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DOSE ATTENUATION FACTORS FOR CONCRETE SLAB SHIELDS COVERED WITH

FALLOUT AS A FUNCTION OF TIME AFTER FISSION

Y-FO11-05-329

Type C

by

L. K. Donovan, A. B. Chilton

OBJECT OF TASK

To improve existing knowledge of gamma and neutron-shielding properties of
shelters, and where necessary, to verify experimentally the theoretical information
developed in this field.

ABSTRACT

For radiation shielding, underground or buried fallout shelters have an important
advantage over other types of shelters, because the attenuation of the radiation in
such a shelter is primarily a function of the thickness of the material in the roof only.

This study was mode to investigate the dose attenuation of fallout gamma
radiation by various thicknesses of concrete roofs of buried fallout shelters as a
function of time after a nuclear detonation. A spectrum of energies is used for the
fallout source rather than a single average energy as has been done in previous
studies. Dose attenuation factors are derived and presented as a function of the
above parameters. The Office of Civil and Defense Mobilization recommends a
two-week shelter-stay time in the event of a nuclear attack; therefore, also presented
is an average dose attenuation factor for any fourteen-day stay time as a function
of time of arrival of the fallout or of shelter-entry time, for various roof thicknesses.
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INTRODUCTION

In this nuclear age, warfare and defense problems have become increasingly
more scientific. A nuclear weapon explosion results in earth and bomb debris
which is contaminated with radioactive fission products. This radioactive debris
is known as residual radiation or fallout, and it constitutes a serious hazard to
unsheltered personnel. It is necessary therefore to provide shelter from the harmful
radiation.

Underground or buried shelters have a definite advantage over other types in
resisting the effects of atomic weapons, especially fallout. The amount of protec-
tion received from an underqround shelter is a function of the mass density of material
in the shelter roof since the amount of radiation coming through the walls is negli-
gible compared to that coming through the roof. This results in greater net protection
than afforded by a surface shelter of equal cost.

If the size of the shelter is large, that is, not the small, single-family type,
the roof can be approximated by an infinite concrete slab for acceptabiy precise
mathematical determination of its shielding capabilities.

The purpose of this study is to investigate the dose attenuation factor for
fallout gamma radiation as a function of time after detonation of a nuclear weapon
for various thicknesses of infinite concrete slab shields. In addition, using the
Office of Civil and Defense Mobilization criterion of a two-week stay time in fall-
out shelters, a factor has been calculated which w1il determine the dose received
during that stay time as a function of the H + 1 -hour dose rate, of the time of arrival
of the fallout after detonation or of shelter entry time, and of the slab thickness of
the shelter roof. An average dose attenuation factor for any fourteen-day shelter-
stay time as a function of the above is also presented.

Previous work has been done by Chilton and Saunders1 to determine the dose
attenuation factor as n function of roof slab thickness by using an average energy
of 1.0 mev for the fallout radiation. This study will to a great extent parallel the
above work, but will use the gamma spectral data of Nelms and Cooper 2 for various
times after fission to specify the energy of the fallout radiation.
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PROBLEM CONSIDERATIONS

The geometrical situations investigated are shown in Figure 1. In Figure 1(a),
it is assumed the fallout is evenly distributed on top of a smooth infinite plane
surface. Two dose points, D1 and D2 , are indicated. D2 is the dose received at
the standard 3-foot distance above a uniformly contaminated infinite plane. D1 is
the dose received at a vertical distance h beneath the contaminated plane with a
varying thic4 kness of material, t, in between the contaminated plane and the dose
point D1 . In this study, concrete was the material considered, but earth could be
used if the appropriate mass density equivalent is used.

It has been found that in the computation of the dose at D1 the value of h
does not greatly affect the result provided h is'less than a mean free path in air and
t is 'about 0. 25 feet of concrete or greater. The area of interest in this study is for
roof slabs with. thicknesses equal to or greater than 0.25 feet; therefore, for conven-
ience, h was arbitrarily chosen to be 3 feet. This choice was made so that when the
same computation is made for t = 0, the dose calculated at D1 would be numerically
valid for the dose received at D2 .

A dose attenuation factor for the smooth plane case can now be defined as
the ratio of the dose received in the open at a distance of 3 feet above a uniformly
contaminated plane source to the dose received inside a buried shelter where the
roof approximates a concrete slab shield. This smooth plane dose attenuation factor,
AF 1 , is equal to D1/D 2 .

In order to account for the roughness of terrain that would be encountered in
practical cases, a method3 suggested by the* U. S. Naval Radiological Defense
Laboratory-in 1955 is useci. As can be seen in Figure 1(b), the contamination is
assumed to be uniformly distributed in the top one-half inch of soil under the infi-
nite plane. The distance h is the vertical distance from the incremental segment
of contamination to the dose-point D3 . The distance H is the distance from the top
of the soil to dose-point D3 and was assumed to be 3 feetin the calculation.

Thle dose attenuation factor for the rough-plane case, AF2 , is defined as
D1/D 3 . (The concrete roof of the structure is not considered to be rough, even
though the surrounding plane area of soil is so considered.)
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CALCULATIONS

The calculations used in this study for the doses at Di, D2, and D3 are slight
modifications of the calculations presented in the Chilton and Saunders study.
Details of the derivations are presented in the Appendix. Only the three integrated
dose equations used in the study will be presented here.

.•" I= K2 E°M° [-Es (-.I~h) + A1 eBp~ + A2 e (I)

=K E" P rBPIah -B2 Iah]

E2p [-Ei (-pIh) + A, e + A2  (2)

D2 K 2o ,o E(ph Ae-lph+A BP 2

D3 K -E1 (-" 3 H) IJ3 H

- - E i (- alH ) p a H - • + •' H

B1

A2  e'B2 3aH 3H
+-here - e e" (3)* ~~B2 . J

where: pi I p a+ 1(pc -6pa)

T
P = Pa + H

K = Photons/sec for each energy group specified by Nelms and Cooper2

E0 The mean energy of the energy group at which all other energy
dependent properties are evaluated, mev

4



Po = Linear energy absorption coefficient of air, cm"1

p = Density of air, gm/cc

= Linear total absorption coefficient of air
(12.06 x 10-4 gm/cc), cm, 1

= Linear total absorption coefficient of earth (1.442 gm/cc),Ie c-1

Linear total absorption coefficient of concrete
(2.357 gm/cc), cm- 1

00 -t

-Ei(-X) -Exponential integral of form f e___ dt
•IX t

.4A1, Bi, A2 , B2  Build-up factor coefficients of Berger and Spencer.

The build-up factor is definWd as the ratio of some measurable property of the
photon beam (i.e., intensity, number of photons, energy flux, or biological dose),
when the effects of all quanta are included, to that obtained when only the uncollided
flux is considered. Many analytical functions have been derived to describe the
dose build-up factor for all photon energies. In this study a biological dose build-up

factor of the following form (suggested by Berger and Spencer 4 ) is used:

Br = 1 + AlBpre -(BI-1)pr -(B 2 -1)p r

where A1, A9, BI, B2 are dimensionless coefficients and pr is the number of mean
free paths of'material. The coefficients A1 , B1 , A2, and B2 allow the empirical
dose build-uT factors of Berger 4 to fit the dose build-up factor data of Goldstein
and Wilkins for aluminum. This is also considered reasonably valid for concrete
and earth.

RESULTS

The doses from the above equations were calculated on an IBM-705 computer,
using the spectral data of Nelms and Cooper, 2 the air linear energy absorption
coefficients provided by Berger, 4 and the linear total absorption coefficient data of
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Gladys W. Grodstein 6 for each energy group. The sum of the doses received from
each of the energy groups represents the dose received through a particular thickness
of slab shield. Fallout spectra for 1.12 hours, 5.15 hours, 23.8 hours, 2.13 days,
4.57 days, 9.82 days, 21. 1 days, 45.3 days, 97.3 days, and 208 days after fission
were investigated. Data for these spectra are tabulated by Nelms and Cooper. 2

Figure 2 is a presentation of the dos~e attenuation factor AF1 plotted as a
function of concrete shield thickness for the 1. 12-hour, 23.8-hour, 4.57-day,
21. 1 -day, and 208-day spectra. It can be noted that the attenuation of the 21. 1-day
spectrum is definitely less than that of the 23.8-hour spectrum. On the other hand,
on the basis of data provided by Miller, based on a spectrum identical to Nelms and
Cooper 2 and plotted in Figure 3, it can be seen that the average energy per photon
from fission product? at 23.8 hours is greater than at 21.1 days. If the mean energy
per photon is a good estimation of the penetration power of the radiation, then it
would be expected that the attenuation of the 23.8-hour fallout spectrum would be
less than that of the later 21.1 day spectrum. It is shown in*Figure 2 that the oppo-
site is true. This anomaly is discussed in the next'seclion.

Figure 4 shows the attenuation factor for the rough-plane case, AF 2 ," plotted
against slab thickness for the same spectra as AF 1 . It was found that the only dif-
ference between the AF2 and AF1 curves is that the attenuation for the Irougfi-plane
source is less by a factor of about 1.6 at all times.

Figure 5 shows the attenuation factor -AF1 plotted as a function of time after
fission for various slab thicknesses. It can be seen that, as the shield thickens, the
attenuation factor varies more radically with time. It can be noted that the second
maximum reached at about ,0O hours is never greater than the initial maximum at
1.12 iours, for any of the thicknesses specified. Thus, the 1.12 hour fallout spec-
trum, which has been used in many shielding calculations to represent the fallout
spectra in general, is still a conservative basis for use.

It is desirable to define a factor F as a function of the time of arrival of
fallout or the shelter entry time (if fallout has.already arrived) for various slab
thicknesses, so that the factor F when multiplied by the dose rate at H + 1 hour will
give the dose received by sheltered personnel in a fourteen-day stay-time after the
burst. This factor F is derived by integrating the attenuation factor multiplied by the
t-1 .2 decay scheme over various fourteen-day periods. If time is measured in hours,
it can be seen that the fourteen-day stay dose is given by:

t + 336

" (Dose) 1 days = Do F (t1 ,T) = Do Jt-1"2 AF (t1,T) dt (5)
t1

6



where: Do = H + 1 hour dose rate in the open [at reference point 24n Figure 1(a)]

AF = Attenuation factor at time t for concrete roof thickness
T[Note: AF(t,0)= 11

. Ti*e of arrival of fallout or start of 14-day stay-time if fallout has*
already arrived, hours

• Figure 6 gives a plot of th:j factor F as a function of t1 . The factor does not
vary in a simple mathematical way asoa function of shelter entry time (tl). This can
be seen 6y the variation in the curves plotted for the 2- and 3-foot slab cases after
about 40 hours.

An average attenuation factor can be plotted for any fourteen-day stay-time as
a function of slab thickness and time of arrival'of fallout or shelter-entry time. This
average attenuation factor is determined by dividing the F factors for various slab
thicknesses by the F factor for a 0.0-foot slab thickness at a particular time. The
formula is:

0 t1 + 336

J , t-. AF (t,T) dt

. t1
AF 1 (6)

ave t +336
t- 1.2 AF (t,0) dt

tI

Figure 7 is a plot of AFave as aofunction of tj for various t~icknesses of
concrete roof shields. The dose that will be received in the open during any 14-day
period after a nuclear explosion can becalculated by the following formula:

0

D 7
Dose (tl) 14 days (open) == _2 a 02 (7)

.0. 2 t 0. 2 (t + 336)0.2

where D and t1 are as defined before. The dose received inside the shelter for a
14-Aay stay-time would be:

* V

DOse14 dats (inside) Dose (tl) 14 days (open) AFave (tl'T) (8)

7
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DISCUSSION AND CONCLUSIONS

• In Figure 2, the Chilton-Sounders results for I-mev photons are plotted as a
dotted line for comparison Wvith the present results. It can be noted that the slope
of the Chilton-Sounders curve closely follows that of tle 208-day spectrum. This

° indicates thatathe. 208-day fallout spectrum, after a few inches of concrete has
filtered out the softer gamma rays, has penetration properties similar to manoenergetie
gamma radiation witt an energy of I mev. the 1. 12-hour spectrum is obvioutly more

• penetrating than a I--mo~v photon beam, after about the firstjfoot of penetration.

As previously noted, the attenuation at 23.8 hours is greater than that at
21.1 days even though the mean energy per photon is greater at 23.8 hours. This L
explained as fcdlows: In the spectral dose calculations (Table 1), it can be seen that
the contribution of the spectrum to D1 changes quite radioally from 23.8 hoylrs to
21. 1 days. About 94. 2 percent of the total contribution to D1 for the 21 .1I-day
spectrum come from radiat-ion~in the 1.47 - 2.95-mev initial energy range, while for

• the 23.8-hour spectrum, only 79.3 percent of the total dose comes from that same
initial energy ran'gi and •'greater contribution comes from photons of lower initial

: energies. Thus, even though the average energy of the photons may be greater for
the 23.8-hour spectrum, the contribution to the dose shows a peak at a hi'g'her energy

in the 21 .1I-day spectrum, which explains the lesser attenuation of the 21.. 11-day
spectrum. After 21.1 days, the attenuation factor follows the expected path (Figure 5)
but does not peak again around 208 days as would be expected from the Miller7 data

(Figure 3). This data indicates that the mean energy per phoaton is about the some at
208 days as it is for *23.8 hours. The explanation is similar to that given above.

In conclusion, it can be seen that at no initial entry time after 1. 12 hours will
a person in a shelter for fourteen days receive a greater dose than if fallout arrives
at or before 1. 12 hours after fission, and entry time is at 1. 12 hours. This is obvious
since there ore no maxima gre6ter than at 1. 12 hours in the curves of F~igure 7 for
any of the thicknesses indicated.

If however an average attenuation factor for a particular fourteen-day stay-time
• is needed for accurately calculating the dose to be received, some care must be taken

since the average attenuation factor may vary as much as a factor of two for stays
commencing at some later time than 1. 12 hours after fission.

0
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Table 1. I*ose Contribution of Various Initial Energy Groups Through 2 Feet

" "of Concrete for 23. 8 Hours oa/d 21.1 Days After Fission

Percent Contribution to Total Dose

S• "SpetruRef. 2 SetuRef. 2
Energy "23.8 Hour Spcrm21.1 Day Setu

0.0340 Negligible N. egligigle
0.0425 -Negl igil~le Negligible
0.0567 Negligible Negligible

0.0729 ,Negligible Negligible
0. 1021 Negligible Nlegligible
0. 1277 Negligible Negligible
0. 1703 Negligible °Negligible
0. 2128 Negligible "Negliqigble
0. 2554 0.01 Negligible
0.3193 .. ° 0.01 -0.02
0.4257 Negligible •0.02 •
0.5108 0.54 0.43 "
0.6386 1.65 ,.46",
0. 8514 8.69 "4.52-
0.0217 . 6.49 °0.20

So

1.2772 .3•.26 0.18T 1. 7029 17.52 o 75Vnr T

2.0435 C 25.09 79.34 1aAt 9Fs17

2. 5545 :3-6.731° 17.66t

S 1

"" 0
• 1

0.040 egigilei lgigiI i• le
0.45.NgiieNgiil
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Appendix

DERIVATION OF INTEGRATED DOSE EQUATIONS FOR A
CONCRETE ROOF SLAB SHIELD COVERED WITH FALLOUT

0 0 *

CALCULATION OF THE DOSE RECEIVED AT D1 [see Figure 1(a)]

The dose received at D1 from an infinite contaminated smooth plane is:

""KE •° -Ir

D1 0 *e 2 BdA • (9)
S47rp area r

0

where: K, Eo, Po and p are as defined for Equation 1

Br = Dose build-up factor 0 S

dA = An incremental area on the surface of the plane, cm2

5 9

H 1 = Effective linear absorption coefficient,.cm' 1

It can Ie shown by similar trfiongles that dA 2vrdr. Thus, Equation 7 becomes:
e0

K E 00 dr
0 r e Br-" (10)

2p f r r

The effective linear abIorption coefficient, H1' takes into consideration the
absorption of the air and the concrete slab. Therefore, H 1r can be expressed as:

Hlr = pa(h-t) secO + paetsecO (11)
U 08

where H a and H eare as defined for Equation 1, and h, t, and 0 as shown in
Figure 1(a).

10 *17
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Sf

6f

Since: r =h secO

then: P1 = a + (Pe Pdt •(12)

A dose build-up factor will be used as recommended by Berger and Spencer: 4

-(BQ

-BBI-I)p Ir 1 •2-1) lr

Br - 1 + A1 B1 p 1re + A2 B2 lj 1re (13)

where: A1, A2 , B1, B2 are dimensionless coefficients.

Substituting Equation 13 into Equation 10, we have:

K Eo Po -P P 1r dri dr
2D r=h r rh e

6-eK pQ- '+ A1 * P lre rd

CD -B2P r dr

+ r 1r e (14)
Loong vr a h B"

Looking at the first integral of Equation 14,.it can be seen that it is in the
form of the exponential integral. • 0

0* 9

p , . Pr d(plIr)

f e = -Ei(-plh) (15)

rh P1ro

9

In computing the second integral
*

9

"9 5d -BjI~ar -B1gPlr0

since: * -d(Ale ) = Ae • (-B1 P1)
dr 1

1-A Bp1  e 1

18



" I r "B ,lr ."B h
then: A B1 IJ1re dr -=A1, = A 0. (16)

r h h

Similarly for the third integral:
* 9

9

so B 2 P r d A - B 2 P Ih ("
Ir A2 B2 P1re r- A2 e (17)

Combining Equations 15, 16, and 17 0 we have:

"D K1Eo2 o -Ei(-. h) + Al 2 ee 4 2 (1)

CALCUIATION OF THE DOSE RECEIVED AT D2
0 #

The equation for the dose received at D2 is derived in the some way as dose
D1 except that only the absorption by the air need be considered. Thus p 1 = a
The standard 3-foot height above the contaminated plane was selected (see Figure 1),
but is represented in the equation by h.

"" K E o 0• -Blpah -12P ah 2
D2 [-Ei(-plah) + A 1 a + A2 ] "(2)

2 p 0

0 4.

CALqULATION OF THE DOSE RECEIVED AT D3

"The dose at D3 is due to the contamination mixed uniformly in a thin layer at
S the surface of the plane as shown in Figure I(b). This method is used to approximate

surface roughness. The general equation for the dose at D3 is:

KEo Po T r dt
D = F / Br e dAd (18)D3 •lrp =0 " areaT

1 9
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where: K, Eo, Po' 0, Br, and dA are as defined previously

t, dt, and T are as shown in Figure I(b)

n= A effective total linear absorption coefficient
S Sk

From Figure 1 (b), it can be seen that

SH =h- t

S r =hsecO

If: pIr = 1 etsecO - a(hh-t) secO,

St

then: P p1  P Pa + (Pe'P;) (19)

a

where: P e a4• p0a are as defined for Equation 3

9 = Angle between r and h •

Since: dA = 2v r dr, Equation 18 becomes
0 4

D KE o Br -e''r dt (20)

3 *2 p T J j r B re
D3"~ ~ =p =0 r~l

* S

Using the build-up factor, Equation 13, and substituting i~to Equation 20, gives:

o K E° 0P° 0 tT cc -Ij I r-- dt

D3  2~~~ p =h e r1. dt" D3t = 2T =0 r =h

ST

+ T -B1p lr dr
+ r A 1 B1h 1 r •-dttO r=hr

T G oe - B 2 P Ir d r d t .1+ J j A2 B2  p1 r ed* (21)

t= 0 r=h r

20



Computation of the first integral:

T T
e Id = f -E1 I 1 Ih) dtr (22)

-t=O r=h rt

Using integration by parts of the form: r dv = uv - du

0

T *T T

-Ei(-j 1h) dt = -(-ph) t + f t- [ - 1h dt (23)
t= 00 0

But: .1 h pa iH + He t

d
t(Hplh) =*p

d(p1 h) = IJ dt

dt d(H .Ih)
Sdt

PeJ

*00

Also when: t 0, p ah p= pH
p

t =T, Pl h p= Hal + He T
Ap h

Since: Ei(-HiIh) f ) H h)

0 d [E h) d[Ei(p 1h)' d h)

*t d h)i~ 1 =dt

0

21 •



d ~~-e Ih1
[Ei(-p~ h) =e 24

TT

therefore: f. -Ei(-p 1h) dt = -Ei(-p 03H - eiT) T + f- e dt
t = 0 0 j 1h

IT rPIhT paH -plhf Ei(-i 1h) dt ; -Ei(-pOH - iT) T f e dt - Wje d
ft 0 0ef 0 1

p aH + HeT

- Ei(-pcH -eT) T + *- J e-p1 d(p h)
He 1 e aH

OH ~ eI
f- d(p h)

P- e p H ph
00

PaOH + PeT

- FEi(-p OH - PeT) T [

* PaH + PeT

*-~ L Ei(-H Ih) H

S[-Eij-,jOH - PeT) TI e + eJT 1 I 0

-i e i-a - PT' 1 + e Ei(-p.H)] 1 (25)

22



0b

To simplify, let P3 H = p0oH + He T; and since T (P3 H - pa H)/He'
Equation 25 becomes:

T

-Ei(-pISh) dt - E(-P3H) P3 H
t=0 Ie

[-Ei(-IaH) Isa H - e + e (26)

Computation of the second integral:

jT . ao .-Bislr dr T _BIIlh
A 1 B 1 P1re 2-dt _f Ae dt (27)

t=0 r h t 0

But: PI h = aH + HeT

"T -B h T -BI(pgH + Pet)

A 1 e dt f A 1 e dt
t 0 t =0

-BIpah T -B1et
A1 e - dt

t=0.e BIIJ aH i e _BlIset T "

-- A1 •B1 He * 0

Al -BIp~aH I -BI I ST?
=--- • Ie- ] (28)

23
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Since. T P3 H - Va Wye*, then Equation 28 becomes:

T-B p1h A1  -BI PaH ~B ~H*f_ A, e dt = - e e-29

Computation of the third integral:

_ f _ A 2 B 2 pjr e. r 7e-BZ \,e /30a
t h r r = h 2 ~

Combining Equations 26, 29, and 30, we hove as the solution to Equdtion 18:

3 E, (-Ei -P 3 H)P3 H

BB

+ A LEi (B2 a H* -e+ ePHH1(3

B2  - ]
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