII files.  Data were then visually inspected for outliers due to instrument 

failures or malfunctions, and were edited or deleted when necessary. Timing errors by 

deployment for each current meter are listed in Table II-3.  After the editing process, gaps 

were linearly interpolated and records produced at 30 minute intervals.  

Since this thesis focused on subtidal variability, the 30 minute observations were 

filtered with a cosine-Lanczos filter with a half power period of 2.9 hours (Alessi et al. 

1985), to remove tides and inertial period currents (tidal current results are given in 

Appendix A).  After filtering, the data were decimated to 1 hour intervals, and filtered 

again with a cosine-Lanczos filter with a half power point of 46 hours.  Except for the 

Figure III-1, the data used subsequently in this thesis were obtained by then decimating 

the smoothed 1 hour time series to 6 hours. 

The direction vane of the current meter at 305 m failed in the second half of 2000.  

To fill this gap, the current measurement at the first good bin (290 m) of the upward 

looking ADCP was used.  Results discussed in Chapter III will justify this substitution. 

ADCP data were collected at mooring S2 using an upward- looking RD 

Instruments 300 kHz broadband ADCP.  The RD Instruments ADCP uses the principle of 

Doppler shift. It transmits sound at a fixed frequency and listens to the sound 

backscattered from particles in the ocean that move at the same horizontal velocity as the 

water.  The ADCP measures average velocity over depth cells (bins) away from the 

acoustic transducer.  The instrument at 300 m depth was configured to resolve currents in 

4 m depth intervals over a period of 180 seconds and 25 pings.  Adjacent bins overlap 

and are not independent. 

The echo amplitude, or intensity, is a measure of the signal strength returned to 

the ADCP, and is adjusted by the automatic gain control of the ADCP.  As the sound 
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travels further away from the transducer, the signal-to-noise ratio decreases, as does the 

echo intensity and the correlation values.  Two criteria were used to “flag” bad ADCP 

data.  When the echo intensity becomes a constant value (“flattens out”) for several 

successive bins, the ADCP has stopped collecting valid data.  Comparing the echo 

intensity to the correlation, both values fall off (correlation values have fallen below 64 

counts).  The percent of good data also fall off (percent of good data should drop to zero), 

and are “flagged” as a bad data.  A second criterion utilized the ADCP data output based 

on the three and four beam solution.  If the percentage good for both 3 and 4 beam 

solutions are less than 25% data is “flagged” as bad data. 

Figure II-2 shows the number of bad data for bins 1-20 for each deployment.  

When the number of bad values exceeded 10, it increased by a factor of ten for each of 

the next 2-3 bins.  If 10% (874 bad data points for a 6 months record) is chosen arbitrarily 

as a limit for the last good bin, then bin 18 would be the last good bin for deployment five 

and six, bin 19 for deployments eight and ten, and bin 20 for deployment one. 

RDI reports a nominal standard deviation due to instrument error of 0.04 cm s-1 

for a 25-ping average for the broadband ADCP.  Maximum pitch and roll recorded by the 

tilt sensors on the ADCP were -1.6°, and -1.4° respectively.  Following manufacturer 

specifications, it was not necessary to correct data due to these movements. 

 

B. MOORING M2 

Since 1989, MBARI has maintained a surface mooring, designated  M2 at 

approximately 36° 42´ N 122° 23.4´ W (Fig. I-1).  The mooring serves as a platform for 

several instruments including a near surface, downward looking RDI ADCP (Fig. II-3).  

Although a surface mooring introduces “noise” into current measurements due to greater 

movements caused by waves and currents, a great advantage of M2 is that the data are 

telemetered to shore and available in near real time. 

Different models of ADCP’s were used on M2 for the period 1998-2003.  For the 

period 1998 (year-day 180) to 1999 (year-day 260), MBARI used a workhorse 300 kHz 

ADCP, configured to resolve currents in 4 m depth bins every 30 minutes.  For the period 

2000 (year-day 140) to 2001 (year-day 010) a narrow band 150 kHz ADCP was used.  
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The 150 kHz ADCP was configured to resolve currents in 4 m depth bins every 15 

minutes.  For the period 2001 (year-day 110) to present, a workhorse long range 75 kHz 

ADCP was used with a configuration to resolve currents in 8 m depth bins every hour.  

All data was collected and stored in the OASIS-3 or “Ozone” controller in compact-flash 

memory. It is then telemetered to shore once an hour via a packet radio station on Mount 

Toro to MBARI’s Moss Landing facility via a FreeWave radio modem.  The “flagging” 

of bad data was the same as for S2. 

Two long gaps exist in the data record (Fig. II-4), one from 1999 (year-day 260) 

to 2000 (year-day 140), and other in 2001 (from year-day 010 to year-day 110).  The 

determination of the bottom “good” bin for each ADCP deployment was done by 

inspection as for S2.  20 bins (~11-85 m depth) were satisfactory for deployments in 1998 

and 1999 (Fig II-5).  For deployments in 2000, 2001, 2002, and 2003, 30 bins were good 

(~40-200 m depth, Fig. II-5), beyond that point, more than 10% of the data drop out. 

 

C. WINDS AND SEA LEVELS 

Sea level data from two tide observation stations, Port San Luis (35° 10.6´N 120° 

45.6´W) and Monterey (36° 36.3´N 121° 53.3´W) were used in this study to compute the 

alongshore sea surface slope.  These stations were selected due to their proximity to the 

moored deployment locations.  Hourly tidal observations for the period 1998-2003, were 

provided by the Hawaii’s Sea Level Data Center.  Prior to computation, diurnal and 

higher frequency signals were removed by using a low pass filter. Sea level difference 

between Monterey and Port San Luis were calculated for this period. 

Wind data measured at 3.5 m above sea level on the M2 mooring was used in this 

study.  Wind data collected at M2 prior to 1996 were not reliable (Mr. Fred Bahr, 

personal communication) and only data collected in 1996 and later were used.  Wind data 

from NOAA buoy 46042 (Lat. 36.75° N Long. 122.42° W), was used when data at M2 

was not available.  When both M2 and the NOAA buoy failed, PFEG frictionally 

adjusted geostrophic winds were used. 

Anemometers on M2 were Handar (now VAISALA) sonic anemometer and a 

R.M. Young anemometer.  Wind data was reported from the R.M. Young instrument 
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every 10 minutes as a 1 minute average.  In order to remove high-frequency variability, 

data was filtered in the same manner as the current observations.  Magnetic deviation and 

variation of the magnetic compass was determined on a survey test bench.  Histograms of 

direction, comparison of measurements with nearby anemometers mounted in buoys and 

internal and external calibration were performed as a data quality control. 

 

MOORING INSTRUMENT INSTRUMENT LEVELS 

S2 Upward looking ADCP 300 m 

S2 RCM8 current meter 305 m 

S2 IRSC Sediment Trap 320 m 

S2 RCM8 current meter 1200 m 

S2 Honjo Sediment Trap 1205 m 

Table II-1. Equipment included at S2.  Nominal depth is 1800 m of water at the 

mooring site. 

 

SETTING 
No. 

START 
DATE 

LATITUDE 
(N) 

LONGITUDE 
(W) 

BOTTOM 
DEPTH 

DATE 
RECOVERED 

1 03/24/98 36° 40.016  122° 22.523  1800 m 08/20/98 

2 08/26/98 36° 39.953  122° 22.536  1800 m 01/27/99 

3 02/04/99 36° 39.920  122° 22.482  1790 m 07/21/99 

4 07/27/99 36° 39.920  122° 22.448  1809 m 01/27/00 

5 02/05/00 36° 39.925  122° 22.448  1801 m 07/20/00 

6 07/29/00 36° 39.884  122° 22.374  1792 m 01/25/01 

7 01/25/01 36° 39.932  122° 22.399  1797 m 08/09/01 

8 08/16/01 36° 39.929  122° 22.381  1785 m 02/01/02 

9 02/08/02 36° 39.971  122° 22.463  1802 m 08/28/02 

10 08/28/02 36° 39.971  122° 22.449  1792 m 03/11/03 

 
Table II-2. Deployments at Mooring S2. 
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SETTING NUMBER INSTRUMENT LEVEL TIMING ERROR 

295 m 5’ 23” 
1 

1194 m 3’ 03” 

303 m 5’ 30” 
2 

1199 m 2’ 02” 

305 m 11’ 04” 
3 

1185 m 2’ 10” 

293 m 0’ 40” 
4 

1172 m 2’ 25” 

294 m 0’ 36” 
5 

1173 m 2’ 07” 

308 m 0’ 35” 
6 

1176 2’ 22” 

307 m 6’ 54” 
7 

1175 m 4’ 09” 

299 m 2’ 20” 
8 

1177 m 5’ 55” 

303 m 7’ 02” 
9 

1175 m 4’ 13” 

296 m 0’ 30” 
10 

1177 m 2’ 33” 

 

Table II-3. Timing error for each current meter by deployment at S2. 
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277 m     1/4"  JWR

289 m     1/4"  JWR

376 m     1/4"  JWR

1500  m

1200  m

300  m

456  m     1/4"  JWR

S2  DESIGN

1800  m

upward looking ADCP

RCM8 current meter

IRSC sediment trap

RCM8 current meter

Honjo sediment trap

Dual Acoustic Release

ANCHOR

5 Hardhats

2 Hardhats

6 Hardhats

2 Hardhats

 
Figure II-1. Schematic diagram of mooring S2.  Jacketed Wire Rope (JWR) is a wire 

designed for oceanographic applications, JWR of 1/4” (3/16”) diameter was used in the 

upper (lower) portion of the array.  Hardhats are enclosures that hold glass flotation 

spheres.  A total of 13 hardhats were used in the array. 
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Figure II-2. Plot of depth versus number of bad data for the ADCP at S2.  Numbers 

and corresponding color marks in the legend are the deployment number. 
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Figure II-3. Schematic diagram of mooring M2. 
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Figure II-4. Time diagram showing ADCP data collection at mooring M2 from 

January 1, 1998 to March 30, 2003.  Black dots show “bad” data flags. 
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Figure II-5. Plot of depth versus number of bad data for the ADCP at M2.  Numbers in 

the legend indicate month. 
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III. RESULTS 

Observed currents at S2 are first described using histograms of speed and 

direction at 305 m and 1200 m depth.  Tides are removed from the data set.  Mean 

currents for the entire 5-year set of current observations are computed and variability 

described using the principal axis rotation.  Then seasonal variability of currents is 

described using averaged time series of currents and temperatures, principal axis rotation, 

and progressive vector diagrams.  Next, mesoscale variability is analyzed using rotary 

and kinetic energy spectral analysis and empirical orthogonal functions.  The vertical 

structure of the flow is derived by adding S2 and M2 acoustic Doppler current meter 

results.  Finally the statistical relationship between currents and sea level and winds are 

discussed. 

 

A. HISTOGRAMS OF UNSMOOTHED CURRENT OBSERVATIONS 

Histograms of speed and direction for observed 15 minute samples at 290 m for 

the upward looking ADCP and 30 minute samples at 305 m and 1200 m current meters 

are shown in Figures III-1.  At 290 m the most frequently observed speed was 8 cm s-1, 

the maximum speed was 47 cm s-1, and 0.03% (64) of observed speeds fell below the 5 

mm s-1 threshold for the workhorse ADCP.  The histogram of direction shows a prevalent 

northward direction centered at 340°T.  At 305 m, the most frequently observed speed 

was 6 cm s-1, the maximum speed was 51.4 cm s-1, and 5.2% (3790) of observed speeds 

fell below the 2 cm s-1 threshold for the RCM-8 current meters.  The histogram of 

directions shows that northward flow dominated at 305 m as 47% of the current direction 

fell between 293°T and 31°T.   

The histograms for the RCM-8 current meter at 1200 m are also shown in Figure 

III-1.  24.4% (17703) of the observed speeds were less than the threshold for the 

paddlewheel, 2 cm s-1 , and are not shown in the plot.  Above 2 cm s-1 the most frequently 

observed speed was 5 cm s-1 and the maximum speed was 24.4 cm s-1.  The direction 

histogram shows two broad peaks, with the most prevalent direction being to the south, 

centered at 164°T, with the smaller peak located in nearly the opposite direction. 
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Since the focus of this  thesis is on subtidal variability, the 30-minute current 

meter data were smoothed using the low pass filter described in the previous section to 

remove diurnal and higher frequency tidal and inertial period currents.  Results of tidal 

analyses are in included in Appendix A and indicate that maximum tidal velocities were 

associated with the lunar semidiurnal (M2) tide, 1.0 cm s-1.  The smoothed data were then 

decimated to 6-hour intervals for the analyses described below.  

 

B. MEANS, VARIANCES, AND INTEGRAL TIME SCALES 

Observed currents at a given depth are represented as [ ]( ) ( ), ( )U t u t v t= , where u  

is the east-west component and v  is the north-south component.  The fluctuating portion 

of the flow is obtained by removing the mean, 

'( ) ( ) ( ) [ '( ), '( )]U t U t U t u t v t= − 〈 〉 = ,  

where ' ' , 'u u u v v v= − < > = − 〈 〉 , and 〈〉  indicates time averaging over the five year 

period.  At 305 m (1200 m), the mean current was directed toward 334°T (169°T) at 3.9 

cm s-1 (0.8 cm s-1).   

For a vector time series, the variance includes 2 2' , ' , ' 'u v u v .  To eliminate 

the cross correlation terms, the axes are rotated so that the maximum variance lies along 

the major axis of the variance ellipse.  This is referred to as a “principal” axis rotation 

(Emery and Thomson, 1997), and the orientation of the principal axis,θ , is found by  

2 2

' '
1

' '

1 2
tan

2
u v

u v
θ −  〈 〉

=  
〈 〉 − 〈 〉 

. 

In the new coordinate system, the rotated velocity components are defined as 

' 'cos sinru u vθ θ= +  

and  

' 'sin cosrv u vθ θ= − + . 
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In this coordinate system, the maximum amount of data scatter (maximum variance or 

standard deviation) is associated with the major axis ( rv ), while the minimum amount of 

data scatter is associated with the minor axis ( ru ).  The utility of the principal axes are 

that they determine the orientation of the variability of the flow at any current meter site 

and decompose the velocity into uncorrelated scalar components (Emery and Thompson, 

1997, Denbo et al., 1984). 

At S2, the major axis at 305 m (1200 m) was directed toward 349°T (350°T), the 

length of the semi-major axis was 9.4 cm s-1 (3.4 cm s-1) and the length of the semi-minor 

axis was 5.8 cm s-1 (2 cm s-1).  Figure III-2 (Fig. III-3) shows the mean currents at 305 m 

(1200 m), the standard deviation ellipse, and the scatter of individual 6-hour current 

observations.  For coastal and near-bottom currents, the bathymetry usually controls both 

the direction of the flow and the principal axis.  Figure III-4 shows details of the local 

bathymetry near the mooring site.  The 1400-1600 m isobaths, just to the east of the 

mooring site, are oriented in the same direction as the mean flow and principal axis of the 

1200 m flow at S2.  This direction also coincides with the orientation of the principal axis 

at 305 m but the mean flow at 305 m was directed more to the west, similar to the 

orientation of the deeper isobaths at the mooring site.   

Statistics (mean current speed and direction, principal axis orientation, and semi-

major and semi-minor axis) were also computed for the 6-hour, smoothed current meter 

data at 305 m and 1200 m for each six-month deployment of S2 (Table III-1).  Mean 

temperature and pressure and their standard deviations are also included in Table III-1.  

At 305 m depth, the mean flow was northward and westward for all but deployments 4 

and 10 when the flow was southward.  Mean speeds at 305 m for each deployment 

ranged from 1.2 cm/s for deployment 2 to 7.0 cm/s for deployment 9, a factor of five.  

Semi-major (semi-minor) axes ranged from a maximum of 11.8 cm/s (7.4 cm/s) for 

deployment 10 (5) to a minimum of 7.2 cm/s (3.6 cm/s) for deployment 2 (2).  The ellipse 

orientation at 305 m ranged from almost due north (002.6°T) for the first deployment to 

west-north-west (304.4°T) for deployment 5.  The effects of seasonal and interannual 

variability will be considered below, but it is clear that variability from deployment to 

deployment was large. 
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At 1200 m depth, the mean flow was southward for all but deployments 2 and 6, 

and the mean flow was eastward for six of the ten deployments.  Mean speeds at 1200 m 

for each deployment varied by a factor of ten, from 0.2 cm/s for deployment 6 to 2.4 cm/s 

for deployment 10.  The standard deviations represented by the ellipse half axes varied by 

a factor of two:  the semi-major (semi-minor) axes ranged from a maximum of 4.2 cm/s 

(2.9 cm/s) for deployment 10 (6) to a minimum of 2.3 cm/s (1.3 cm/s) for deployment 3 

(4).  The ellipse orientation at 1200 m ranged from almost due north (14.7°T) for the 

third deployment to north-northwest (337.3°T) for deployment 9, a range of 37.4° vs. 

58.2° at 305 m.   

Temperature usually decreases with increasing pressure at S2 so minimum 

temperature should correspond to maximum pressure and vice-versa.  The former was 

observed, but the latter was not.  Although the pressure at a fixed level was expected to 

vary from deployment to deployment due to differences in the depth of the anchor, the 

pressure difference between the two meters should remain constant, 885 dbar, if the 

mooring is vertical.  The mean pressure difference between the current meters was 882 

dbar and varied 24 dbar from a minimum of 874 dbar to a maximum of 898 dbar.  The 

elasticity of the mooring wire is close to zero, so the difference (13 dbar) between the 

maximum observed pressure, 898 dbar, and the pressure difference fixed by the length of 

the wire, 885 dbar, was clearly an error and was consistent with the manufacturer’s 

specification for the accuracy of the pressure gauges, ± 6 dbar at 1200 m and ± 1 dbar at 

305 m.   

The integral time scale T*, is the sum of the normalized autocorrelation function  
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where yyρ = autocorrelation function, τ = lag time, yyC = autocovariance function, 2σ = 

variance, L = length of the time series, N τ∆ = number of lag steps (Emery and 

Thomson, 1997).  The integral time scale is a measure of the period of the process that 

dominates a given time series.  The integral time scales for flow along the major and 

minor axes at 305 m were 6 and 4 days respectively, and are shown in Figure III-5.  At 

1200 m, integral time scales for flow along the major and minor axes was 7.5 and 4 days, 

respectively.  For temperature at 305 m and 1200 m, the integral time scale was 31 days.   

 

C. CURRENT AND TEMPERATURE TIME SERIES 

Time series of daily currents measured at 305 m and 1200 m are shown as stick 

plots in Figures III-6 and III-8, respectively, and time series of temperature at 305 m and 

1200 m are shown in Figures III-7 and III-9, respectively.  At 305 m, the stick plot (Fig. 

III-6) showed a burst of strong (> 20 cm/s) poleward flow in the spring which followed a 

late winter period of weak flow. This occurred in May-June in every year but 2001 when 

the strong flow occurred in March.  This strong poleward flow in late spring will be 

referred to as the “spring jet”.  Subsequent to the spring jet, additional bursts of poleward 

flow were observed, separated by periods of current reversals or relaxation.  The timing 

and pattern of these additional bursts varied widely.  In 1998, the spring jet lasted for 

about one month, the flow reversed direction in late June, and weaker bursts occurred in 

mid July and early August.  In 1999, the spring jet was about two weeks long and was 

followed by two bursts of similar duration at about monthly intervals.  In 2000, the spring 

jet resembled that in 1998, but subsequent bursts of poleward flow occurred at two month 

intervals.  In 2001, the first three bursts of poleward flow associated with the spring jet 

occurred at about 2 month intervals but unlike other years, moderate to strong (10-20 

cm/s) poleward flow was observed from late August to September.  In 2002, the bursts of 

poleward flow that occurred in late July and mid-September were stronger than the initial 

burst in late March to mid June as well as stronger than poleward bursts seen during this 

time in previous years, and, as in 2001, strong poleward flow was also observed in 

November. 
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Although poleward flow dominated the 305 m stick plot, periods of equatorward 

flow occurred 4-9 times per year.  A few of these were as strong as the springtime 

poleward bursts (> 20 cm/s). The first period of strong equatorward flow occurred in 

October 1999, and subsequent strong bursts were observed in August 2000 and October 

2002, the latter representing the strongest equatorward flow registered.  Sustained 

equatorward flow of 10-20 cm/s was also seen in January 2003. 

The 305 m temperature time series (Fig. III-7) showed a distinct seasonal pattern 

although significant changes occurred from year to year.  At this depth, temperature 

changes were largely due to vertical movement of isopycnals due to acceleration of the 

alongshore flow.  The coolest temperatures are typically observed between April and 

June and maximum temperatures from August through early November.  Temperature 

oscillations which were almost as large as the seasonal cycle also occurred.  A number of 

these are associated with the bursts of poleward (equatorward) flow and temperature 

warmed (cooled) as the poleward (equatorward) flow accelerated.  But some exceptions 

to this occurred, for example during the equatorward burst of flow in October 2002, 

temperature remained relatively warm 

The relationship between the direction of alongshore flow and temperature, 

cooling (heating) associated with equatorward (poleward) flows, can be seen by 

examining the time series for a specific year.  For instance, in 1999 during spring the 

temperature cooled from 7.8°C to 6.7°C from early January to mid April, with flow speed 

of 21 cm s-1 and poleward direction through mid January, offshore direction in late 

January and poleward direction through February and April.  The spring jet developed 

around April 14 and extended until early July, with maximum velocities of 26 cm s-1, 

accompanied by warming from 6.7°C in late April, to 7.7° C in late July, remaining 

warm.  The spring jet was interrupted twice by equatorward and offshore flow on May 17 

and June 3.  This offshore flow coincided with the decreased temperature from a 

maximum of 7.3° C and 7.5° C to a minimum of 6.7° C and 6.8° C, respectively.  

The strength of the currents and the variability of temperature decreased at 1200 

m.  The stick plots at 1200 m (Fig. III-8) showed weak flow through the first third of the 

year with stronger currents developing later in the year.  The spring jet did not exist at 
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1200 m although weak poleward flow sometimes coincided with the 300 m poleward jet, 

e.g. late May 2000.  During the last three months of the year, the flow at 1200 m was 

often as strong or stronger than the flow at 305 m.  A number of the stronger equatorial 

flows (August 1999, July 2000, and December 2002) exceeded those observed at 305 m.  

This suggests that the poleward flows were surface enhanced while a number of the 

equatorward flows were bottom trapped.  

The 1200 m temperature time series (Fig. III-9) did not show a clear annual 

oscillation.  Minimum (maximum) temperatures occurred in April (November), October 

(May), September (July), November (October) and June (September) in 1998, 1999, 

2000, 2001 and 2002 respectively.  Springs were characterized by decreasing 

temperatures followed by temperature increases but these temperature excursions were 

often exceeded by subsequent cooling and warming.  Cooling was generally associated 

with equatorward acceleration of the 1200 m current (Fig. III-8). 

 

D. SEASONAL VARIABILITY 

Seasonal cycles were constructed by sorting current and temperature data by the 

day of the year and then averaging the resulting five-days of data (one day for each year 

of the five-year time series).  Results for currents and temperature at 305 m and 1200 m 

are shown in Figure III-10.  The annual cycle of temperature at 305 m showed the 

clearest annual signal.  The temperature minimum, 6.7°C, occurred on April 29 and three 

months later on July 29 the temperature was maximum, 8.0°C.  Subsequent to July 29, 

the trend of the 305 m temperature was decreasing but  with excursions of ±0.3°C.  In 

early March, the rate of cooling increased.  The seasonal variability of velocity at 305 m 

showed strong poleward flow (10 to 20 cm/s) while the temperature increased from April 

29 to July 29, weaker poleward flow with some current reversals from August through 

February, and weakest flow during late March and early April. 

The temperature at 1200 m showed a pattern similar to that at 305 m only during 

the period from March through early June.  Temperatures decreased from 3.6°C on 

March 1 to 3.43° C on April 22 (a week earlier than the minimum temperature at 305 m) 

and then warmed to 3.6°C on June 11.  Subsequent to June 11, the temperatures remained 
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near 3.55°C when they decreased to the seasonal minimum, 3.39°C, on October 22.  The 

principal feature of the 1200 m velocities occurred during the June 11 to October 22 as 

southward velocities greater than 5 cm/s.  Subsequent to October 22, temperatures 

increased again to 3.6°C on March 1. 

Daily data were used to compute monthly means and velocity ellipses.  At 305 m 

means were toward the north (Fig. III-11, Table III-2) for each month except October 

when the flow was toward the south due to the two strong southward flows observed in 

1999 and 2002 described above.  The mean flow was also directed along NW-SE except 

in January when it was offshore and March when it was onshore.  The orientation of the 

major axes varied from 329° in March to 012° in June.  In April, May and June the 

ellipses were nearly circular and in other months the semi-major axis was about twice the 

semi-minor axis.  During May and June, the mean current (10.5 cm s-1 and 10.4 cm s-1, 

respectively), were larger than the magnitude of the semi-major axis.  Currents were 

twice as variable during the period from June through October than they were from 

November to May. 

At 1200 m (Fig III-12, Table III-3), the monthly means were a fraction of the 

length of the semi-major axis except in August when the mean speed, 3.3 cm/s, exceeded 

the semi-major axis, 2.9 cm/s.  Monthly means were southward in every month but May, 

but their direction strayed widely from the trend of the local bathymetry.  In contrast, the 

direction of the major axis varied less than at 305 m, from 336° in August to 003° in 

May.  Ellipse dimensions at 1200 m were about half those at 305 m.  As at 1200 m, 

currents were least variable during April and most variable in October.  The semi-minor 

axis was about half the size of the semi-major axis except in June when the ellipse was 

nearly circular (as it was at 305 m in June).  Currents were twice as variable from June 

through December than they were from January through May. 

Progressive vector diagrams (PVDs) were constructed for each month to visualize 

the monthly displacements caused by the currents.  They were calculated by integrating 

the velocity from the beginning of the month, 0, to the end of the month, T, 
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The resulting paths begin at the origin and look like trajectories.  PVDs would only 

represent trajectories if the velocity field was spatially homogeneous and the flow was 

accelerated at the same time and rate at all locations.  

The monthly PVDs at 305 m are shown in Fig. III-13.  They cover an area which 

was two to six times larger than those for 1200 m.  The PVDs show clearly the 

predominantly northwestward direction flow in all months except October.  For October, 

the strong southward flow in October 2002 resulted in a southward displacement of more 

than 400 km, the largest displacement observed at 305 m.  In October, flow was also 

southward in 1999 but was northward in other years.  Displacements seen in May and 

June and August showed more than 300 km of northward displacement, confirming the 

strong poleward flow seen in means and ellipses described above.  The April PVD for 

305 m showed a remarkable year-to-year change in the mean flow direction.  Although 

some onshore flow occurred in March 1999, 2000 and 2002, the net eastward flow for the 

mean was clearly the result of southeastward flow in 2002.  Eddy- like features occurred 

in the PVDs for June, July, August, and September. 

The PVD’s at 1200 m (Fig. III-14) showed predominantly southeastward 

displacement except in May when displacements were northwestward except in 1999.  

Largest displacements were associated with southwestward flow in July and August 2000 

and October 2002.  Anticyclonic features occurred in June, July and September.  In June, 

eastward, southeastward, southward and westward displacements were seen in different 

years.  Eastward displacements of about 50 km, not associated with southward flow, were 

seen in March, June, and October.  

 

E. MESOSCALE VARIABILITY 

Current meter data at 305 m and 1200 m were daily averaged and a 7 day filter 

used to remove high frequency variability.  The alongshore and onshore ( ,u v ) 

components of velocity were used to calculate the monthly means ( ,u v〈 〉 〈 〉 ) and 

variances (
2 2' ',u v〈 〉 〈 〉 ) where the overbar signifies monthly averages, and a prime 

superscript indicates the deviation from the mean.  Eddy kinetic energy (EKE) was 

calculated as  
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2 2' '0.5( )EK u v= 〈 〉 + 〈 〉 . 

Figure III-15 and III-16 show the monthly average for the eddy field and error bars (one 

standard deviation) for 
2 2' ',u v〈 〉 〈 〉  and ' 'u v〈 〉  at 305 m and 1200 m.  At 305 m most of the 

contribution to the total EKE comes from the along-shore component which had large 

variability during June and October as described above.  The maximum EKE was 38 

cm2/s2 in October and minimum was 4 cm2/s2 in December.  At 1200 m the along-shore 

component also contributed the most to the total EKE with the largest uncertainties in 

July.  The maximum value of EKE at 1200 m was 5 cm2/s2 in July and was minimum, 0.4 

cm2/s2, in February.  

Rotary and kinetic energy spectra were used to determine how the variance of the 

time series was distributed over frequency.  Analysis was performed using Matlab™ 

programs, which are based on the discrete Fourier transform and the periodogram 

method.  A Hanning window was applied with a 50% overlap.  As is usual practice, the 

mean and trend of the time series were removed before analysis.  A description of the 

mathematical procedure for calculation of rotary spectra is given in Appendix B. 

Figure III-17 shows the clockwise (CW) and counter-clockwise (CCW) rotary 

components at 305 m and 1200 m.  The energy spectra of the currents at 305 m showed 

that currents were more rectilinear (i.e. neither CW nor CCW components were 

dominant).  An energy peak occurred at low frequency, 0.019 cpd (~52 days), where 

CCW was dominant.  At 1200 m there was clear dominance of CW component at low 

frequencies, with peak energy at 0.018 cpd (~56 days).  At all frequencies, the energy 

level at the shallower current meter was five times greater than at 1200 m depth. 

Kinetic energy spectra at both 305 m and 1200 m (Fig. III-18) showed energy 

peaks at the same low frequencies as the rotary spectra.  The 305 m kinetic energy 

spectra had three large peaks at 0.03 cpd (~33 days), 0.07 cpd (~14 days) and 0.11 (~9 

days).  At 305 m there was a reduction of kinetic energy at high frequencies (periods less 

than ~9 days) as well as lower frequencies (periods greater than ~52 days), while at 1200 

m energy decreased at periods less or greater than 59 days, respectively.  At 1200 m, the 

peak energy density at .018 cpd, 1050 (cm/s)4 day-1, exceeded that at 305 m, 750 (cm/s)4 
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day-1, but at other frequencies, the eddy kinetic energy spectrum at 1200 m had about 5-

10 times less energy density than at 305 m.  A series of smaller energy peaks occurred at 

1200 m but only one was at the same frequency, 0.03 cpd, as 305 m. 

 

F. VERTICAL STRUCTURE  

Mean velocity and variance ellipse parameters for the 300 m BBADCP on S2 and 

the downward looking surface ADCP on M2 are shown in Figure III-19 and are listed in 

Table III-4 along with the current meter results given above.  From 16-40 m, the mean 

flow at M2 (Fig. III-19a) became more northward with depth, changing direction from 

281° to 346°, in a manner consistent with Ekman flow.  The speed was also consistent 

with Ekman flow between 16 and 24 m, decreasing from 2.4 to 2.2 cm/s, however below 

the minimum at 24 m, the speed of the mean flow increased to 4.2 cm/s at 88 m.  The 

mean flow was most northward at 40 m and gradually rotated 8° counter clockwise with 

depth so that flow was north-northwestward at 88 m.  The S2 BBADCP (Fig. III-19b) 

showed the mean flow directed in the same direction at 210 m as was observed at M2 at 

88 m, but the mean speed was 1.1 cm/s greater.  From 210 m to 290 m, the mean speed at 

S2 decreased from 5.3 cm/s to 3.9 cm/s and the direction of the speed continued the 

westward trend with depth, changing from 338° to 334°.  The increase of speed with 

depth seen at M2 and the decrease of speed below 210 m at S2 imply the existence of a 

speed maximum between 88 m and 210 m which was not observed.  This speed 

maximum is associated with the CU and was observed to lie at a depth of 150 m in 

velocity soundings at a nearby location.  (Data from the M2 ADCP show that the speed 

of the mean current was maximum, 6.4 cm/s, in 2002 at 112 m.)  The shear measured by 

the S2 BBADCP, -1.2 cm/s in 72 m, was -1.6 x 10-2 cm/s-m, and compares well to -2.0 x 

10-2 cm/s-m measured by RAFOS floats (Garfield et al 1999) and  -1.6 x 10-2 cm/s-m 

measured by an acoustically tracked dropsonde (Rischmiller, 1993).  Taking this shear 

into account, the mean speed and direction at 305 m measured with the RCM8 agreed 

well with extrapolations from the BBADCP at 290 m. 

The velocity ellipse statistics were also remarkably consistent.  At M2 (Table III-

4), the direction of the semi-major axis varied from 339° to 345°, and the semi-major axis 

varied from a minimum of 13.0 cm/s to a maximum of 14.28 cm/s at 88 m and the ratio 
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of the semi-major and semi-minor axis was 1.4.  Between 210 m and 290 m at S2, the 

direction of the semi-major axis was 348° or 349° and the ratio of the semi-major and 

semi-minor axis was 1.6.  The maximum semi-major axis at S2 was 11.5 cm/s at 210 m 

and this decreased steadily with depth to 3.4 cm/s at 1200 m.   

Momentum empirical orthogonal functions (EOF) (also called principal 

component analysis) were utilized to determine patterns of temporal and spatial 

variability of the horizontal currents.  This technique was described by Chereskin et al. 

(2002) and is used to decompose space-time distributed data into modes ranked by their 

percentage of variance.  The modes or EOF’s can be defined as those patterns which are 

most powerful in explaining the variance of the data set.  Each mode or EOF consists of a 

dimensional spatial pattern function (Z-scores) that is uncorrelated with other modes, a 

time series of amplitude coefficients that show how a given principal component varied 

with time, and an associated percent of the total variance.  Generally the first three 

principal components account for about 80-90% of the total variability. 

Days which contained daily averaged currents at each depth in Table III-4 were 

used to calculate the EOFs for the M2/S2 velocity observations.  The three modes shown 

in Figure III-20 accounted for a total of 90% of the variance.  The first Z-score accounted 

for 75% of the variance and represented flow along the principal axis, to the northwest 

for positive principal components (except at 1200 m where the flow was to the 

southwest).  The second Z-score accounted for 9% of the variance and had u ~ 0 and v to 

the south at M2 and north at S2 (including 1200 m) for positive principal components; 

this pattern might be called an undercurrent vs. Davidson Current mode.  The third Z-

score accounted for 6% of the variance and had v ~ 0 and u to the east at M2 and to the 

west at S2 for positive principal components and might be thought of as an upwelling 

mode.   

The temporal variability of the first three principal components is shown in the 

lower portion of Figure III-20 as a function of yearday (left) and year (right).  

Considerable variability occurred in the principal component scores.  The second 

principal component had the strongest seasonal pattern; the biharmonic fit was maximum 

on yearday 125 and minimum on yearday 360.  This corresponds to the pattern of DC vs. 
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undercurrent flow described by previous authors.  The biharmonic fit to the first mode 

was minimum on yearday 85, crossed zero on yearday 150 and was maximum on yearday 

190, resembling the pattern of seasonal flow at 300 m described above.  The biharmonic 

fit to the third principal component was positive from yearday 90 to yearday 205.  Since 

this is the period when upper layer flow is expected to be offshore, this is opposite to 

what would be expected from an upwelling mode.  The temporal variation of the 

principal component scores as a function of year contains a number of gaps which 

correspond to periods when there was no data available at M2.  Subsequent to 2001, a 

clear seasonal cycle was apparent for the first two modes.   

 

G. STATISTICAL RELATIONSHIP BETWEEN CURRENTS AND SEA 
LEVELS AND WINDS 

The relationships between currents, sea level, and wind stress were studied by 

means of spectrum analysis.  The linear response of the output of a system, y, to an input 

(forcing), x, may be written in terms of a complex transfer or frequency response 

function, Hxy, 

)(/)()( fff xxxyxy GGH = , so )()()( fff yyxyxx GHG =  

where Gxy is the cross spectrum of x and y, Gxx is the spectrum of x, and Gyy is the 

spectrum of y (Bendat and Piersol, 1986).  Note that Hxy has a magnitude and an 

associated phase angle for each frequency estimate.   

 The relationship between adjusted sea level, ?, and alongshore velocity, vr, is 

approximated by geostrophic balance,  
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where g is gravitational acceleration, f is the Coriolis parameter, and L is the current 

width.  Then 
fL
g

rv ≈ςH , e.g. the width of the alongshore geostrophic current can be 

estimated from the amplitude of the transfer function between the alongshore velocity 

and adjusted sea level (Collins, 1968).    
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Figure III-21 shows the relationships between the spectrums of alongshore and 

across shore currents at 305 m and 1200 m and adjusted sea level, respectively.  The 

transfer functions were noisy with changes in amplitude and phase between adjacent 

frequency bins that were usually physically impossible.  Frequency bands for which the 

phase was relatively steady and coherence high did occur.  The phase between adjusted 

sea level and alongshore velocity was close to zero for frequencies including 0.01-0.03, 

0.10-0.14 and 0.15-0.19 day-1.  The coherence between across shore velocity and adjusted 

sea level was greater than that for alongshore velocity, exceeding 0.5 at 0.005, 0.015, and 

0.1 day-1; phases at these frequencies were about –p and the amplitude of the transfer 

function was about the same as that for the alongshore velocity.  At 1200 m, the phase 

between adjusted sea and alongshore (across shore) velocity was close to zero (–p), the 

coherence greater than 0.4 (0.4) and the current width about 11 (12) km for frequencies 

greater than 0.2 day-1.  

The rate of change of the alongshore horizontal pressure gradient was 

approximated by subtracting the ASL at Monterey from the ASL at Port San Luis (the 

location of the sea level gauges is shown in Fig. I-1).  The transfer function between the 

fluctuating horizontal pressure gradient and currents at S2 is shown in Figure III-22.  As 

in Fig. III-21, the transfer functions were noisy.  For alongshore flow at 305 m, the 

largest transfer function (coherence) was 4 s-1 (0.58) at 0.04 day-1 and with a phase of 

about p, e.g. an elevation of ASL at Port San Luis of 1 cm relative to Monterey will result 

in a 4 cm/s alongshore flow at S2 about 12 days later.  For across shore flow at 305 m, 

the largest coherence was 0.59 at 0.11 day-1 and the phase at this frequency was close to 

zero.  At 1200 m, highest coherences, 0.59, occurred at 0.23 day-1 for both the alongshore 

and across shore velocity with a phase of p and 0, respectively.  The amplitude of the 

transfer function at 1200 m was about half that at 305 m. 

The transfer functions between wind stress vs. currents at S2 is shown in Figure 

III-23.  For wind stress vs. 305 m currents, the largest transfer function amplitude 

(>1.5x105) was at frequencies of 0.014, 0.04, 0.05, and 0.065 day-1 with counterclockwise 

component dominating at those frequencies.  At frequency of 0.13 day-1 clockwise 

component dominated, although the amplitude transfer function was less than 1x105.  For  
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wind stress vs. 1200 m currents, counterclockwise component dominated at frequencies 

of 0.027, 0.07, and 0.16 day-1, although amplitudes at those frequencies were less than 

0.25 except at frequency of 0.16 that showed a value of 0.3.  

 

Mean 
Semi-Major 

Axis 

Semi-Minor 

Axis 
Temperature Pressure  

Setting 

No. 

Depth  

m Speed 

cm s-1 

Direction 

°T  

Direction 

°T  

Magnitude 

cm s-1 

Magnitude 

cm s-1 

Mean 

°C 
S.D. Mean S.D. 

305 4.9 345 002.6 8.4 5.7 7.53 0.59 295 0.11 
1 

1200 1.1 149.8 344.2 2.5 1.7 3.39 0.06 1195 0.33 

305 1.2 335.3 336.8 7.2 3.6 7.46 0.33 303 0.34 
2 

1200 0.6 321.5 346 2.7 1.5 3.38 0.05 1199 0.001 

305 6.9 333.6 357 9.0 5.6 7.09 0.25 308 0.62 
3 

1200 0.4 237.2 014.7 2.3 2.1 3.54 0.05 1186 0.24 

305 2.3 149 341.1 7.6 3.7 7.52 0.31 293 0.37 
4 

1200 1.1 167.4 339.1 3.2 1.3 3.43 0.06 1172 0.005 

305 6.4 331.3 304.4 7.8 7.4 7.33 0.42 295 0.47 
5 

1200 1.0 155.3 350.5 4.1 1.7 3.58 0.08 1173 0.66 

305 3.0 312.7 352.1 10.2 5.4 7.57 0.26 308 0.34 
6 

1200 0.2 307.3 353.9 4.1 2.9 3.43 0.07 N/A N/A 

305 6.5 347.9 331.5 8.2 4.9 7.34 0.27 307 0.39 
7 

1200 0.8 199.4 013 2.9 2.0 3.54 0.06 1175 0.17 

305 6.7 352 306 6.3 6.1 7.69 0.31 298 0.43 
8 

1200 1.2 159.3 002.1 2.7 1.9 3.52 0.05 1177 0.32 

305 7.0 332.4 341.2 10.2 7.1 7.69 0.31 298 0.43 
9 

1200 1.1 151.1 337.3 3.3 2.2 3.52 0.08 1175 0.36 

305 3.0 232.9 358.5 11.8 4.9 8.13 0.33 296 1.55 
10 

1200 2.4 167.1 355.1 4.2 1.9 3.49 0.11 1177 0.74 

 
Table III-1. Statistics for the 6-hour, detided current meter data at 305 m and 1200 m 

for each six-month deployment of S2.  Red (blue) quantities are maximum (minimum) 

values. 
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Month 

Mean 

Speed 

cm s-1 

Standard 

error of 

the mean 

Mean 

Direction 

Semi-

Major 

Axis 

Direction 

Semi-

Major 

Axis 

Magnitude  

cm s-1 

Semi-

Minor 

Axis 

Magnitude  

cm s-1 

January 1.7 0.1969 286.8 345.8 9.6 4.3 

February 3.9 0.1527 330.3 351.0 5.8 2.8 

March 2.5 0.2219 42.9 329.1 7.4 3.9 

April 1.7 0.1429 332.7 349.4 4.6 4.2 

May 10.5 0.1995 340.8 350.9 6.8 5.8 

June 10.4 0.2746 329.2 011.6 10.3 8.9 

July 6.2 0.2676 329.1 354.7 10.1 6.9 

August 4.3 0.2665 335.3 000.5 11.7 6.9 

September 5.1 0.2544 318.2 346.0 10.8 4.6 

October 3.0 0.2922 172.4 006.8 11.9 6.2 

November 3.3 0.1463 345.4 337.3 7.1 4.2 

December 2.2 0.1287 353.0 334.7 5.4 3.7 

 

Table III-2. Monthly mean currents at 305 m depth. 
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Month 

Mean 

Speed 

cm s-1 

Standard 

error of 

the mean 

Mean 

Direction 

Semi-

Major 

Axis 

Direction 

Semi-

Major 

Axis 

Magnitude  

cm s-1 

Semi-

Minor 

Axis 

Magnitude  

cm s-1 

January 0.8 0.0648 113.6 352.6 2.9 1.7 

February 0.8 0.0513 183.5 348.6 2.2 1..3 

March 1.2 0.0841 120.5 349.8 2.6 2.0 

April 0.1 0.0481 212.0 339.9 1.9 0.9 

May 0.9 0.0717 326.8 002.7 2.7 1.5 

June 2.0 0.0903 180.5 357.6 3.4 3.1 

July 1.4 0.0920 167.4 354.6 3.9 2.3 

August 3.3 0.0663 159.7 335.8 2.9 1.6 

September 0.5 0.0783 253.0 346.6 3.5 1.8 

October 1.1 0.0928 201.8 344.8 4.0 2.2 

November 0.3 0.0928 182.1 358.0 3.9 1.6 

December 1.1 0.0963 158.6 000.7 3.7 2.4 

 

Table III-3. Monthly mean currents at 1200 m depth 
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Mooring Instrument 
Depth 

m 

<u> 

cm s-1 

<v> 

cm s-1 

Major 

cm s-1 

Minor 

cm s-1 

Angle 

deg 

M2 ADCP 16 -2.38 0.47 13.07 9.67 344.7 

M2 ADCP 24 -1.46 1.70 12.99 9.36 342.0 

M2 ADCP 32 -0.88 2.45 13.01 9.24 340.3 

M2 ADCP 40 -0.73 2.85 13.13 9.28 339.4 

M2 ADCP 48 -0.79 3.16 13.28 9.40 339.7 

M2 ADCP 56 -0.94 3.45 13.42 9.55 340.9 

M2 ADCP 64 -1.08 3.59 13.65 9.73 342.1 

M2 ADCP 72 -1.27 3.68 13.85 9.93 343.2 

M2 ADCP 80 -1.40 3.77 14.07 10.10 344.1 

M2 ADCP 88 -1.54 3.87 14.28 10.24 345.0 

S2 BBADCP 210 -1.93 4.89 11.51 7.39 348.9 

S2 BBADCP 218 -1.96 4.80 11.27 7.21 348.7 

S2 BBADCP 226 -1.98 4.67 11.03 7.01 348.4 

S2 BBADCP 234 -1.96 4.53 10.81 6.82 348.2 

S2 BBADCP 242 -1.91 4.41 10.59 6.65 348.1 

S2 BBADCP 250 -1.88 4.29 10.37 6.48 348.0 

S2 BBADCP 258 -1.83 4.15 10.14 6.30 348.1 

S2 BBADCP 266 -1.80 4.00 9.90 6.15 348.1 

S2 BBADCP 274 -1.76 3.87 9.66 5.96 348.3 

S2 BBADCP 282 -1.73 3.76 9.44 5.78 348.3 

S2 RCM8 305 -1.7 3.5 9.40 5.80 349.0 

S2 RCM8 1200 0.2 -0.8 3.40 2.00 350.0 

 
Table III-4. Velocity statistics for M2/S2 using daily time series. 
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Figure III-1. Histogram of speed (left) and direction (right) for currents, at (top) 290 m, 

(middle) 305 m, and (bottom) 1200 m depth.  The upper panel is for ADCP 

measurements and the middle and bottom panels are for Aanderaa RCM8 measurements. 
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Figure III-2. Scatter plot of 6 hourly detided 305 m current observations.  Note that the 

origin of the ellipse coincides with the mean flow. 
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Figure III-3. Scatter plot of 6 hourly detided 1200 m current observations.  Note that 

the origin of the ellipse coincides with the mean flow. 
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Figure III-4. Bathymetry at mooring S2. Red dots are the location of the mooring 

anchor for each of the 10 deployments from March 1998 to March 2003. 
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Figure III-5. Integral time scale.  (a) At 305 m depth, blue (red) major (minor) axis.  (b) 

At 1200 m depth, blue (red) major (minor) axis. 
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Figure III-6. Time series of daily average currents at 305 m depth. 
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Figure III-7. Time series of daily average temperature observations at 305 m depth. 
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Figure III-8. Time series of daily average currents at 1200 m depth. 
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Figure III-9. Time series of daily average temperature observations at 1200 m depth. 
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Figure III-10. Time series of daily average temperature and currents at 305 m (blue) and 

1200 m (red), respectively. 
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Figure III-11. Scatter plot of monthly 305 m current observations, from March 24, 1998 

to March 11, 2003. 
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Figure III-12. Scatter plot of monthly 1200 m current observations, from March 24, 1998 

to March 11, 2003. 
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Figure III-13. Progressive Vector Diagram for current meter at 305 m depth.  Solid black 

line (blue, red, green, cyan) corresponds to 1998 (1999, 2000, 2001, and 2002). 
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Figure III-14. Progressive Vector Diagram for current meter at 1200 m depth.  Solid 

black line (blue, red, green, cyan) corresponds to 1998 (1999, 2000, 2001, and 2002).  
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Figure III-15. Eddy field of daily averaged currents at 305 m.  A 7-day running mean 

was used to remove high frequency variability. 
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Figure III-16. Eddy field of daily averaged currents at 1200 m.  A 7-day running mean 

was used to remove high frequency variability. 
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Figure III-17. Rotary spectra of the currents at 305 m (upper spectra) and 1200 m (lower 

spectra).  The red (blue) line is the anticlockwise (clockwise) rotation. 
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Figure III-18. Eddy kinetic energy variance preserving spectra at 305 (red line) and 1200 

m (blue line). 
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Figure III-19. Mean (blue), principal axes (red), and standard deviation ellipses at 

(upper) M2, 16-88 m, and (lower) S2, 210-290 m. 
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Figure III-20. Vertical structure of horizontal velocity at M2/S2.  (upper) Zscore, mean 

and standard deviation of east-west (u) and north-south (v) components of velocity.  

(lower) Temporal variability of first three principal components as a function of yearday 

(left) and year (right).  The first principal component is red, the second is blue and is 

displaced -1, and the third is green and displaced -2.   Black solid lines in the lower right 

represent a biharmonic fit to the temporal variability of the corresponding principal 

component. 
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Figure III-21. Frequency dependent transfer functions between adjusted sea level (ASL) 

for Monterey and S2 currents.  From left to right, the panels are current width (upper 

left), phase (mid left), and coherence (bottom left) of ASL vs. 305 m currents.  Current 

width (upper right), phase (mid right), and coherence (bottom right) of ASL vs. 1200 m 

currents.  Red (blue) line is ASL vs. along shore currents (ASL vs. across shore currents), 

and the green line on coherence panels represents the 99% confidence interval. 
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Figure III-22. Frequency dependent transfer functions for the change in horizontal 

pressure gradient versus S2 currents.  The change in horizontal pressure gradient was 

approximated by subtracting ASL for Monterey from ASL at Port San Luis.  From left to 

right, the panels are amplitude (upper left), phase (mid left), and coherence (bottom left) 

of ASL difference between Port San Luis and Monterey vs. 305 m currents.  Amplitude 

(upper right), phase (mid right), and coherence (bottom right) of ASL difference between 

Port San Luis and Monterey vs. 1200 m currents.  Red (blue) line is ASL difference 

between Port San Luis and Monterey vs. along shore currents (ASL difference between 

Port San Luis and Monterey vs. across shore currents), and the green line on the 

coherence panels represents the 99% confidence interval. 

 



63 

 
 

Figure III-23. Frequency dependent transfer functions for rotary cross spectra.  From left 

to right, the panels are amplitude (upper left), phase (mid left), and coherence (bottom 

left) of wind stress vs. 305 m currents.  Amplitude (upper right), phase (mid right), and 

coherence (bottom right) of wind stress vs. 1200 m currents.  The red (blue) line is the 

alongshore wind stress vs. alongshore currents (across shore wind stress vs. across shore 

currents) and the green line on coherence panels represents the 99% confidence interval. 
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IV. SUMMARY AND CONCLUSIONS 

Biharmonic annual fits of currents, temperature and eddy kinetic energy at 300 

and 1200 m, adjusted sea levels, and wind stress were constructed for the entire 5-year 

period of this study and are shown in Figure IV-1, and the goodness of fit for this 

biharmonic analysis is shown in Table IV-1.  The relationship between currents and 

temperatures at 300 and 1200 m at mooring S2 site, and the relationship between along 

shore flow , adjusted sea levels and wind stress are described below.  

 

A. CHARACTERISTICS OF CURRENTS OFF MONTEREY, BAY 

At 305 m, the flow was dominated by poleward flow associated with the CU and 

the DC.  The speed (direction) of the vector average flow at 305 m was 3.9 ± 0.04 cm/s 

(334° ± 0.5°) and the variance ellipse was oriented along 349° with a semi-major (semi-

minor) axis of 9.4 cm/s (3.4 cm/s).  The mean direction was poleward in all months but 

October when strong equatorward flows in 1999 and 2002 resulted in southward mean 

flow.  The orientation of the variance ellipse appeared to be controlled by the topography 

immediately to the east of the mooring site.   

At 1200 m the speed (direction) of the vector average flow was 0.8±.02 cm/s 

(169°±0.6°) and the variance ellipse was oriented in the same direction as the mean flow, 

350°, with a semi-major (semi-minor) axis of 5.8 cm/s (2.0 cm/s).  The direction of the 

variance ellipses and the mean flow at 1200 m was the same as that for 305 m and 

coincided with the orientation of the topography immediately to the east of the mooring 

site.  The equatorward direction of the flow was a surprise.  Geopotential gradients for 

layers below 1000 dbar decrease to the west, implying poleward geostrophic flow relative 

to a deep reference layer.  Hickey (1979, 1998) has observed equatorward flow over the 

upper slope beneath the CU and refers to these flows as the “Washington Undercurrent.”  

An equatorward undercurrent was also generated during fall and winter in numerical 

model studies by Batteen and Vance (1998).  An alternative explanation might lie in the 

proximity of the canyon to the mooring site.  Mixing processes in the canyon would 
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reduce the stratification toward the Canyon head and create an up-canyon horizontal 

pressure gradient that might affect the flow at the S2 site.   

The seasonal patterns of variability were modeled by fitting a sinusoid that 

contained annual and semiannual frequencies to data that was averaged by yearday.  The 

resulting seasonal variability is shown in Fig. IV-1 and summarizes the results discussed 

previously in Chapter III.  The very best results, in terms of the percent of the variance 

explained (Table IV-1), were for 305 m temperature (84%), Monterey adjusted sea level 

(90%), and the adjusted sea level difference between Port San Luis and Monterey (74%).  

The models for alongshore velocity at 305 m, alongshore wind stress, and 1200 m 

temperature accounted for 36%, 44%, and 58% of the variability, respectively.  The 

models show minimum sea level, 305 m temperature, and maximum equatorward wind 

stress occur in spring at about yearday 120 and are followed by maximum poleward flow 

at 305 m in late spring on yearday 170.  Minimum poleward flow at 305 m occurred in 

late winter and early fall, the former coinciding with the maximum poleward pressure 

gradient at the coast.  The co-variation of temperature and sea level confirm the steric 

balance observed by Lisitzin and Pattullo (1961).  The development of the spring 

poleward jet in the alongshore flow was largely captured by geostrophic adjustment 

(decrease in sea level and 305 m temperature).  The phase difference between alongshore 

pressure gradient and maximum poleward velocity at 305 m suggests an arrested 

topographic wave.   

The biharmonic models accounted for 37% and 28% of the variability of the 

kinetic energy at 305 m and 1200 m and 27% of the alongshore velocity at 1200 m.  

Kinetic energy was minimum in winter and maximum in late summer at about the same 

time as the equatorward flow at 1200 m was maximum (about yearday 200).  The 

variability of kinetic energy and eddy kinetic energy (Fig. III-16) were in phase at 1200 

m while the eddy kinetic energy maximum at 305 m occurred in October (Fig. III-15).  

The latter suggests baroclinic instability as a possible mechanism in the relaxation of the 

CU.   

Although the biharmonic models reproduce the seasonal velocity trends, they do a 

poor job of showing the higher frequency, mesoscale variability associated with flows at 
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305 m and 1200 m.  The spring jet at 305 m does not accelerate in the manner depicted in 

Figure IV-1 but instead consists of a series of fortnightly to monthly bursts of poleward 

flow followed by relaxations.  The same is true for equatorward flows at 1200 m.  

Poleward mesoscale events were more intense at 305 m while the equatorward mesoscale 

flows were stronger at 1200 m and suggest that the former are surface trapped and the 

latter are bottom trapped.  Variance preserving spectra show the dominance of about 30 

to 60-day periods at both depths. 

The 5-year time series of 305 m currents at S2 can be compared to a 5-year time 

series of 350 m currents in 800 m of water to the west of Point Sur from May 1989 to 

February 1995 (Collins et al., 1996).  At Point Sur (S2) the mean flow was directed 

toward 334° (334°) at 7.6 cm/s (3.9 cm/s).  The variance ellipse at Point Sur (S2) was 

oriented 345° (349°) with a semi-major axis of 9.7 cm/s (9.4) cm/s and a semi-minor axis 

of 4.1 cm/s (3.4 cm/s).  The major discrepancy in these statistics is that the mean vector 

averaged speed of the flow at S2 is about half that at the shallower site at Point Sur.  The 

scatter plot for the velocity observations at Point Sur also showed a few instances of 

strong southwestward flow that were not observed at S2.  The seasonal cycle of 

temperature and velocity at Point Sur were similar to those for S2 except that the peak 

poleward flow was about twice that shown in Fig. IV-1 for S2.  Finally, the character of 

the spring jet at Point Sur exhibited less mesoscale variability than S2. 

 

B. RECOMMENDATIONS FOR FUTURE WORK 

M2 currently includes an ADCP that typically penetrates to a depth of 300 m (Fig. 

II-5).  It is possible to compare ADCP measurements at M2 and S2 with a view toward 

eliminating redundant instruments.  Figure IV-2 shows a comparison of velocity 

measurements at 290 m at S2 to 288 m measurements at M2.  The M2 measurements 

were not corrected for mooring motion.  Correlations for u and v exceeded 0.8 (Table IV-

2) and the slope of the regression line was 0.96 for u and 0.91 for v (for perfect 

agreement between the measurements, the regression slope and correlation coefficient 

would be 1).  Standard deviations of the differences of u and v were high, ~6 cm/s, and 

the zero intercept for v and speed was -3.0 cm/s and 4.8 cm/s.  Compared to u and v, both 

the speed and direction scatter plots were noisy.  The change in slope of the direction 
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comparisons at 90° suggests compass calibration problems.  Since both MBARI and NPS 

use manufacturer recommended procedures for calibrations, these differences might be 

due to magnetic deviation created by other instruments on the M2 mooring.  Differences 

in speed and direction might also be caused by motion of M2.  Typically, M2 does not 

move very much during the period of measurement, but occasionally it transits across or 

around its 3.2 km watch circle when winds or currents change direction.  The half-hourly 

GPS measurements at M2 were used to correct velocity measurements for mooring 

measurement but the result (not shown) was much noisier than shown in Fig IV-2.   

The conclusion from these comparisons is that the extended range ADCP on M2 

is suitable for measurements of mesoscale, seasonal and long term flow patterns at 300 m 

depth.  The problems with using M2 ADCP measurements as a time series are due to 

extended periods of time when the ADCP at M2 does not work (e.g., September 1999 to 

April 2000), the mooring fails (late 1997 to June 1998), or the transducer faces need 

cleaning or the power is low (March 2002).  Costs associated with improved ADCP 

operations at M2 may exceed those of the S2 measurements.  And although M2 is a 

suitable platform for monitoring mesoscale flow, it is not a suitable platform for sediment 

trap measurements and the incremental costs of velocity measurements at a sediment trap 

are a small fraction of the mooring costs. 

Fig. III-1 illustrated the limitations of the RCM-8 paddlewheel.  It would be 

interesting to see how well an ADCP worked at 1200 m, e.g. whether or not there were 

enough scatterers for Doppler shift measurements over 80 m ranges.  If so, the low 

threshold of the ADCP would aid in resolving speed and direction at least 24% of the 

time.  
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 Integer Percent Variance 

ur 13 300 m 

vr 36 

ur 7 

VELOCITY 

1200 m 

vr 28 

300 m 84 TEMPERATURE 

1200 m 58 

300 m 37 KINETIC ENERGY 

1200  m 28 

ADJUSTED SEA LEVEL Monterey 90 

t r 20 WIND STRESS 

t r 44 

SEA LEVEL DIFFERENCE  74 

 

Table IV-1. Percent of variance of daily averaged data explained by a biharmonic fit 

which includes annual and semiannual frequencies. 
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Variable Mean 

Difference 

(cm/s) 

S.D of 

difference 

(cm/s) 

Slope of 

regression 

(cm/s) 

Zero 

intercept 

(cm/s) 

Correlation 

coefficient 

(cm/s) 

u 0.3 5.9 0.96 -0.5 0.81 

v 3.6 6.1 0.91 -3.0 0.86 

Speed -0.5 6.0 0.69 4.8 0.71 

 

Table IV-2 Comparison of ocean current measurements at S2 at 290 m and M2 at 288 

m, using acoustic Doppler current profilers from Februa ry 8 to August 28, 2002. 
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Figure IV-1. Biharmonic fit to daily averaged data.  Biharmonic frequencies include 

annual and semiannual frequencies.  (a) Current speed at 300 m.  Red (blue) line 

represents the vr (ur) component of currents.  (b) Temperature at 300 m (1200 m) is the 

red (blue) line.  (c) Currents at 1200 m.  The red (blue) line represents the vr (ur) 

component of currents.  (d) ASL difference between Monterey and Port San Luis (blue 

line) and the ASL at Monterey (red line).  (e) Kinetic energy at 300 m (1200 m) is the red 

line (blue line).  (f) Wind stress trx (t ry) is the blue (red) line. 
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Figure IV-2. Comparison of current measurements at S2 (290 m) and M2 (288 m) using 

acoustic Doppler current profilers from February 8 to August 28, 2002.  Upper left (upper 

right) east-west (north-south) velocity component.  Solid red line is the linear regression 

of S2 and M2 measurements. 
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APPENDIX A.  TIDAL COMPONENTS 

A. HARMONIC ANALYSIS 

To understand the nature of tidal currents, an analysis of the various tidal 

components was performed through harmonic analysis. Traditional harmonic tidal 

analysis allows us to specify the frequency to be examined and obtain their amplitudes 

and phase in the least-square sense (Godin, 1972; Emery and Thomson, 1997).  Harmonic 

tidal constituents are dominated by diurnal and semidiurnal motion, followed by 

fortnightly, monthly, semi-annual, and annual variability. 

The advantages with the method of least-squares analysis is that it permits 

resolution of several hundreds tidal constituents of which 45 are typically astronomical in 

origin.  Both scalar and vector time series can be analyzed.  If the record is not 

sufficiently long to permit the direct resolution of neighboring components in the diurnal 

and semidiurnal frequency bands the analysis makes provision for the inference and 

subsequent inclusion of these components in the analysis.  Finally, the method allows for 

gaps in the time series by ignoring those times for which there are no data. 

The following excerpt from Foreman (1977) summarizes the Least 

Squares Fitting method.  “Assume that a sequence of water observations, 1y  and the 

corresponding times 1t , 1,...i N= , at which they occurred are given, one wants to find a 

function 

( )0
1

( ) cos2
M

j j j
j

y t A A tπ σ φ
=

= + −∑  

where jσ  and M  are the constituent frequencies and number of constituents, 

respectively, and are specified beforehand.  The amplitudes JA  and phase jφ  remain to 

be chosen so that the values ( )iy t  of the fitting function at the sampling instants it  agree 

as well as possible with the contemporaneous observed elevations iy , that is 

1

cos2 ( ) 0
m

i O J j i j i
J

y A A tπ σ φ ε
=

 
− + − =  

∑ ; , 1,...i N=   (1) 



74 

At the observation times, it  the time derivative '( )y t  of the fitting function should be 

approximately zero, that is 

( ) ( )
1

' 2 sin2 0
M

i j j j i j i
j

y t A tπσ π σ φ δ
=

= − − =∑ ;    2) 

When the number of arbitrary constants ( )2 1M +  in the expression for ( )y t  is less 

than2N , the fitting error iε  and iδ  cannot be reduced exactly to zero, to satisfy the 

equations (2) and (3).  A commonly adopted method in such over-determined problems is 

to minimize the sum of the squares of error at the observation times, which means, 

choosing the JA  and jφ  so as to minimize the error function 

( ) ( ){ } { }2 2 2 2 2

1 1

'
N n

i i i i i
i i

E y y t wy t ε ω δ
= =

= − + = +      ∑ ∑   (3) 

That is, to find a least squares fit to the available data.  ω  in equation (3) represent an 

arbitrary positive weighting coefficient that permits control of the emphasis to be placed 

on satisfying the zero derivative condition compared to that placed on having ( )y t  fit the 

observed elevations accurately.” 

In the case of observed current velocities the least square method minimizes the 

difference between the observed current velocity and the sum of the solutions 

corresponding to that observation.  The difference, or error, can be attributed to unsolved 

tidal constituents, inertial currents or noise in the signal.  The extracted solution reflects 

only those current variations with a coherent phase and no assumptions are made about 

data outside the interval upon which the solution are fit (Pugh, 1986). 

The analysis of tidal constituents requires observational periods that are normally 

multiples of synoptic periods involving the most important tidal constituents.  The 

preferred record length for a complete tidal analysis is 369 days.  This allows extraction 

of the amplitude and phase of at least 64 of the largest tidal constituents (Dronkers, 

1964). 
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Tables A-1 and A-2 shown the principal tidal constituents at 305 and 1200 m 

calculated by using the Matlab™ function t_tide that used the method described by 

Pawlowicz et al. (2002).  The record length used was 1718 days with a sampling interval 

of 30 min.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

NAME    freq     major    emaj   minor   emin     inc   einc      pha   epha    snr 
         cph      cm/s    cm/s    cm/s   cm/s     
 
*SA   0.0001141  3.509   1.616   0.692   1.34   116.06  24.35   161.96  28.95    4.7 
*SSA  0.0002282  2.432   1.679   0.694   1.14   117.86  38.00   181.57  42.88    2.1 
 MSM  0.0013098  0.460   1.107   0.101   0.94    96.39  84.81   156.88 180.13   0.17 
 MM   0.0015122  0.706   0.997   0.010   1.16    29.61 118.50   220.36 125.76    0.5 
 MSF  0.0028219  0.480   1.169  -0.042   0.96   134.76  86.84    68.71 171.58   0.17 
 MF   0.0030501  0.197   1.023  -0.021   0.96   124.11 100.52   299.40 224.83  0.037 
 ALP1 0.0343966  0.101   0.161  -0.066   0.14   168.33 129.34   309.60 156.39    0.4 
 2Q1  0.0357064  0.078   0.143  -0.066   0.16   100.71 135.45   251.16 159.61    0.3 
 SIG1 0.0359087  0.184   0.169  -0.124   0.18    46.71 100.29   246.84  93.13    1.2 
 Q1   0.0372185  0.140   0.172   0.038   0.17    22.48 114.53   114.02  91.29   0.67 
 RHO1 0.0374209  0.122   0.167  -0.079   0.17   158.17 120.61   194.87 140.75   0.53 
*O1   0.0387307  0.402   0.212   0.191   0.20   133.04  46.92   212.12  51.35    3.6 
 TAU1 0.0389588  0.086   0.153  -0.042   0.14    57.53 108.05   257.72 140.07   0.31 
 BET1 0.0400404  0.096   0.165  -0.047   0.16    83.04 117.26   133.66 142.81   0.34 
 NO1  0.0402686  0.280   0.299  -0.254   0.34    10.06 137.18   125.88 145.14   0.88 
 CHI1 0.0404710  0.106   0.160  -0.042   0.15    28.29  99.70    81.49 125.59   0.44 
 PI1  0.0414385  0.170   0.176  -0.093   0.17   142.90  89.74    65.22 117.11   0.92 
*P1   0.0415526  0.290   0.182  -0.014   0.21    96.88  40.53   180.17  40.58    2.5 
 S1   0.0416667  0.148   0.183  -0.072   0.19   124.91 107.72   131.77 130.40   0.65 
*K1   0.0417807  0.566   0.193   0.263   0.19    94.91  31.49   188.28  31.78    8.6 
*PSI1 0.0418948  0.282   0.158  -0.268   0.17   167.81 133.89   149.71 132.56    3.2 
 PHI1 0.0420089  0.119   0.146  -0.080   0.17    70.49 121.81   342.67 137.52   0.67 
 THE1 0.0430905  0.066   0.152  -0.001   0.14    14.96 120.89   151.23 176.53   0.19 
 J1   0.0432929  0.182   0.161  -0.131   0.17   117.98 102.93   261.85 106.62    1.3 
 SO1  0.0446027  0.183   0.182  -0.147   0.19    21.67 125.25   140.89 112.34      1 
 OO1  0.0448308  0.158   0.220  -0.019   0.21   154.96 101.75   288.39 119.99   0.51 
 UPS1 0.0463430  0.209   0.200  -0.119   0.20   179.70  99.06   231.98 100.98    1.1 
 OQ2  0.0759749  0.114   0.142  -0.068   0.15   179.92 112.51   103.90 106.90   0.65 
 EPS2 0.0761773  0.070   0.127  -0.027   0.13   155.12 118.80   352.64 173.20    0.3 
 2N2  0.0774871  0.190   0.143  -0.133   0.14     2.86  94.01    26.94  96.16    1.8 
 MU2  0.0776895  0.162   0.148  -0.097   0.14    71.92  83.09   205.72  98.79    1.2 
*N2   0.0789992  0.498   0.186  -0.150   0.19   125.79  24.54   175.00  24.42    7.2 
 NU2  0.0792016  0.140   0.158  -0.028   0.16   159.46  99.57   197.73 103.86   0.78 
 GAM2 0.0803090  0.012   0.096  -0.004   0.09   161.47 141.87   336.86 270.08  0.016 
*H1   0.0803973  0.574   0.168  -0.362   0.18   127.38  37.13   223.32  40.06     12 
*M2   0.0805114  0.988   0.201   0.308   0.20   109.14  12.75   171.57  12.98     24 
*H2   0.0806255  0.311   0.179  -0.129   0.16   117.09  42.97   330.44  46.90      3 
 MKS2 0.0807396  0.238   0.180  -0.203   0.19    28.51 108.46   234.69 102.27    1.7 
 LDA2 0.0818212  0.072   0.129   0.012   0.14     1.55 127.44   272.47 126.21   0.31 
 L2   0.0820236  0.048   0.111  -0.023   0.11   101.65 123.31   238.53 159.12   0.18 
*T2   0.0832193  0.238   0.160  -0.198   0.17    91.83  98.33   265.36 104.74    2.2 
*S2   0.0833333  1.072   0.206  -0.580   0.19   130.83  16.19   215.04  16.30     27 
*R2   0.0834474  0.240   0.133  -0.201   0.13   126.18  97.83   266.33 102.79    3.3 
 K2   0.0835615  0.240   0.181  -0.139   0.17   142.49  74.91   223.72  78.45    1.8 
 MSN2 0.0848455  0.088   0.147  -0.050   0.13    27.10 125.56   115.49 158.62   0.36 
 ETA2 0.0850736  0.160   0.165  -0.104   0.15    49.21  85.03   347.60  92.03   0.94 
 MO3  0.1192421  0.044   0.054  -0.017   0.06    54.90 102.31   254.07 103.66   0.66 
 M3   0.1207671  0.046   0.052   0.001   0.05    91.68  81.69    14.73  87.52   0.77 
 SO3  0.1220640  0.054   0.057  -0.027   0.05   172.96  97.94   145.94 100.41    0.9 
 MK3  0.1222921  0.055   0.054  -0.024   0.05    23.73  88.71   326.64  89.85      1 
*SK3  0.1251141  0.093   0.061  -0.046   0.06   153.84  56.87   189.28  64.39    2.4 
 MN4  0.1595106  0.016   0.041  -0.004   0.04   130.75 134.93   284.11 174.37   0.15 
*M4   0.1610228  0.100   0.057  -0.022   0.06    44.23  36.77   118.37  37.79    3.1 
 SN4  0.1623326  0.031   0.047   0.001   0.04   136.54 108.72    85.48 113.13   0.45 
 MS4  0.1638447  0.068   0.056  -0.012   0.05    56.62  62.32   148.97  59.36    1.5 
 MK4  0.1640729  0.057   0.051  -0.025   0.06   108.15  80.49   207.21  84.93    1.2 
 S4   0.1666667  0.021   0.045  -0.009   0.04   121.25 137.44   341.67 147.41   0.21 
 SK4  0.1668948  0.070   0.050  -0.060   0.06    59.16 122.39    58.35 114.95    1.9 
 2MK5 0.2028035  0.032   0.029  -0.015   0.03   116.50  98.06   220.37  86.92    1.2 

 
Table A-1. Major harmonic tidal constituents at 305 m depth.  Amplitudes and phases 

are relative to Greenwich central time.  A Raleigh criterion of 0.1 was used. The percent 

of variance predicted / variance original is 2.5%.  The technique used follows Pawlowicz 

et al. 2002. 
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NAME    freq     major    emaj   minor   emin     inc   einc      pha   epha    snr 
         cph      cm/s    cm/s    cm/s   cm/s     
 
 SA   0.0001141  0.717   0.712  -0.052   0.43    83.09  35.61    27.15  63.82      1 
 SSA  0.0002282  0.804   0.686   0.078   0.49   113.25  34.51    52.06  46.21    1.4 
 MSM  0.0013098  0.328   0.461  -0.145   0.48   168.20 127.77    18.59 161.59   0.51 
 MM   0.0015122  0.106   0.372   0.033   0.38     2.08 176.75   202.38 198.40  0.081 
 MSF  0.0028219  0.129   0.435   0.069   0.37    97.35  86.03    20.60 200.21  0.087 
 MF   0.0030501  0.291   0.477  -0.033   0.39    89.42  67.45   280.22 138.68   0.37 
 ALP1 0.0343966  0.018   0.085  -0.002   0.07   112.61 141.74   265.14 195.06  0.042 
 2Q1  0.0357064  0.041   0.088  -0.008   0.08    38.22 130.18   259.24 165.61   0.22 
 SIG1 0.0359087  0.021   0.078  -0.005   0.07   101.90 144.93   112.00 215.93   0.07 
 Q1   0.0372185  0.073   0.083  -0.005   0.09   167.22  91.00   234.48 110.34   0.76 
 RHO1 0.0374209  0.024   0.083  -0.011   0.08   124.31 135.34    19.69 186.49  0.086 
 O1   0.0387307  0.143   0.110  -0.009   0.10   117.77  57.76    57.67  51.97    1.7 
 TAU1 0.0389588  0.046   0.067  -0.020   0.07    88.90 121.62   155.59 132.92   0.47 
 BET1 0.0400404  0.038   0.079   0.004   0.07   150.01 106.35    36.34 183.60   0.23 
 NO1  0.0402686  0.068   0.171   0.033   0.17   131.51 134.26   199.88 142.44   0.16 
 CHI1 0.0404710  0.031   0.085   0.005   0.07   150.65 135.73    28.87 222.64   0.14 
 PI1  0.0414385  0.073   0.090  -0.033   0.09   111.49 108.83   253.98 101.47   0.66 
*P1   0.0415526  0.151   0.101  -0.022   0.09   155.63  44.82   106.10  48.07    2.2 
 S1   0.0416667  0.087   0.111  -0.011   0.11    32.19  96.98   171.27 111.12   0.61 
*K1   0.0417807  0.513   0.113  -0.080   0.11   143.01  14.95    43.59  13.48     21 
*PSI1 0.0418948  0.141   0.099   0.024   0.09   115.97  52.82   146.64  49.39      2 
 PHI1 0.0420089  0.077   0.084  -0.021   0.09   163.10  89.35   341.21 105.48   0.84 
 THE1 0.0430905  0.058   0.092  -0.041   0.07    81.21 121.77   193.83 138.04   0.39 
 J1   0.0432929  0.064   0.084  -0.024   0.09   134.06  97.60   116.42 130.57   0.57 
 SO1  0.0446027  0.082   0.107  -0.059   0.09   157.73 106.17   111.02 113.97   0.58 
 OO1  0.0448308  0.059   0.109  -0.047   0.12     9.28 131.43   154.80 165.80   0.29 
 UPS1 0.0463430  0.047   0.092  -0.026   0.10    23.83 113.64   103.62 152.35   0.26 
 OQ2  0.0759749  0.044   0.099   0.003   0.08     6.94 113.87   113.79 156.78    0.2 
 EPS2 0.0761773  0.104   0.102  -0.058   0.11   144.33  91.46   251.99 103.98      1 
 2N2  0.0774871  0.086   0.107  -0.030   0.09   113.49 113.84    36.08  99.12   0.64 
 MU2  0.0776895  0.040   0.112   0.025   0.10    31.42 131.84   201.08 175.50   0.13 
 N2   0.0789992  0.183   0.146   0.056   0.12   152.41  62.08   116.96  63.43    1.6 
 NU2  0.0792016  0.155   0.119  -0.106   0.12   113.24  94.15    60.35  85.67    1.7 
*GAM2 0.0803090  0.295   0.133   0.013   0.13    16.61  24.89   176.25  25.87    4.9 
 H1   0.0803973  0.154   0.124  -0.059   0.14   158.90  69.97   166.18  69.30    1.5 
*M2   0.0805114  0.786   0.160  -0.008   0.15    53.77  11.66   179.64  10.86     24 
*H2   0.0806255  0.282   0.128  -0.211   0.14    10.83  74.04   132.44  75.87    4.8 
*MKS2 0.0807396  0.242   0.138  -0.152   0.15    90.74  74.36   183.56  73.48    3.1 
 LDA2 0.0818212  0.111   0.116  -0.041   0.12   168.60  96.48   151.79 129.30   0.92 
 L2   0.0820236  0.080   0.109  -0.062   0.11   138.66 131.53   110.08 138.74   0.54 
 T2   0.0832193  0.101   0.134  -0.020   0.11    20.51  93.93    89.49 109.98   0.56 
*S2   0.0833333  0.648   0.166  -0.077   0.16    57.32  14.09   145.16  14.59     15 
 R2   0.0834474  0.089   0.099  -0.046   0.10    50.80  91.74   189.14 100.14    0.8 
 K2   0.0835615  0.180   0.132   0.009   0.13    35.91  59.00   102.56  65.97    1.8 
 MSN2 0.0848455  0.073   0.107  -0.047   0.12   149.90 126.87   143.08 110.74   0.46 
 ETA2 0.0850736  0.024   0.112   0.012   0.09    93.65 143.80   154.30 218.69  0.047 
 MO3  0.1192421  0.015   0.039   0.009   0.04    75.59 121.57   174.62 138.74   0.15 
 M3   0.1207671  0.043   0.041  -0.026   0.04   177.37 103.20    73.15 112.02    1.1 
 SO3  0.1220640  0.027   0.037  -0.002   0.04   118.99 102.70   179.03 114.39   0.54 
*MK3  0.1222921  0.059   0.042   0.018   0.04   122.59  63.40   229.31  66.27      2 
 SK3  0.1251141  0.021   0.040  -0.004   0.04     5.91 109.27   336.37 156.37   0.28 
 MN4  0.1595106  0.046   0.043   0.004   0.05    35.20  67.68     7.95  69.85    1.1 
*M4   0.1610228  0.073   0.048   0.020   0.05    41.03  48.26   208.92  46.64    2.3 
*SN4  0.1623326  0.069   0.041  -0.059   0.04    87.52 109.47    16.01 112.77    2.9 
 MS4  0.1638447  0.018   0.037  -0.001   0.03    94.58 114.98   109.37 176.02   0.24 
 MK4  0.1640729  0.047   0.051  -0.000   0.04   170.23  83.96   350.97  81.19   0.85 
 S4   0.1666667  0.011   0.032  -0.000   0.03    52.42 132.05    80.51 194.02   0.13 
 SK4  0.1668948  0.051   0.051  -0.023   0.05    88.20  85.83   100.44  91.52      1 
 2MK5 0.2028035  0.035   0.029  -0.014   0.03   100.75  65.90    19.97  67.88    1.5 

 
Table A-2. Major harmonic tidal constituents at 1200 m depth.  Amplitudes and 

phases are relative to Greenwich central time.  A Raleigh criterion of 0.1 was used. The 

percent of variance predicted / variance original is 2.5%.  The technique used follows 

Pawlowicz et al. 2002. 
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APPENDIX B.  ROTARY SPECTRA ANALYSIS 

Spectral Analysis is used to determine how the variance of a time series is distributed 

over frequency.  Rotary energy analysis was performed on the raw current meter data 

using Matlab™ programs, based on the discrete Fourier transform and the periodogram 

method.  A Hanning window is applied with a 50% overlap to ensure correct confidence 

levels (the confidence interval for all spectra is 95%).  As is usual practice, the mean and 

trend of the time series were removed before analysis. 

 

A. Rotary Spectra 

Any ban- limited series of horizontal velocity can be considered as a realization of 

a continuous, stationary, stochastic process with a zero mean and constant variance 

(Pugh, 1986).  Fast Fourier Transform algorithms may be used to partition the sample 

variance among frequency bands. 

For rotary spectra analysis, velocity components u  and v  are combined into 

complex vector w u iv= − .  These complex velocities are decomposed into clockwise and 

counterclockwise motions, and transformed into negative and positive frequencies, 

respectively.  The following excerpt from Mooers (1973) summarizes the rotary spectra 

analysis. 

Consider that a typical realization for an arbitrary frequency band, f f± ∆ , for the 

horizontal velocity w  is : 

w u iv= +  

 

Where the components u  and v  are arbitrary sinusoids 

1 1( ) ( )cos(2 ) ( )sin(2 )u t a f ft b f ftπ π= +    (1) 

2 2( ) ( )cos(2 ) ( )sin(2 )v t a f ft b f ftπ π= +    (2) 
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Replacing cos(2 )ftπ  and sin(2 )ftπ  by complex exponential and rearranging 

terms 

2 2 2 21 2 2 1 1 2 2 1

2 2 2 2
i ft i ft i ft i fta b a b a b a b

u iv e i e e i eπ π π πω
+ − − +       = + = + + +       

         

The rotary spectrum is derived (Gonella, 1972) by considering a transformation of 

variables from set 1 2 1 2( , , , )a a b b  to a set ( , , , )A C η ζ  such that 

2 2i i ft i i tu iv Ae e Ce eη π ζ πω − −= + = +  

In the hodograph plane  

A C+ = Length of the semi-major axis of the ellipse 

| A C− | = Length of the semi-minor axis of the ellipse 

( )
2

η ζ−
= Direction of the major axis 

( )
2

η ζ+
= Temporal phase of the ellipse 

The amplitude A  and C  corresponds to the counterclockwise and clockwise 

component of the motion, respectively.  The rotary spectrum is a plot of 22TA  vs. 

frequency at positive frequencies, where T  is the record length in time. 

The transformation used for the analysis is  

( ) ( )
1

2 2 2
2 1 2 1

1
2

A b a a b = + + −   

( ) ( )
1

2 2 2
2 1 2 1

1
2

C b a a b = − + +   

2 1

1 2

tan
a b
a b

η
−

=
+  

2 1

2 1

tan
a b
b a

ζ
+

=
−  
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where A  and C  are the amplitude of ω  at positive and negative frequencies 

respectively. 
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APPENDIX C.  TIME SERIES OF CURRENTS AND 
TEMPERATURES, MEANS AND ELLIPSES PARAMETERS BY 

DEPLOYMENT AT 305 AND 1200 M 

The figures in this appendix serve as a data record and document the data for each 

deployment.  Time series of daily currents and temperatures, means and ellipses 

parameters at 305 and 1200 m were determined using 6-hour data by deployment.   
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